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Linear stability of cylindrical Couette flow in the convection regime
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The instability of steady circular Couette flow with radial heating across a vertically oriented
annulus with a rotating inner cylinder and a stationary outer cylinder is investigated using a linear
stability analysis. The convection regime base flow is developed for an infinite aspect ratio geometry
and constant fluid properties with buoyancy included through the Boussinesq approximation. The
base flow is characterized by a dimensionless stratification paraméat is proportional to the
vertical temperature gradient. Critical stability boundaries are calculated for this assumed base flow
with respect to both toroidal and helical disturbances. The numerical investigation is primarily
restricted to a radius ratio of 0.6 at a Prandtl number of 100. Critical stability boundaries in
Taylor—Grashof number space are presented for two values of the stratification parart#eterd

13). The results follow the development of critical stability from Taylor cells at small Grashof
numbers up to a maximum Grashof number used in this calculation of 20 000 and 80 00 for
=4 and 13, respectively. Results show that increasing the stratification parameter stabilizes the
isothermal Taylor vortices, followed by a destabilization at higher azimuthal mode nurttbers
>0). The results also show that fer=4 (close to the conduction regimédwo modes are obtained:

one is axisymmetric and the other is nonaxisymmetric. However, for the convection rédgme

v) six asymmetric modes are obtained. Finally, the disturbance wavelength, phase speed, and spiral
inclination angle are presented as a function of the critical Grashof number for the stratification
parameters considered in this work.2005 American Institute of Physics

[DOI: 10.1063/1.1905482

I. INTRODUCTION gradient. There has been a renewed interest in the problem of
The viscous fluid flow created between differentially ro- radially heated rotating flows, partially from a continued ef-

tating coaxial cylinders has provided a fertile testing grounufl\(z.rt IIO e”hzfg‘”cs thel COO|I.I’]E c;:‘ rot_atlngf ma(cj:hmé@edg and d
for both linear and nonlinear stability theory. Beginning with inkowyez), but also with the aim of understanding an

the work of TayloF numerous experimental and theoretical CONtrolling instabilities in nematic liquid crystal systems
studies on flow transitions and morphologies of supercritica(Barrat} and Zu”!gjg) and in the solidification of pure metal
circular Couette flow have appeared. Initial studies on ther(Vives™). Numerical studies of the effects of buoyancy on
mally driven circular Couette flow, motivated by technologi- Pifurcation phenomena in systems of small-to-moderate as-
cal problems in the cooling of rotating electrical machinery,Pect ratio have been reported by Ball and Fartuk.Com-
have been reviewed by KreifhEarly theoretical attacks ne- Prehensive studies on the stability of Taylor-Couette flow
glected gravity and usually considered only axisymmetricwith radial heating using a conduction regime base flow have
disturbances in the limit of infinite aspect ratio. Such inves-been conducted by At and by Ali and Weidmaf? for both
tigations by Yih® Becker and Kayé& Walowit et al,’ Bahl®  wide and narrow gaps and for different Prandtl numbers.
and Soundalgekaet al.” showed that isothermal Taylor cells Their results follow the development of critical stability from
are destabilized(stabilized by positive (negative radial — Taylor cells at zero heating through a number of asymmetric
heating gradients across the gap. Roébisecredited as be-  modes. Thermal convection in differentially rotating systems
ing the first to properly include the effect of gravity in the where the centrifugal force dominates over gravity was stud-
Boussinesq approximation but, like most of his predecessorsed by Kropp and Buss® Over a considerable range of the
considered only axisymmetric disturbances. Roesner’s regarameter space either convection rolls aligned with the axis
sults contrast those neglecting gravity in that isothermal Taypf rotation or rolls in the azimuthal direction were found
lor cglls are s_tabilized by both. positive anq nega.tiv_e radiahsing the narrow gap approximation. The interaction of a
heating and his computed stability boundaries exhibit perfect 5| radial temperature gradient with both gravity and cen-
symmetry with respect to the direction of the temperaturqrifuga| forces was studied by Chen and Rliasing a linear
stability analysis. Their study showed that the symmetries

dTelephone: 966-1-467-6672. Fax: 966-1-467-6652. Electronic mail:tond by Ali and Weidmal® can be broken if the depen-
mali@ksu.edu.sa
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restricted to axisymmetric disturbances. On the other hand|. MATHEMATICAL FORMULATION
the limiting case in which the centrifugal force is much ) . ) o
smaller than the buoyancy force was studied by Aeteal 18 The motlon of a thermally .actlve viscous flwd in an
using a small gap approximation. In their studies, both Cyl_anrjulus Wlth a rotating inner cyllnder. and a stathngry outer
inders were rotating and linear stability analyses with som&Ylinder is governed by the equation of continuity, the
weakly nonlinear regimes were presented. Nawer_—Stokes quatlo_ns,_a_nd the energy equation. The
The stability of viscous isothermal circular Couette flow BOUSSIN€sq approximation is invoked for the buoyancy term,
generated by rotation of the inner cylinder is controlled byPUt Otherwise constant fluid properties are presumed. To con-
the radius ratio, the aspect ratio, and the Taylor number. Stas,-'der flow in tohg conyectlve regime, we will consider a modi-
tionary counterrotating toroidal cells of uniform width fied problen"’i n which the vertical temperature gradiefit
stacked one above the other appear at a critical Taylor nunjiat develops in the core of the flow when the Grashof num-
ber. Comprehensive reviews of both theory and experiment2€’ Pecomes largf8, is instead imposea priori along the

on the stability of isothermal circular Couette flow have been’€'tical boundaries. The annulus is then assumed to be infi-

given by Di Prima and Swinne&? and Stuarf® nite in vertical extent, with the effect of aspect rafienter-

In the absence of rotation, natural convection betweed'd imPlicitly through the value o which is used to model

vertical differentially heated concentric cylinders dependsh® fIL%W' For high Prandtl number flows in a vertical slot,
crucially on the magnitude of the imposed thermal heatingF/der” found experimentally that the relations2AT/H

and the system aspect ra#ig=H/L, whereH is the annulus olds to a good approximation if the Grgshof number is large
height andL is the gap width. Early experimental studies, enough, wherT is the temperature difference across the

starting by Eckert and Carlsdh, fostered the identification annulrl]Js gap. S , o

of three distinct flow regimes in both planar and cylindrical The eqhuatlonls 0 mc;tlon are made glmens;lon (ra]ss by
gaps: conduction, transition, and convection. For circula€00Sing the scalefl,U, AT, poUu/L,L/U,4Ry] for the
cylinders maintained at different uniform temperatures, thdndth. radial and vertical velocities, temperature, pressure,

transition regime for unity Prandtl number has been placed iff ™€ a?d _azimuthal velocity, respectively. Herd
the range of Rayleigh numbet® =gBATL/v is a characteristic velocity, the gap width lis

=R,—Ry, g is the acceleration due to gravity,is the thermal

expansion coefficientp, is the density,v is the kinematic
400A < Ra< 3002 (A>5), viscosity, and(), is the rotation rate of the inner cylinder.

The dimensionless equations in a cylindrical coordinate sys-

where Ra<400A corresponds to the conduction regime andtem are given by

Ra>3000A to the convection regime where axial boundary G{é’_u - vu-2= R g2 _U
layers form along each cylinder wall. In the linft— o, an ot r or r2o¢p %
analytical solution for the base flow in the conduction regime (1)
is readily obtained. A linearized Galekerin calculation testing
the stability of this flow against axisymmetric disturbance o U 1.4p 2 au
has been carried out by Choi and Korp&lavicFaddenet GS{— +Uu-Vv+ —} = - = +SV+ >
al.>* extended Choi and Korpela’s results by testing stability a r r i r*d¢
with respect to nonaxisymmetric disturbances. Weidman and v
Mehrdadtehranfar have carried out experiments on the sta- T2 (2)
bility of natural convection in a vertical differentially heated
annulus for base flows in the convection regime. They ob- W ap
served the simultaneous upward and downward propagation G{E +(Uu-V )W] =- pe +Vaw+ 0, 3
of vortex rings.

On the other hand, stability analyses of the convection {

G

0282} __ ap

regime in a planar gap have been carried out by Vest and (9—9+ ua—a + vSd0 +W<9_6} = lVZQ, (4)
Arpaci?®® Gotoh and Mizushim4' Hart?® Elder?® and a o radp oz] Pr
Bergholz*°

The purpose of this study is to develop an analytical 4 Y, S LW 0, (5)

solution for the base flow in the convection regime inaver- dr r rd¢p dz
tical annulus with a rotating inner cylinder and a stationaryWhere
outer cylinder. Then the stability of this base flow is tested

with respect to axisymmetric and asymmetric disturbances _, _ }i( (?) 1i &>

for a high Prandtl numbeiPr=2100 in a wide gap(x=0.6). Tror rE * F,gqu * 2’

The mathematical formulation in Sec. Il leads to the numeri- (6)
cal solution procedure in Sec. lll. Computed stability bound- J S 9 9

aries along with the associated disturbance wave character- (U V)=u—+——+w

arl . ; 1arac o rop az
istics are discussed in Sec. IV, followed by conclusions in ¢

Sec. V. The Appendix contains the analytical form of thefor x/(1-«)<r<1/(1-«), whereu, v, andw are the veloc-
base flow solution. ity components in the, ¢, andz directions,d is the dimen-
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sionless temperature, ancER;/R, is the radius ratio. The
dimensionless paramete@=gaATL3//7 and Pr=v/k ap-

pearing in the equations are the Grashof and Prandtl num-

bers, respectively, whelleis the thermal diffusivity.
The swirl parameteB=();R;/U appears because of the

difference in normalization between the azimuthal and me-

ridional velocities. All computed stability results are pre-
sented in terms of the Taylor number Ta@@3L4/1A(1
-«?) in lieu of S.

A. The base flow

The base flow in the convection regime corresponds to a

steady, axisymmetric motion witb=0, v=V(r), w=W(r),
and #=7z+0(r), wherer=BL/AT is the dimensionless ver-

Phys. Fluids 17, 054112 (2005)
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tical temperature gradient. Here capital letters for the veloci-

ties and temperature are used to signify the base flow condi-

tions. Equationg1)—(5) reduce to

ap V2

90 _ = 7

or r ™

dv 1dv V

—+-—-5=0, (8)

dr rdr r

op dPwW 1dw

—=—+——+0+72Z 9

gz dr®> rdr Tz ©

werpr=29 , 149 (10)
A Ty ar

The pressure is then given tpepo+Pz+77%/2, wherep,
andP are constants. The vertical velocity thus satisfies

(11

We assume thal satisfies no-slip boundary conditions, and
that®=1 atr=«/(1-«) and®=0 atr=1/(1-«). The con-

g
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FIG. 1. Base flow for various values of the stratification parameteia)
velocity and (b) temperature. Here the dimensionless temperature is
=k/(1-K)+{+1/2.

stantP is determined by requiring that there be no net mass

flux in the axial direction:

1/(1-x)
0 :f rwW(r)dr. (12
Kl(1-k)

ranging from 4(close to conduction regiméo 16 (convec-
tion regime and forx=0.6. The base flow solutions can also
be computed by using the two-point boundary value problem
software sUPORT>?> The numerical solutions were checked
against the analytic formulad3) and (14) using thelMsL

The solution may be expressed in terms of Kelvin functionsggftware for the Kelvin functions. In the limik— 1. the

of order zerc™ If we write 7PrG= ¥*, wherey is the strati-
fication parameter, then we have

WI(r) = a, ber(yr) +a; bei(yr) + agker(yr) + a, kei(yr),

(13
and the temperature is given by
O(r) = y?a, bei(yr) — y°a, bet(yr) + yPag kei(yr)
- ya, ker(yr) + P. (14)

The coefficientsy, a,, a;, anda, are given in the Appendix.
The axial velocity and temperature profilé§(r) and O(r),
are displayed in Figs.(4) and Xb) for various values ofy
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solutions approach those that are appropriate for a vertical
planar slot® The common solution for the azimuthal veloc-
ity in Eq. (8) is given by

]

|

B. The disturbance equations

—1 —
(1-k)?r

K

V(I’) = m

(15

The primitive variables are written as the sum of the
base flow and a perturbed flow of the form
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u(r, ¢,zt) 0 and o7 completely determines the shape and kinematics of
ot $,2,Y) V(r) the disturbance flow patterns at neutral stability. In particular,
e the nondimensional axial phase spe&dthe wavelength

w(r,d,zt) = W) normal to lines of constant phase, and the inclination argle
p(r, ¢,z1) Po+ Pz+ 1212 of spiral cells with respect to the horizontal are given by
or, $,z,t) 72+0(r) -0, 2 1( n)

. C=—m, N=—, =tan| — |,

0(r) K re K

o(r) S— (22)

+| W(r) lexdi(Kz-ng+ oit) + oyt]. I'=\(nr?+ K9,
p(r) wherel is the disturbance wavenumber normal to the lines
é(r) of constant phase. Note that the wavelength and inclination

angle for the asymmetric disturbances depend on the radial
(16) coordinate; for a given mode of instability, spiral wavelength
(inclination) will be shorter(steeper when observed at the
inner wall than when observed at the outer w@ée the
work by Ali and Weidmar>3.

In this formulation the disturbances are either toroidal
=0) or spiral (n#0) with axial wavenumbekK, frequency
-0y, and growth rate o,. The radial eigenfunctions
G(r),o(r),W(r), 6(r), andp(r) are complex quantities and for
the determination of neutral stability, we ggt=0. Substitut-
ing (16) into (1)—(5), subtracting the base flow and neglect- Equations(17)—(21) can be written as a set of 16 non-
ing terms that are quadratic or higher in the perturbatiodinear first-order ordinary differential equations. This system
amplitudes furnishes the linear stability governing equationswas solved using the boundary-value problem software pack-
. age SUPORT (Ref. 32 in combination with the nonlinear
Di+ Y+ Sing + ik = 0, (17)  equation solversnsQE>* Computations were performed in
rr double precision. Extensive code testing of $u®oRTpack-
age with thesnsQEsolver® has been previously reported by
1+m) |, McFaddenet al,* Ali,** Ali and Weidman>**and recently
2z |4 by Ali et al®’ The eigenvalue problem may be written in the
implicit functional form

IIl. NUMERICAL SOLUTION PROCEDURE

; ~ & 2oy Lo 2
G(o+iKW)i+Dp=D u+FDu— K<+

2inS, inGSV. 2o
ot u+TSZG, (18) F(G,Ta,PrK,o;,n,x,y) = 0. (23)

The parameter§, Pr, K, n, vy, and k are usually fixed and

) . inp_ .1, , (1+n?) |, solution of the ordinary differential equations is obtained by
G(o +iKW)v - oy DU Do KA iteration on the eigenvalue pdifa, o;). At fixed mode num-
_ . ber n, a search is conducted to find the minimum Taylor
2in_ inVGS, \ N number over all wavenumbé&t, denoted here as TaSample
- —u+——v+ G| —+DV|u, . o
SP r r neutral curves fory=4 and forn=0 and 1 are given in Figs.

(19) 2(a) and Zb) for k=0.6 and for different Grashof numbers.
Other sample curves corresponding e 13 are shown in
Fig. 3 for different values of azimuthal mode number and
Grashof number. Critical conditions are then determined as
oL B n’|. inGSV, - the minimum Tg over all positive and negative values mf
=DWHDw— KO+ W w6, (200 and the critical values so obtained are denoted by Ga
K. and(oi).. Minimum values for Tawere determined by
incrementing the wavenumber in stepg=0.001 in the vi-
cinity of the extremum in order to obtain a more precise
U N ; n2|~ in - ~ determination oK. For the higher modes at large Grashof
=D+ D 0= | Ko+ 5 |0+ — — Pro+ YW, (2D numbers the integrations were extremely sensitive to the ini-
tial guess for the eigenvalue pair.
where D=d/dr. Note that in Eq.(21) the stratification pa- The use ofsurPoRT(Ref. 32 in combination with a root
rametery has been substituted in place of the dimensionles§inder such asnsQE(Ref. 39 allows a very accurate deter-
vertical temperature gradientas an independent parameter mination of the eigenvalue pairs, at the expense of requiring
of the problem. The choice is arbitrary, becaysand r are  good initial estimates for the eigenvalues. These estimates
related(r PrG=+4", and in the present paperis specified can be obtained by continuation from previous solutions, as
directly (see the work by Berghol? and Hart®). These we have done here. A popular alternative is to discretize the
equations are to be solved with homogeneous boundary coequations by finite difference or spectral methods, and deter-
ditions atr=«/(1-«) andr=1/(1-«). The phase function mine the complex eigenvalue=o,+io; by solving a matrix
(Kz=ng+ajt) in (16) with critical solution values fon, K, eigenvalue problem. This is a robust approach that requires

G(o +iKW)W+ G(DW) +iKp

G Pr(o+iKW) 8+ G Pr(D ©)Q

Downloaded 17 Feb 2009 to 129.6.88.148. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



054112-5 Linear stability of cylindrical Couette flow
6000 @ T T T T T T
Y=4
C=0
5000 B
Ta
4000 B
G 50
240
3000 E
2000 L 1 1
1.0 2.0 2.0 4.0 5.0
K
BOOD . T . . . . " T 4
(b) Y=-4
C<0
4000
Ta
240
2000 |
qﬂﬁ
7
D 1 1 1
1.0 2.0 3.0 4.0 6.0
K

FIG. 2. Neutral stability curves foy=4 and for various values of Grashof

number for(a) axisymmetric modén=0) and (b) spiral mode(n=1).
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FIG. 3. Samples of the neutral stability curves for different modes at various
Grashof numbers foy=13.

respect to the overall results are given here. First, all critical
conditions were found in the range 1.45%.<2.365 and
theseO(1) values verify that the gap width is the correct
length scale for the problem, regardless of gap size or incli-
nation angle of the spiral disturbances. Second, the critical
spiral modes were always associated with positive values of
n andg; corresponding to positive spiral inclination angte
and downward axial spee@. Third, the critical stability
boundaries are searched for Grashof numbers upxtd @

and 2x 10* for y=13 and 4, respectively. Finally, the axi-
symmetric modes always have two critical solutions associ-
ated with positive or negative; corresponding to downward

or upward drifting cells, respectively, and only the most un-
stable one is considered in the stability boundary.

In the present study we restrict out attention to the effect
of buoyancy on the centrifugal instability of steady circular
Couette flow at finite Taylor numbers. As an aside, we note
that the stability of the base flow with radial heating but
without rotation(Ta=0) is characterized by both shear and
buoyant modes of instability. The shear modes are associated

no initial guess, but the accuracy of the eigenfunction genemwith the inflection point in the vertical velocity profile, and
ally must be assessed by subsequent mesh refinement. ae relatively insensitive to Prandtl number. Critical Grashof
contrast, SUPORT is a spatially adaptive technique that is numbers for the axisymmetri@=0) shear mode for Ta=0,
based on the use of local error estimates in the underlyin§r=100, and«=0.6 are 8378.5, 11 546.9, and 365 485 for
ordinary differential equation solver to obtain solutions with y=0, 4, and 13, respectively. The buoyant modes are associ-

specified accuracy.

IV. RESULTS AND DISCUSSION

ated with the extremes in the vertical velocity profile, and are
prominent for large Prandtl numbers. For Ta=0, Pr=100,
and «=0.6 there are upward driftingo; <0) axisymmetric
modes withG=643.02, 703.67, and 4590.1 fe=0, 4, and

The primary goal of this study is to track the evolution 13, respectively, and downward driftifg; > 0) axisymmet-
of the instability of steady circular Couette flow with radial ric modes withG=968.79, 1021.3, and 6478.5 for=0, 4,
heating in the convection regime from axisymmetric cells atand 13, respectively. The effects of rotation on the shear and
small Grashof number through a range of nonaxisymmetribuoyant modes are outside the scope of this paper, and will
transitions with increasin@. Computations were carried out be described in a separate publication.

for G>0, Pr=100, wide gap«=0.6), and for two stratifica-

The critical stability boundary separating stable from un-

tion parametery=13 and 4. Some general comments with stable circular Couette flow in T& space fory=13 is pre-
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FIG. 4. Critical stability boundaries fop=13 showing the flow bifurcation
from the axisymmetric modén=0) to spiral modes>0. FIG. 5. Critical stability boundaries fop=4 showing the flow bifurcation
from the axisymmetric modén=0) to spiral moden=1.

sented in linear-log form in Fig. 4. Increasiig stabilizes
each axisymmetric mode up to the first onset of spiral instaf22) at a radial position very near the outer cylindrical wall.
bility. Note that dashed and solid lines for tineeO mode  Thus the spiral wavelengths and inclination angles are in-
correspond to cells drifting upwar@C>0) and downward dicative of what one would observe from outside a transpar-
C<0, respectively. The critical curves progressively loseent annulus using particle suspensions to visualize the flow
stability to spiral modesn=1-6 with increasing Grashof (Weidmar?®) in a laboratory experiment. The axial phase
number. The critical Taylor and Grashof numbers at the inspeeds presented in Fig. 6 show that increasing the Grashof
tersection between the modes are given in Table I. Note alsoumber reduces upward drift of the cells, but bifurcation to
that asG increases increases up to 3 where the flow is the spiral modes at higher Grashof number induces succes-
destabilized, and further increasesGntend to stabilize the sively downward axial propagation speeds with weak discon-
flow with increasingn up to 6. On the other hand, the sta- tinuities across each transition frame2 up to 6 fory=13 as
bility boundaries fory=4 given in Fig. 5 exhibit strong de- shown in Fig. 6a). However, the discontinuities are clear
stabilization of the axisymmetric mode. Here the criticalbetweenn=0 and 1 fory=4 [Fig. 6b)]. Instability wave-
curve bifurcates to spiral mode af=1 only and the current lengths presented in Fig. 7 change frap¥ 1.822 for weakly
search shows no evidence of higher modes upQo heated cells across the spiral modes to maximum valyes
=20000. Observe that comparison between Figs. 4 and §2.365 for y=13 and from\;=1.985 to 15.645 fory=4.
shows that the effect of increasing the stratification paramOne observes, particularly fop=13 in Fig. a), that the
eter v is to stabilize the flow. For example, a0 andG  wavelengths of successive helical modes grow continuously
=5 the critical Taylor numbers are 2650.97 and 3001.08 foand then suddenly shrink to admit a new counterrotating cell
vy=4 and 13, respectively, which indicates thatyatends to  pair into the annulus. Figure 8 shows the evolution of spiral
zero(conduction regimeat small Grashof numbers, Ta tends inclination angle. Aty=13 the heated horizontal cells give
to the critical value of Taylor vortices Ta=2572.00. way to spirals which tilt successively upward with the ad-
The evolution of critical axial phase speeds, disturbancenission of each new helical wave; the terminal spiral mode
wavelengths, and spiral inclination angles along the stabilityangle is 55° as seen in Fig(e8. However, in Fig. &) for
boundary are given in Figs. 6—8, respectively. These figureg=4 the terminal spiral mode angle is 85°, which is achieved
compare two stratification parameter results for Pr=100 andbr the first mode.
x=0.6. The values foi. and ¢, were computed from Eg. We conclude the discussion with a presentation of dis-

TABLE |. The critical points of Taylor and Grashof numbers at the intersection points between the different
bifurcating modes fory=13.

n=0,C>0 n=0,C<0 n=1 n=2 n=3 n=4 n=5
n=0,C<0 n=1 n=2 n=3 n=4 n=5 n=6
Ta 3015 3071 3290 2962 2852 2928 3211
G, 600 1325 7500 14 625 22 600 35000 62 000
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FIG. 6. A comparison of the evolution of vertical phase propagation speeds 0 brrm o rorrrT A i
across(a) the six spiral modes foy=13 and(b) the one spiral mode for 10 100 G 1000 10000
'}/:4_ c

FIG. 7. A comparison of the evolution of wavelengths normal to the phase

. . . lines acrosga) the six spiral modes foy=13 and(b) the one spiral mode
turbance velocity vector fields and disturbance temperaturg, .-, “ P 4 ® P

contours. In Figs. 9 and 10 these fields are projected onto a

meridional section over one vertical wavelength. In each

frame the vertical wavelen_gth has been scak_ad to a COMMAR ~oNCLUSIONS

height for ease of comparison. For the velocity vector fields

portrayed in Fig. 9 the Grashof number increases from leftto  The convection regime base flow has been derived and
right following the evolution from approximate Taylor cells tested for different stratification parameters. The effect of
(n=0) through six examples of mixed convection to thethis base flow on the stability of Taylor vortices has been
asymmetric mode fon=6 shown in the final frame. The determined for two stratification parameters4 and 13, for
intervening spiral modes exhibit overlapping cells that area wide gap vertical annulug=0.6, and for Pr=100. The
radially tilted outwards. Figure 10 shows the evolution ofintroduced stratification parameter tends to stabilize the
disturbance temperature contours exactly out of phase witfiaylor vortices. However, foyy=13, as the Grashof number
their disturbance velocity counterparts in Fig. 9. The neatlyincreases the stabilization effect continues through the axi-
stacked temperature cells in Fig. (&0 for slightly heated symmetric mode only; destabilization occurs fior4 for the
flow become skewed and overlapping for the spiral modesame mode. Furthermore, the axisymmetric modes always
with increasingn. have two critical solutions, one corresponding to upward
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FIG. 8. A comparison of the evolution of spiral inclination angles actass
the six spiral modes foy=13 and(b) the one spiral mode foy=4.

moving cells and the other to downward moving cells. The
stability boundaries in Taylor—Grashof space are obtained

and displayed in Figs. 4 and 5 f==13 and 4, respectively.

For y=13, six asymmetric modes are obtained where each

mode starts with a destabilization effect followed by stabili-

zation up to the intersection with the next higher mode in a
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APPENDIX: THE BASE STATE

Here we give the coefficients for the velociy(r) and
temperaturéd(r) in the base state. The velocity is given by

WI(r) = a, bei(yr) +a, bei(yr) + ag ker(yr) +a, kei(yr),

(A1)
and the temperature is given by
O(r) = y°ay bei(yr) - y’a; ber(yr) + Yz kei(yr)
- Y2a, ker(yr) + P. (A2)

The (real-valued Kelvin functions ber, bei, ker, and kei sat-

isfy the equation&

(D2 + %D)ber(yr) + 72 bei(yr) =0, (A3)

1
D?+ FD bei(yr) — v ber(yr) =0,

) (A4)
D?+ D)ker(yr) + 92 kei(yr) =0, (A5)

= |

D?+ =D |kei(yr) - y* ker(yr) = 0, (AB)

|
|
|

=l

with D=d/dr. Applying the boundary conditions
W(k/{1 - k}) =W(1{1 - «}) =O(1K1 -«}) =0,

O(xl{l1-«})=1,
we obtain the linear system

ber(&) bei(é) kené&) kei(éy)
bei(¢) —ber&) kei(&) —ker(é)
ber&) beié) ken&) kei(sy)
bei(&,) —ber&,) kei(é) -—kenéy)
0
{1-P}¥y
0 ,

- Pl

QD

1

QD

2

Q

3
a

(A7)

spikelike shape directed downwards. This mechanism con- _
tinues up to mode number 4. After that, only stabilization ofWhere &= yx/(1-«) and &=y/(1-«). The solution to the

the flow occurs. Fory=4, only two modes are founéh
=0,1) with a destabilization influence throughout the region

linear system can be expressed in terms of the coefficients,

Ar = ber(§yker(&,) — be&ken(y),

of Grashof number studied in this paper. Finally, as the mode

numbers successively increage=2 and up fory=13 and
n=1 for y=4) the terminal spiral phase speed becomes al
most independent of the critical Grashof number.
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FIG. 9. Evolution of the disturbance velocity vector fields in a meridional section. The left wall of each figure locates the outer cylinder. Vedieaths
have been scaled to equal height. The actual wavelengths can be computed from the critical cofaifi@s:3001,G.=3, K.=3.45;(b) Ta,=2847,G,
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=45 000,K.=2.32;(g) Ta,=3253,G,=70000,K.=1.89.

A; = bei(&))kei(&,) — bei(&)kei(€). and the solution is given by

The determinanD of the linear system reduces to

D= Aﬁ + Arzr + Aﬁ + Aﬁ — Jber&,)bei(£,) ¥"Day = P([ker(&,) — ker(&) [A; — Aql +[Kei(&,)

- kei - A1) + kei -
- bex&bei(yTker(pkei(s) - ke &)kei(E)], Silé)][Ar = Aul) + keil&)[Ai = Ar]
(A8) +ker&)[A — Ay, (A9)

R

—

)|

=

(=

FIG. 10. Evolution of the disturbance
temperature contours in a meridional
section. See caption of Fig. 9 for criti-
cal conditions.

e ——

=

=
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¥?Day, = P([ker(&,) — ker(&)][- Ay — Ayl +[Kei(£&)
- kei(&)[A; + Ai]) + kei(&)[- Ar = Al

+ker(&)[A, + Ayl (A10)

¥’Dag = P([ber(&,) - ber&) ][~ Ay + Aq] + [bei(&)
- bei(fl)][Arr + An]) + bEi(éz)[— Aii - Arr]

+ be'(é‘:Z)[Air - Ari]1 (All)

¥’Da, = P([ber(&,) - ber( &) ][A; - A, + [bei(&,)
- bei(gl)][_ Ay - Ari]) + bei(§2)[Ai, + Ari]

+ber&)[A, - Al (A12)
From the representatia1) for W, we then find
1(1-x)
J rW(r)dr =ayl, + ayl, + asls + a4l 4, (A13)
kl(1-k)
wheré?

1/(1-x) y _ &8
I = f rber(yr)dr= —=[ber (&) - bei(&]|
l(1-x) V292 et
(A14)
1/(1-«) _ § &6
lp= J rbei(yr)dr=—=—[bei(§) +ben(d]|
wl(1-x) V292 -
(A15)
1/(1-«) _ § &6
l3= f rker(yr)dr=—=—[ken(§) -kei(d]|
xl(1-k) V29 &=
(A16)
1/(1-k) -¢ &6

I4 :f r kei(yr)dr=—==[keiy(¢) +ken(¢)]
l(1-1) V29 &=
(A17)

Setting the flux equal to zero in EQA13) then gives a linear
equation forP, which completes the solution of the base

flow.
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