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On pure states ofn quantum bits, theconcurrence entanglement monotonereturns
the norm of the inner product of a pure state with its spin-flip. The monotone
vanishes forn odd, but forn even there is an explicit formula for its value on mixed
states, i.e., a closed-form expression computes the minimum over all ensemble
decompositions of a given density. Forn even a matrix decompositionn=k1ak2 of
the unitary group is explicitly computable and allows for study of the monotone’s
dynamics. The side factorsk1 andk2 of this concurrence canonical decomposition
sCCDd are concurrence symmetries, so the dynamics reduce to consideration of the
a factor. This unitarya phases a basis of entangled states, and the concurrence
dynamics ofu are determined by these relative phases. In this work, we provide an
explicit numerical algorithm computingn=k1ak2 for n odd. Further, in the odd case
we lift the monotone to a two-argument function. Theconcurrence capacityof n
according to the double argument lift may be nontrivial forn odd and reduces to the
usual concurrence capacity in the literature forn even. The generalization may also
be studied using the CCD, leading again to maximal capacity for most unitaries.
The capacity ofn ^ I2 is at least that ofn, so odd-qubit capacities have implications
for even-qubit entanglement. The generalizations require considering the spin-flip
as a time reversal symmetry operator in Wigner’s axiomatization, and the original
Lie algebra homomorphism defining the CCD may be restated entirely in terms of
this time reversal. The polar decomposition related to the CCD then writes any
unitary evolution as the product of a time-symmetric and time-antisymmetric evo-
lution with respect to the spin-flip. En route we observe a Kramers’ nondegeneracy:
the existence of a nondegenerate eigenstate of anytime reversal symmetric n-qubit
Hamiltonian demandssid n even andsii d maximal concurrence of said eigenstate.
We provide examples of how to apply this work to study the kinematics and
dynamics of entanglement in spin chain Hamiltonians. ©2005 American Institute
of Physics.fDOI: 10.1063/1.1900293g

. INTRODUCTION

The entanglement theory of two quantum bits is now well understood. Letr be a mixed
wo-qubit quantum state, described by a 434 Hermitian density matrix. Hill and Wootters22

escribe all classes ofr up to evolution by unitaries in terms of the concurrence. This concur
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s explicitly a function of the eigenvalues ofrssyd^2r̄ssyd^2, where the factorr̃=ssyd^2r̄ssyd^2

ay be interpreted as the spin-flip ofr. Further, for pure states the entropy of the partial trac
ither one-qubit subsystem is a one-to-one function of the concurrence, so that both m
gree as to which two-qubit states are more or less entangled. Local statesstensorsd are unen

angled, while states locally equivalent to Bell states have maximal entropy and concurre
For other systems, entanglement theory is more complicated. Even for twod-level system

quditsd it is not typical to use a single function to quantify entanglement,45 and research in
eneralized concurrences continues.20 Instead we focus on the multi-partite qubit case. The
oint is that it is not sensible inn-qubits to speak of auniquemaximally entangled state. Mo
recisely, suppose nowr is a 2n32n Hermitian density matrix describing a mixedn-qubit state. A
nitary evolution is given by a 2n32n unitary matrix, sayn, with the evolution beingr°nrn†. A
artial ordering of suchr as more or less entangled follows by stipulating thatsid for n= ^ j=1

n n j

ocal unitary,r and nrn† are equally entangled, whilesii d the r becomes no more entangled
verage after applying any sequence of local measurements and local unitaries, i.e., after

ocal completely positive maps.23 More entangled is a partial order which has distinct max
lements fornù3. For example, in three qubits, two states which are maximally entangle

ocally inequivalent are given as follows:16

uGHZl = s1/Î2dfu000l + u111lg, uWl = s1/Î3dfu001l + u010l + u100lg. s1d

here are nine distinct maxima of the partial order in four qubits,44 and strong theoretical eviden
uggests that the number of suchentanglement typesgrows quite rapidly withn se.g., Ref. 33d.

To quantify multi-partite entanglement, one often uses functions known as entang
onotones.3,45All such monotones must vanish on any local state. A monotone might also
n certain entangled states but definitively reports that a state is not local should its v
onzero. The value on a mixed stater is defined to be the minimum over all ensemble dec
ositions ofr of the ensemble weighted-average. A monotone is convex on density matrice
ntanglement does not increase under mixing of states. Monotones are also nonincreon
verageunder local quantum operations and classical communication. Among popular mon
re Meyer’sQ-measure,6,32 the Schmidt measure,18 and certain polynomial invariants3 of eigen-
alues of density matrices representing stochastic mixtures of pure data states.

Then-qubit concurrence is an entanglement monotone. To define the monotone, we fi
hat throughout* refers to the spin-flip of then-qubit state space. Concurrence for a pure st48

s the component on a pure state of its spin-flip:

Cnsucld = ukcu*uclu/kcucl,

here

*ucl = s− isyd^nucl = s− isyd^nucl. s2d

he concurrence of ann qubit state withn odd vanishes identically. This monotone is notewo
or two reasons. First, there is an explicit, computable closed-form expression for the mi

nsrd which is again defined in terms of the eigenvalues ofrr̃=rssyd^nr̄ssyd^n.7,42 Second, in th
ontext of concurrence dynamics we may study entanglement dynamics. This paper conce
ith the latter topic, and we henceforth consider only pure states and unitary maps.

The primary mathematical tool used in this paper is the concurrence canonical decom
CCDd. This is discussed in detail in Sec. II. Briefly, it is a way to decompose a unitary onn qubits
nto a factor that changes concurrence and factors that do not. Letn :Hn→Hn be a unitary
volution. Consider the CCDn=k1ak2.

8 Now k1 andk2 are symmetries of the concurrence, red
ng concurrence dynamics to the second factor. Thisa factor applies relative phases to a basi

HZ-like states. Such phases are not unique due to choices of diagonalization while com
he CCD, but the spectrum specsa2d is uniquely determined byn. Moreover, the two-qubit test f

49
aximal entanglement capacitygeneralizes ton qubit concurrence capacities ifn is even:
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Let n=k1ak2 be a CCD ofn. Consider specsa2d as a subset of the unit circle. Then fon
2p, there is auclPHn with Cnsucld=0 andCnsnucld=1 if and only if 0 is within the convex hu
f specsa2d.8,49

Also, for evenn there is an explicit numerical algorithm for computing the CCD and h
pecsa2d.8

This work presents three new results. The first is an extension of concurrence capacitie
asen odd. Forn even, the concurrence symmetry groupK to which k1, k2 belong is up to
imilarity transform an orthogonal group. Forn odd, K is not orthogonal but symplectic,a has
epeat eigenvalues, andC2p−1sucld=0 for all ucl. Nonetheless, we define a two-argument lift of
sual concurrence, sayCsufl , ucld. fSee Eq.s7d.g Suppose we define the amount of concurrenc
dd-qubit unitaryn creates to be

ksnd = maxhCsnufl,nucld;Csufl,ucld = 0j. s3d

his generalized capacity has the following properties:

• For n even, the one-argument concurrence capacity and the two-argument capacn
coincide.

• For n odd, oftenknsndÞ0 for the pairwise capacity despiteCnsucld;0. Further,knsnd=1 if
and only if 0 lies within the convex hull of specsa2d for any CCD byn=k1ak2.

• Concurrence capacity monotonicity:Using double argument capacities, the capacityn
^ I2 is always at least that ofn.

ence there exists a theory of odd-qubit concurrence dynamics, even though concurrence
dentically son the diagonald in odd qubits.

Second, we present an explicit numerical algorithm for computing the odd-qubit CCD
us matrix logarithms must be computed, after which one invokes work in the numerical a

iterature15 to diagonalize a time reversal symmetric Hamiltonian using symplectic matrice
We close with the third observation, which we will refer to asKramers’ nondegeneracy:
On then-quantum bit state space, suppose that a*-time reversal symmetric HamiltonianH

as a nondegenerate eigenstateull. Then sid n is even andsii d Cnsulld=1. In particular,ull is
ntangled, i.e.ullÞ ^ j=1

n uc jl.
The proof follows from viewing* as a time reversal symmetry operator in Wigner’s axio

ization, a point of view which also simplifies the derivation of the CCD. Kramers’ nondegen
eads one to wonder whether useful entangled states may be produced by cooling the s
ubits coupled to a*-time reversal symmetric Hamiltonian. We consider the perturbative sta
f this entanglement while breaking the time reversal symmetry here, while the thermal sta

he Kramers’ nondegeneracy for the quantum XY model is considered elsewhere.7

I. BACKGROUND AND PRIOR WORK

Since our key tool is a generalized canonical decomposition,8 we review the canonical d
omposition literature. The two-qubit canonical decompositionsCDd states that any two-quantu
it unitary evolutionn, i.e., any 434 unitary matrixn, may be written:

n = eiwsu1 ^ u2dasu3 ^ u4d. s4d

ereu1, u2, u3, u4 are one-qubits232d unitary matrices, which may be chosen to have dete
ant one. The unitarya is diagonal in the Bell basis and may be thought of as applying re
hases to this basis. However, it is better computationally to think ofa as phasing themagic
asis4,29 instead:

Î Î
um0l = su00l + u11ld/ 2, um1l = su01l − u10ld/ 2,

1 Jun 2005 to 129.6.88.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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um2l = si u00l − i u11ld/Î2, um3l = si u01l + i u10ld/Î2. s5d

et E be defined byEu jl= um jl, and let SUs2nd denote the Lie group of determinant one 2n32n

nitary matrices, SOs2nd denotes determinant one orthogonal matrices, and Ds2nd denotes th
iagonal 2n32n unitary matrices. A diagonalization argument shows SUs4d=SOs4dDs4dSOs4d.
oreover, the magic basis has the property thatE†SUs2d ^ SUs2dE=SOs4d, i.e., determinant on

ensors have real matrix coefficients in the basis. Thus the canonical decomposition
omputed by transforming the diagonalization throughE:

SUs4d = fESOs4dE†gfEDs4dE†gfESOs4dE†g = SUs2d ^ SUs2dsEDs4dE†dSUs2d ^ SUs2d.

s6d

e next provide a brief account and references for the best known applications and gen
ions of the CD.

Makhlin31 anticipates the canonical decomposition by directly computing that the d
osetsfSUs2d ^ SUs2dg \SUs4d / fSUs2d ^ SUs2dg are parametrized by three real parameters
umber of parameters ina given detsad=1. The CD appears explicitly in Kraus and Cirac.28 In an

mportant paper, Khaneja, Brockett, and Glaser point out that one may view the CD as an e
f the G=KAK decomposition theorem forG=SUs4d, K=SUs2d ^ SUs2d, andA=D the commu

ative Lie group that phases the magicsor Belld basis.24 They also consider the matrix factorizat
rom the point of view of control theory in order to compute minimum times for applying a g
wo-qubit unitary evolution. Zhang, Vala, Sastry, and Whaley made use of this observa
escribe which 434 unitariesn are equivalent up to tensors of one-qubit rotations. The f
PD is not unique but depends on choices of diagonalization, and these are described g
ally using Weyl chambers. Specifically, the Weyl group orbit of anya produces all possiblea, and
ach orbit intersects the Weyl chamber once. ForG=SUs4d, the Weyl chamber is a tetrahedron49

he terms canonical decomposition and magic basis are by now standard, and there are p
urveysse.g., Ref. 13, Sec. II.Bd. Moreover, explicit control sequences for two-qubit uni
volution have been mapped using the CDfRef. 37, Eq.sB2dg.14 The timing arguments of Khane
t al.24 have been recently verified in liquid-state NMR.35

There are many applications of the two-qubit CD. In addition to timing as above, they in
id studying the entanglement capacity of two-qubit operations,49 sii d building efficient ssmalld
uantum circuits in two qubits,10,41,43,46andsiii d classifying which two-qubit computations requ

ewer than average multiqubit interactions.41,46

Besides the CCD,8 there is anothern-qubit generalization of the canonical decomposition
o Khaneja and Glaser.25 It is also defined in terms of aG=KAK decomposition. LabelN=2n for
he remainder. The type of aG=KAK decomposition follows from a classification theorem
artan involutions and determines the groupsK andA up to Lie isomorphism.fThe classificatio
ppears in HelgasonsRef. 21, p. 518, see the same for detailsd.g Given G=SUsNd, the three
ossible types demandK>SOsNd stype AI d, K>SpsN/2d a symplectic groupstype AII d, or K
SfUspd % Usqdg for p+q=N a block unitarystype AIII d. In theAII case, the structure of theA

roup also demands anyaPA has even-degenerate eigenvalues. The two-qubit canonical d
osition is typeAI , and indeed the similarity transform byE shows SUs2d ^ SUs2d>SOs4d. The
CD alternatesAI and AII as n is even or odd. The KGD of Khaneja and Glaser technic
ontains twoG=KAK decompositions, the first of which is typeAIII for n.2. In fact, the KGD

s similar to the cosine sine decompositionsCSDd of numerical linear algebra11 and so may b
omputed numerically. Physically, theK>SfUsN/2d % UsN/2dg group of the KGD may be viewe
s those unitaries commuting with measurements in thez basis of the least significant qubit, i.
ommuting withIN/2 ^ sz.

We next recall notation from quantum computing. The one-qubit state space isH1=Chu0lj
% Chu1lj. For n quantum bits,Hn=sH1d^n=H1 ^ ¯ ^ H1. sSee Ref. 36.d A local stateucl is any
tate which may be written aŝ j=1

n uc jl for uc jlPH1, while anentangledstate is any state whic

s not local. Notations such as, e.g.,u7l refer not to the state of a qudit but rather to a multiqubit

1 Jun 2005 to 129.6.88.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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tate, e.g.,u7l= u1l ^ u1l ^ u1l. Then-concurrence of Eq.s2d is an entanglement monotone.8 Besides
he well-known two-qubit concurrence,22 even qubit concurrencesn-qubitsfRef. 48, Ref. 40—Eq
62d, Ref. 8g have also been studied. Since the single-argument concurrence vanishes forn odd, we
ntroduce a two-argument generalization.

For * per Eq.s2d, theconcurrence bilinear form8 is the mapCn:Hn3Hn→C given by

Cnsufl,ucld = kfu*ucl. s7d

he complex conjugate forces the two-argument function to be complex bilinear rathe
omplex bi-antilinear, and the concurrence monotone is the norm of the form on the di

nsufld= uCnsufl , ufldu. The bilinear formCn is symmetric forn even and antisymmetric forn odd,
hich causes vanishing of the monotonebut not the formin the odd-qubit case.

The CD is an example of theG=KAK decomposition theoremsRef. 21, Theorem 8.6, Se
II.8d for G=SUsNd. This theorem produces a decomposition of a reductive Lie groupG for any
, a as follows:

• The mapu :g→g for g=LiesGd is a Cartan involutionsRef. 21, Sec. X.6.3, p. 518d. By
definition,50 sid u2=1g and sii d ufX,Yg=fuX,uYg for all X,YPg. As is standard, we wri
g=p % k for the decomposition ofg into the −1 and +1 eigenspace ofu.

• Given u, a,p is a commutative subalgebra which is maximal commutative inp.

ote thatk is closed under the Lie bracket, while this is trivially true fora. Thus the exponenti
f each is a group. LabelK=expk, A=expa, where for linearG,GLsn,Cd the exponential ma
e interpreted as a matrix exponential. The theorem then asserts thatG=KAK=hk1ak2;k1,k2

K ,aPAj.
The CD is seen to be an example as follows, cf. Ref. 24. Takeu :sus4d→sus4d by usXd

s−isyd^2X̄s−isyd^2 and a=spanRhi u0lk0u− i u1lk1u− i u2lk2u+ i u3lk3u , i u0lk3u+ i u3lk0u , i u1lk2u+ i u2l
k1uj. Extending these choices ton qubits produces the CCD:

Definition II.1: fCCD, Ref. 8g Defineu :susNd→susNd by usXd=fs−isyd^ng†X̄s−isyd^n. Then
denotes the +1-eigenspace ofu while p denotes the −1-eigenspace. Finally, in casen is even we
efine

= spanRshi u jlk j u + i uN − j − 1lkN − j − 1u − i u j + 1lk j + 1u − i uN − j − 2lkN − j − 2u; 0 ø j ø 2n−1

− 2j t hi u jlkN − j − 1u + i uN − j − 1lk j u;0 ø j ø 2n−1 − 1j,d s8d

ith A=expa. In casen odd, we drop the second set:

a = spanRshi u jlk j u + i uN − j − 1lkN − j − 1u − i u j + 1lk j + 1u − i uN − j − 2lkN − j − 2u;

0 ø j ø 2n−1 − 2jd. s9d

he concurrence canonical decomposition (CCD)in n-qubits is the resulting matrix decompo
ion SUsNd=KAK. Note thatn may be even or odd.

In an earlier work,8 computations in Diracsbra-ketd notation show thatusXd is a Cartan
nvolution anda is maximal-commutative inp. TheG=KAK theoremsRef. 21, Theorem 8.6, Se
II.8d then shows that the CCD exists. Further, the CCD may be computed numerically
ven qubit case.8

The CCD is a useful tool for studying concurrence capacities sinceK=expskd consists o
ymmetries of the concurrence form of Eq.s7d, wherek is given per Definition II.1,8

sn P Kd ⇔ fCnsnufl,nucld = Cnsufl,ucld for all ufl,ucl P Hng. s10d

n particular, the above may be used to verify that SUs2d^n#K as a subgroup of large codime
ion. One explanation for the fact thatK alternates between orthogonal and symplectic grou

8
o note that the formCn is symmetric or antisymmetric asn is even or odd.Another outlook,

1 Jun 2005 to 129.6.88.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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llustrated in Sec. V, is that the spin-flip* is a bosonic or fermionic time reversal symme
perator asn is even or odd, i.e.,*−1=s−1dn*.

II. ODD-QUBIT CONCURRENCE CAPACITIES

The main results of this section are summarized in Theorem III.11. Each is proven in

. Double-argument capacities generalize single-argument capacities

To begin, we introduce a pairwise concurrence capacityknsnd and denote earlier concurren
apacities8 with a tilde,

k̃nsnd = maxhCnsnucld;kcucl = 1,Cnsucld = 0j,

s11d
knsnd = maxhuCnsnufl,nucldu;kfufl = kcucl = 1,Cnsufl,ucld = 0j.

ue to Eq.s10d, any CCD of a unitaryn=k1ak2 implies k̃nsnd= k̃nsad8 andknsnd=knsad.
Proposition III.1: Suppose n=2p is an even number of qubits. Thenknsnd= k̃nsnd.
The proof requires certain results from the literature.8,49

• There is ann=2p qubit entanglerE0 so that for anykPK, E0kE0
† is a real unitary matrix, i.e

orthogonal. The columns ofE0 resembleuGHZl states.
• For thisE0, any CCDn=k1ak2 moreover hasd=E†aE for d=o j=0

N−1dju jlk j u diagonal. Asd is
unitary diagonal, eachdj is on the unit circle withinC.

• The concurrence spectrum becomeslcsnd=hdj
2j j=0

N−1. Then k̃2nsnd=1 if and only if 0PC lies
within the convex hull oflcsnd, a subset of the unit circlesRef. 8, Lemma III.2d.

• A corollary sRef. 8, Scho. 2.18d of the symmetry group theorem shows thatE0 also translate
betweenCns−,−d and a simpler bilinear form:CnsE0z1,E0z2d=z1

Tz2.

Example III.2: We use the CD to compute a two-qubit concurrence capacity. Cons
amily of controlled-phase gates, e.g.,nstd=e−itu0lk0u+e−itu1lk1u+e−itu2lk2u+e3itu3lk3u with
etfnstdg=1. A possible CD is:

nstd = se−itsz
^ I2deitsz

^sz
sI2 ^ e−itsz

d. s12d

he central factor is a valid choice fora in nstd=k1ak2, sinceeitsz
^sz

is also diagonal in the mag
asis. Thuslcfnstdg=specse2itsz

^sz
d=he2it ,e2it ,e−2it ,e−2itj. Only for tPp /4Z do we have 0 withi

he convex hull oflcfnstdg, and the convex hull theorem assertsk̃2fnsp /4dg=1. Indeed, up t
hasensp /4d= u0lk0u+ u1lk1u+ u2lk2u− u3lk3u. Moreover, if

H =
1
Î2

S1 1

1 − 1
D

s the Hadamard gate,36 a standard identity convertsnsp /4d into the quantum controlled-not:

CNOT = u00lk00u + u01lk01u + u10lk11u + u11lk10u = sI2 ^ Hdnsp/4dsI2 ^ Hd. s13d

hus nsp /4d carries an unentangled state to a maximally entangled state, since CNsH
^ I2du00l=CNOTs1/Î2dsu00l+ u10ld=s1/Î2dsu00l+ u11ld. More intricate examples
wo-qubits41,49 and an even number of qubits9 are available in the literature.

Lemma III.3: Suppose the number of qubits is even. Let z1=o j=0
N−1aju jl, z2=o j=0

N−1bju jl, and z3
o j=0

N−1cju jl throughout, and letlcsnd=hl jj j=0
N−1. Then we have the following:

k̃nsnd = maxHUo
N−1

cj
2l jU ;z3

†z3 = 1,z3
Tz3 = 0J ,
j=0

1 Jun 2005 to 129.6.88.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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knsnd = maxHUo
j=0

N−1

ajbjl jU ;z1
†z1 = z2

†z2 = 1,z1
Tz2 = 0J . s14d

Proof of Lemma III.3:The first equation appears in Ref. 8; cf. Ref. 49. For the second
ectorsz1, z2 and labelx=E0z1, y=E0z2. Then

fCnsx,yd = 0g ⇔ fCnsE0z1,E0z2d = 0g ⇔ fz1
Tz2 = 0g. s15d

oreover, without loss of generality by choice ofz1, z2, and symmetry we may supposen
E0dE0

† for d2=o j=0
N−1l ju jlk j u. ThenCnsE0dE0

†x,E0dE0
†yd=CnsE0dz1,E0dz2d=sz1

TdTddz2=o j=0
N−1ajbjl j.

Proof of Proposition III.1:Let aj, bj be chosen so as to maximize the expression forknsnd per
emma III.3, i.e.,knsnd= uo j=0

N−1ajbjl ju. Now choose complex numberscj so thatcj
2=ajbj, and pu

3=o j=0
N−1cju jl. We note thatz3

Tz3=0. Moreover,z3
†z3ø1, for

o
j=0

N−1

ucju2 = o
j=0

N−1

ucj
2u = o

j=0

N−1

uajbju ø o
j=0

N−1
1

2
uaju2 +

1

2
ubju2 = 1. s16d

abel t2=z3
†z3, noting t2ø1. Thenst−1z3d†st−1z3d=1, so by definition ofk̃2psnd we have

knsnd ù k̃nsnd ù Uo
j=0

N−1

t−2cj
2l jU = t−2Uo

j=0

N−1

ajbjl jU = t−2knsnd. s17d

hus t=1 and henceknsnd= k̃nsnd. h

. Monotonicity

We next demonstrate concurrence capacity monotonicity, i.e., thatj °kn+jsn ^ I2
^ jd is mono-

onic. It provides another justification for odd-qubit concurrence capacities, despiteC2p−1;0. For
f k2p−1snd.0, then there is a 2p-qubit state ucl with C2psucld=0 while C2pfsn ^ I2duclg

k2p−1snd.
Proposition III.4: Let n be either even or odd, nPSUsNd an n-qubit computation, and let2

enote the trivial one-qubit computation. Thenkn+1sn ^ I2dùknsnd.
Proof: Chooseufl, ucl such thatknsnd=Cnsnufl ,nucld while Cnsufl , ucld=0. Thenufl ^ u0l

nd ucl ^ u1l are a null-concurrent pair ofsn+1d-qubit states:

Cn+1sufl ^ u0l,ucl ^ u1ld = skfu ^ k0uds− isyd^n+1sucl ^ u1ld = fCnsufl,ucldgsk0us− isydu1ld.

s18d

ow sk0us−isydu1l=1, so the above expression isf0gs1d=0. A similar argument demonstrates t

Cn+1fsn ^ I2dsufl ^ u0ld,sn ^ I2dsucl ^ u1ldg = fCnsnufl,nucldgfC1su0l,u1ldg. s19d

he second term of the product is one, while the first isknsnd. Thus we have exhibited a pair f
hich n ^ I2 raises the pairwise concurrence by at leastknsnd. Sincekn+1sn ^ I2d is the maximum
ver all null-concurrent pairs, whileufl ^ u0l, ucl ^ u1l is such, we seekn+1sn ^ I2dùknsnd. h

. Parity-independent concurrence spectra

We extend the maximal concurrence capacity condition of Zhanget al.and Bullock, Brennen8

o odd-qubit systems. The first step is a definition valid in either parity.
Definition III.5: Let nPSUsNd, N=2n. For n of either parity, the concurrence spectrumlcsnd

s the setlcsnd=specsfs−isyd^ng†ns−isyd^nnTd. Viewing n as an R-linear map, equivalent
† −1
csnd=specsn*n * d.
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We briefly show this coincides with the definition of the even-qubit concurrence spectr
he literature.8 The definition ibid. states that the concurrence spectrum is the spectr
E0

†nE0dsE0
†nE0dT. Indeed, givenE0E0

T=s−isyd^n per the classification ofE with ESOsNdE†=K
bid.,

specsE0
†nE0dsE0

†nE0dT = specsE0
†nE0E0

TE0̄d = specfsE0E0
Td†nE0E0

TnTg = specfs− isyd^nns− isyd^nnTg.

s20d

n fact, the same argument shows thatlcsnd is the spectrumsE†nEdsE†nEdT for anyE as above, c
ef. 31.

The odd-qubit case requires different similarity matrices, sayF,8 which translateK not into an
rthogonal group but rather a symplectic group per Eq.s22d. For the concurrence formCns−,−d
-odd is antisymmetric, and symplectic rather than orthogonal groups are the appropriate
ries of antisymmetric bilinear formssi.e., two-formsd. For a standard similarity matrix, we tak

F0 = o
j=0

N/2−1

u jlk j u + uN − j − 1lk j u + i jsu jlkN/2 + j u − uN − j − 1lkN/2 + j ud,

here

hi jj j=0
N/2−1 , h±1j by s− isyd^n = o

j=0

N/2−1

i jsuN − j − 1lk j u − u jlkN − j − 1ud. s21d

lso, label throughoutJN=s−isyd ^ IN/2. Before showing thatF0 translatesK into the standar
ymplectic group, we show thatF0 carriesCs−,−d to the standard two-formAs−,−d.

Lemma III.6: ForAsufl , ucld=kfuuJNukcl, CnsF0ufl ,F0ucld=Asufl , ucld for all ufl , uclPHn.
Proof: CnsF0ufl ,F0ucld=kfuF0

Ts−isyd^nuF0ukcl. Now F0JNF0
T=s−isyd^n fRef. 8, Propositio

I.14g, whenceF0
Ts−isyd^nF0=JN. h

Now SpsN/2d is that copy of the symplectic group which embeds within SUsNd as the
ymmetries ofAs−,−d, i.e., satisfyingAsnufl ,nucld=Asufl , ucld for all ufl , uclPHn. In block
orm:

SpsN/2d = hn P SUsNd;nTJNn = JNj

= HSA B

C D
D P SUsNd;

ATC is symmetric,BTD is symmetric,

ATD − CTB = I
J s22d

s E0SOsNd E0
†=K2p, so tooF0SpsN/2d F0

T=K2p−1.
We next associatelcsnd to specsa2d for n=k1ak2 in the odd-qubit case. Suppose we labelD to

e the following diagonal subalgebra of SUsNd:

D =H o
j=0

N/2−1

djsu jlk j u + uN/2 + jlkN/2 + j ud; p
j=0

N/2−1

dj = ± 1J . s23d

ow there is a standard SUsNd=KAK decomposition which follows fromuAII siHd=JNs−iHTdJN
†

Ref. 21, Sec. X.2, p. 452d anda=log D as above. Given anPSUs22p−1d, it writesn=v1dv2, with

j PSpsN/2d, j =1,2 anddPD.
Suppose givennPSUs22p−1d, we then writeF0

TnF0=v1dv2, with v j PSpsN/2d, j =1,2 and
PD. The odd-qubit CCD again follows by a similarity transform:n=sF0v1F0

TdsF0dF0
Td

sF0v2F0
Td with a=F0dF0

TPA, kj =F0v jF0
TPK, j =1,2 is aCCD. Note thata is diagonal on th

HZ-like basis stateshF0u jlj.
Lemma III.7: Let n=2p−1. Then forn=sF0v1F0

TdsF0dF0
TdsF0v2F0

Td the CCD as above wi
=o j=0

N/2−1djsu jlk j u+ uN/2+ jlkN/2+ j ud diagonal and determinant one, we havelcsnd
2 N/2−1 2 N/2−1
hdj j j=0 t hdj j j=0 scounted with multiplicity.d
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Proof: Given A, B, invertible, specsABd=specsBAd. Also, Eq. s10d is equivalent to a matr
quationkTs−isyd^nk=s−isyd^n for all kPK. RecallF0JNF0

T=s−isyd^n. Then

lcsnd = specsfs− isyd^ng†ns− isyd^nnTd = specsfs− isyd^ng†k1ak2s− isyd^nk2
TaTk1

Td

= specsk1
Tfs− isyd^ngk1ak2fs− isyd^ngTk2

TaTd = specsk1
Tfs− isyd^ngk1afk2

Ts− isyd^nk2gTaTd

= specsfs− isyd^ngafs− isyd^ngTaTd = specs− fF0JNF0
TgF0dF0

TfF0JNF0
TgF0d

TF0
Td

= specs− F0JNdJNdTF0
Td = specs− JNdJNdd = specsd2d. s24d

he last equality makes use ofdPD repeat diagonal. h

. A convex hull argument in odd qubits

Definition III.8: Supposen=2p−1. Thereduced concurrence spectruml̃csnd of nPSUsNd is
he set hl jj j=0

N/2−1 for n=k1sF0dF0
Tdk2 a canonical decomposition ofn and d=o j=0

N/2−1Îl jsu jlk j u
uN/2+ jlkN/2+ j ud. Theconvex hullCHfl̃csndg of l̃csnd is the set of convex linear combinatio

f the points ofl̃csnd, i.e.,

CHfl̃csndg =H o
j=0

N/2−1

tjl j ;0 ø tj ø 1, o
j=0

N/2−1

tj = 1,l j P l̃csndJ . s25d

Proposition III.9: Suppose n=2p−1 is an odd number of qubits. Throughout, label1

o j=0
N−1aju jl, z2=o j=0

N−1bju jl, and l̃csnd=hl jj j=0
N/2−1. Then the following hold:

• knsnd=maxhuo j=0
N/2−1l jsaN/2+jbj −ajbN/2+jdu ;z1

TJNz2=0,z1
†z1=z2

†z2=1j,
• sknsnd=1d⇔ s0PCHfl̃csndgd.

Proof: The first item follows from Lemma III.6, substitutingx=F0z1, y=F0z2. We continue to
he next item.

For the second item, we first prove⇒. If knsnd=1, then we may choosez1, z2 so that

1 =U o
j=0

N/2−1

l jsaN/2+jbj − ajbN/2+jdU ø o
j=0

N/2−1

uaN/2+jbj − ajbN/2+ju

ø o
j=0

N/2−1

Îuaju2 + uaN/2+ju2Îubju2 + ubN/2+ju2 ø 1. s26d

ere, note that the second inequality is an iterate ofC1sufl , ucldøÎkf uflkc ucl, for all ufl , ucl
H1. The last inequality in Eq.s26d is the Schwarz inequality.

Now labela j =aN/2+jbj −ajbN/2+j, for 0ø j øN/2−1. Then by Eq.s26d,

1 =U o
j=0

N/2−1

l ja jU = o
j=0

N/2−1

ul ja ju = o
j=0

N/2−1

ua ju. s27d

hus there must exist somezPC, zz̄=1, so thatl ja j =zua ju, and moreovero j=0
N/2−1ua ju=1. On the

ther hand,z1
TJNz2=0 demands that 0=o j=0

N/2−1a j =zo j=0
N/2−1ua jul̄ j. Multiplying by z̄ and taking th

omplex conjugate, 0=o j=0
N/2−1ua jul j which given o j=0

N/2−1ua ju=1 by Eq. s27d demands

CHfl̃csndg.
Consider now the converse case, i.e., 0PCHfl̃csndg. Then there existtj real, non-negative s

hat 0=o j=0
N/2−1tjl j. For 0ø j øN/2−1, label complex numbersa j = tjl̄ j, so that we have

o j=0
N/2−1ua ju and moreover 0=0=̄o j=0

N/2−1tjl̄ j =o j=0
N/2−1a j. We are reduced to the following questi

N−1 N−1
ay we choosehajj j=0 , hbjj j=0 so that
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a j = aN/2+jbj − ajbN/2+j, o
j=0

N−1

uaju2 = o
j=0

N/2−1

ubju2 = 1. s28d

To do this, write a j = ua juei arg a j, and take aj =Îua ju, aN/2+j =0, bj =0, and bN/2+j

=−ei arg a jÎua ju. Then we see thataN/2+jbj −ajbN/2+j =a j. Moreover,

uaju2 + uaN/2+ju2 = ua ju, ubju2 + ubN/2+ju2 = ua ju, o
j=0

N/2−1

ua ju = 1. s29d

hus the vectorsz1, z2 per the statement of the proposition are normalized to be norm oneh

Hence, as in the even-qubit case, a convex hull criterion on the middle factor of the
etermines which odd-qubit unitariesn have concurrence capacity equal to the maximal pos
apacity, i.e., one. The new feature, doubly degenerate eigenvalues inlcsnd arising from theD
bove required for typeAII will a posterioribe an instance of Kramers’ degeneracy; see Se

Corollary III.10: For n=2p−1, limp°` dashaPA;knsad=1jd=1.
The proof of the Corollary follows by considering probability density functions on the

ircle,8 given that the number of concurrence eigenvalues grows exponentially withn. Thus mos
nitary evolutions for largen sof either parityd are maximally entangling as measured by con
ence. It would be interesting but technically challenging to restate this in terms of Haar m
u on SUsNd. The difficulty is that the pullback measure from theK3A3K to SUsNd is singular
amely singular near the set where theA factor is an identity. For future reference, we summa

he concurrence capacity results of this section.
Theorem III.11: Let knsnd, k̃nsnd be the pairwise concurrence capacity and concurre

apacity, respectively.

. The pairwise capacity and the capacity are equal in any even number of qubits. Thu

k̃nsnd = Hknsnd, n = 2p even

0, n = 2p − 1 odd.
J s30d

. For n either even or odd, any CCD byn=k1ak2 satisfiesknsn=k1ak2d=knsad.

. For any n, we must havekn+1sn ^ I2dùknsnd.

. Suppose n=2p−1 is odd. Then for da the Haar measure on A,

lim
p°`

Probsknsad = 1d = lim
p°`

dasha P A;knsad = 1jd = 1. s31d

V. AN ALGORITHM COMPUTING THE ODD-QUBIT CCD

In this section, we close a gap in the literature. Specifically, we present an algorith
omputing the CCD when the number of qubits is odd. We make use of an algorithm15 by
ongarra, Gabriel, Koelling, and Wilkinson cited in a survey12 of diagonalization arguments. T
lgorithm,15 which appears in the numerical matrix analysis literature, improves the num
tability and computational efficiency of the earlier work on time reversal by Dyson.17

Recall from Sec. III C that it suffices to compute the standard typeAII KAK decompositio
iven by SUsNd=SpsN/2dDSpsN/2d with D the repeat diagonal subgroup of SUsNd. For given
PSUs22p−1d for which we wish to compute the CCD, suppose we obtainF0

TnF0=v1dv2, with

j PSpsN/2d, j =1,2 anddPD. Then n will have CCD n=k1ak2=sF0v1F0
TdsF0dF0

TdsF0v2F0
Td.

efore computing SUsNd=SpsN/2dDSpsN/2d, we make one new definition.
Definition IV.1:Let HPCN3N be Hermitian. RecallJN=s−isyd ^ IN/2. We say that the Hami

onianH is JN-skew symmetriciff HJN−JNHT=0.
Remark IV.2:In Ref. 15, the above is the definition of “H has a time reversal symmetr

ndeed, time reversal symmetry follows for the operatorQ=JNt, st complex conjugationd per the

pcoming Definition V.1. Moreover, for the standard typeAII Cartan involutionsRef. 21, p. 452d
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AII sXd=JNX̄JN
T, let susNd=pAII % kAII for the corresponding Cartan decomposition into −1 an

igenspaces. ThenH is JN skew-symmetric if and only ifiH PpAII . Indeed onsusNd, X̄=−XT.
ence −iH =JNiHJN

T =−JNiHTJN
T if and only if HJN=JNHT.

. Algorithm for the standard AII KAK decomposition, SU „N…=Sp„N/2…DSp„N/2…

The outline below for computing the standard SUsNd=KAK decomposition of typeAII ssee
ec. III Cd is similar to theAI case used in Ref. 8 to compute the even-qubit CCD. The a
ifficulties aresid a more complicated formula forp2 and sii d a more delicate diagonalizati
rgument forp2 once computed. In fact, the latter requires the symplectic diagonalization
ent referenced above.

Lemma IV.3: SupposenPSUsNd with n=pk for p=expsiHd with H a JN skew-symmetr
amiltonian and kPSpsN/2d. Then p2=−nJNnTJN.

Proof: We have HT=−JNHJN, given JN
† =JN

T =−JN. Thus for any tPR, fexpsiHtdgT

JN
† expsiHtdJN=−JN expsiHtdJN. This holds in particular forp. Now putw=n†, so thatw= k̃p̃ for

=k†, p̃=p†. Thusp̃T=JN
† p̃JN. Moreover,kPSpsN/2d demandsk̃TJNk̃=JN, as SpsN/2d is a group

hus −JNwTJNw= p̃2. Taking the adjoint of each side produces the result. h

With this lemma, we now present the algorithm for computing the standard typeAII decom
osition.

. Supposen=pk per Lemma IV.3. Computep2=−nJNnTJN.

. We may writep=expsiHd for someJN skew-symmetric HamiltonianH. Compute a logarithm
of p2=exps2iHd. The diagonalizing matrix implicit in computing the matrix log need no
symplectic, and generic logarithms will take the form 2iH for some s2dH which is JN

skew-symmetric.
. Compute a symplectic matrixv1PSpsN/2d so thatiH2=v1

†siHdv1 is repeat diagonal, p
Sec. IV B.

. Labelp=v1 expsiH2dv1
† andd=expsiH2d. Computev3=p†n. Thenv3PSpsN/2d.

. Putv2=v1
†v3PSpsN/2d. Note thatv1dv1

†=p. Thus the typeAII decomposition isn=fv1g
3fdgfv1

†v3g=v1dv2.

his concludes the overview of computing SUsNd=SpsN/2dDSpsN/2d. The next section deta
tep 3.

. Symplectic diagonalization

In this section we address the problem of finding the eigendecomposition of a matrixH which
s JN skew-symmetric. Generically, these techniques work on any square matrix with a
umber of rows and columns, and there are no simplifications when the size is a power
hus we describe the generic case where

J2, = S0 − I,

I, 0
D

ndH=H† is alsoJ2, skew symmetric.
Explicitly, J2,-skew symmetric means

H = S A B

− B̄ Ā
D ,

hereA=A† andB=−BT are,3, matrices. We will construct a unitary skew-symmetric Ha

onian matrixv of the form
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v = S U V

− V̄ Ū
D ,

o that the columns ofv are thesrightd eigenvectors ofH. Each eigenvaluelk for k=1, . . . ,, of
is real and of multiplicity 2. In particular, both thekth and thes,+kdth columns ofv are

igenvectors ofH corresponding tolk. Also, given the block form,vPSpsN/2d up to globa
hase.

The algorithm of Dongarraet al.15 proceeds in two major steps. First we reduceH to block
iagonal form using a similarity transformation, and then we use the QR algorithm to fi
igenvalues of the blocks. We consider each of these phases in turn.

First, we construct a skew-symmetric Hamiltonian unitary matrixQ of the form

Q =S Q1 Q2

− Q2 Q1
D

o that

QHQ† = ST 0

0 T
D

hereT is real, symmetric, and tridiagonal. We initializeQ to be the 2,32, identity matrix. In
rder to preserve the structure, we constructQ as the product of two simple types of matrice

• The product of 232 skew-symmetric Hamiltonian matrices is also skew-symmetric H
tonian, and if we letr2= uau2+ ubu2, then a matrix of the form

Sā/r − b/r

b̄/r a/r
D

is unitary. In addition,

Sā/r − b/r

b̄/r a/r
DS a b

− b̄ ā
D = S r 0

0 r
D

so the unitary matrix can be used to introduce zeros. Choosej between 1 and, and construc
a matrix R as the 2,32, identity matrix except that entriesR,+j ,,+j =Rj ,j =a/ r and Rj ,,+j
=−R,+j ,,+j =−b/ r. Then the productRH is equal toH except that the entries in rowsj and
,+ j become

S sRHd j ,k sRHd j ,,+k

sRHd,+j ,k sRHd,+j ,,+k
D = 1ā/r − b/r

b̄/r a/r 2S Aj ,k Bj ,k

− Bj ,k Aj ,k
D , s32d

k=1, . . . ,,. Since this product is skew-symmetric Hamiltonian, so isRH, and it can be show
in a similar way thatsRHdR† is skew-symmetric Hamiltonian. Thus we can useR as a
similarity transformation that preserves the structure.

• Let S be a real orthogonal matrix of dimension,3,. Then

SS 0

0 S
DS A B

− B̄ Ā
DSS† 0

0 S†D = S SAS† SBS†

− SB̄S† SĀS†D s33d

is skew-symmetric Hamiltonian.

Using these matrices, our construction takes,−1 steps. We describe the first step in detail.
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The first step places zeros in the first column of the matrix in rows 3 through 2,. To put a zero
n position s,+ j ,1d s j =1, . . . ,nd, we construct anR matrix involving rows j and ,+ j . If r j

2

uAj ,1u2+ uBj ,1u2, then this matrixRj is the identity matrix except that entriesR,+j ,,+j =Rj ,j =Aj ,1/ r j

ndRj ,,+j =−R,+j ,,+j =−Bj ,1/ r j. We replaceH by sRHdR† and updateQ by premultiplying byRj,
epeating this forj =1, . . . ,,.

We complete the first step by putting zeros in rows 3 through, of column 1. Note that thes
lements are now real, since elements 2 through, are just the valuesr j. Thus we can construct
eal orthogonal reflectionsHouseholderd matrix of the form S= I −2ssT where ŝ=f0,r2

iri ,r3, . . . ,rngT ands= ŝ/ iŝi. A similarity transformation ofH by

SS 0

0 S
D

roduces the required zeros, andQ is updated by premultiplying by this matrix.
Steps 2 through,−1 are similar; in stepk we first put zeros in theB portion of columnk using

matrices and then zero elementsk+2 through, of the A portion using a reflection matrix. Th

nal result is that the transformedH has a real tridiagonal matrixT in place ofA andĀ and zero
lsewhere.

The QR algorithm is considered to be the algorithm of choice for determining all o
igenvalues and eigenvectors of a real symmetric tridiagonal matrix. We use the algorithm
, the matrix of eigenvectors ofT. Implementation of the algorithm requires care, and high qu

mplementations are available, for example, inLAPACK.2 Other codes are available at htt
ww.netlib.org.

We construct the eigenvector matricesU and V as U=Q1
†X and V=Q2

TX. Note that mos
mplementations of the QR algorithm do not guarantee that the eigenvalues are ordered, s
ort of the eigenvalues and the columns ofU andV should be done at the end if desired.

. TIME REVERSAL, THE CCD, AND KRAMERS’ NONDEGENERACY

The section presents three topics, all following from an interpretation of* from Eq. s2d as a
ime reversal symmetry operator. First, the Cartan involution defining the CCD may be re
ntirely in terms of the spin-flip, and the eigenspaces ofusiHd are associated to time symme
nd antisymmetric HamiltoniansH in a natural way. Second, a well-known procedure exis
onvert anyG=KAK decomposition into a polar decomposition, and the polar decompo
ssociated to the CCD writes a unitarynPSUsNd as a product of two factors, one evolution b

ime symmetric Hamiltonian and one evolution by a time anti-symmetric Hamiltonian. Thir
emonstrate the entangled eigenstates of Kramers’ nondegeneracy as described in the int
nd consider the perturbative stability of this entanglement under time reversal symmetry

ng.

. Spin-flips as time reversal symmetry operators

Recall theBloch spherese.g., Ref. 36d, which provides a picture of the data space of
ubit. As a remark, the Bloch sphere may be thought of as a parametrization of the c
rojective lineCP1 se.g., Ref. 34, Sec. 40d. Briefly, CP1 is the set of all equivalence classes
ectors inC2 up to multiple by a nonzero complex scalar. To associate such a class with a
ector, normalizeucl as above so as to writeucl=reitfcossu /2du0l+eiw sinsu /2du1lg. The Bloch
phere vector ofucl, sayfuclg, is given in spherical coordinates bys1,u ,wd sRef. 36, p. 15d. Recal
lso that the north pole isfu0lg and fu1lg is the south pole.

Now let bW P sF2dn be ann-bit string. The typical procedure when quantizing a classical c
utation is to extend the classical outputs linearly without phases. Thus, a reasonable inter

x ^n
f quantum bit-flip would bess d . This is the common interpretation, but note that in one qubit

1 Jun 2005 to 129.6.88.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



s e
o
u

perator
s sal
s h is

a e
i ually
d r-case
u

rsed
s
p on
t ,

t
o and
c

of the
m omplex
p
=
=
B
3

B

e CCD
c itly
d n.

s to
Q ith
r

+ t iH
P .
A
r

n

T

=
=
=
l y,
d in
a

062104-14 Bullock, Brennen, and O’Leary J. Math. Phys. 46, 062104 ~2005!

Downloaded 0
x is not reflection on the Bloch sphere and indeed has a fixed state,s1/Î2dsu0l+ u1ld. Rather, th
dd reflection of a single qubit under the Bloch parametrization ofCP1 is the spin-flip

cl° s−isyducl=s−isyducl.
The appropriate physical interpretation of the spin-flip is as a time reversal symmetry o

Ref. 47, Chap. 26, Ref. 19, pp. 314–322, Refs. 27 and 39d. Wigner defined a generic time rever
ymmetry operatorQ as anyR-linear involutive map of the quantum Hilbert space whic

ntiunitary, i.e., complex anti-linearsQsauc1l+buc2ld=āQuc1l+b̄Quc2ld, and orthogonal in th
nduced real inner-product onR2p>Cp. Generic time reversal symmetry operators are us
enoted by a capitalQ; we ask the reader’s forebearance in distinguishing this from the lowe
describing a Cartan involution.

Such a time reversal symmetry operatorQ maps the state of a system to its motion-reve
tate, so that momentum eigenstates transform asQupl= u−pl. In particular, if our qubit is a spin12
article, e.g., withu0l= u↑ l and u1l= u↓ l, then* per Eq.s2d reverses the one-qubit spin vector

he Bloch sphere and so is the natural quantum angular momentum reversal inn-qubits. Indeed

he total spin angular momentum,SW =o j=1
n sW j, is inverted under time reversal:*SW*−1=−SW. Spin-flip

perators may be defined ford-level systemssquditsd but may not both preserve pure states
ommute with local unitaries.38

We note in passing that the spin-flip picture also allows one to quickly rederive one
onotone properties. Namely, antipodal points in the Bloch sphere parametrization of the c
rojective lineCP1 correspond to Hermitian-orthogonal states ofH1. Hence,Cnsucld= ukcu*uclu
0 if ucl= ^ j=1

n uc jl sthe monotone property,d since in this eventkcu*ucl has a factorkc ju*uc jl
0. More generallyCnsucld=0 wheneverucl= uc1l ^ uc2l for uc1lPHn−1 andfuc2lg a point on the
loch sphere. However, the latter is not an equivalence forn even. ConsideruW4l=s1/2d
su0001l+ u0010l+ u0100l+ u1000ld.

. Time reversal and the CCD Cartan involution

We next show that physically, the eigenspaces of the Cartan involution producing th
orrespond to*-time symmetric and*-time antisymmetric Hamiltonians. They are then explic
escribed in the Pauli-tensor basis ofsusNd in much more compact form than in Dirac notatio8

Definition V.1:ConsiderH a Hamiltonian on a finite dimensional Hilbert spaceH, i.e., H is
elf-adjoint within EndCsHd,EndRsHd. Then H is time reversal symmetric with respect

iff H=QHQ−1 as elements of EndRsHd. A Hamiltonian is time reversal anti-symmetric w
espect toQ iff H=−QHQ−1.

Proposition V.2: Let usXd per Definition II.1. Label susNd=p % k as the −1 and
1-eigenspaces ofu. Let * be the spin-flip. Then (i) for H a traceless Hamiltonian, so tha
susNd, usiHd=*siHd*−1, with the right-hand side viewed as a composition ofR-linear maps
lso (ii) sH has time reversal symmetry with respect to*d ⇔siH Ppd, and (iii) sH has time

eversal anti-symmetry with respect to*d ⇔siH Pkd.
Proof: Let t denote the complex conjugation operatorucl° ucl. Then *=s−isyd^nt

=ts−isyd^n, given −isy real. So*−1=tfs−isyd^ng†. Moreover, fs−isyd^ng†=s−INdns−isyd^n. Fi-
ally, tsiHdt= iH. Thus,

*siHd*−1 = s− isyd^ntsiHdtfs− isyd^ng† = s− INdns− isyd^nsiHdfs− isyd^ng = usiHd. s34d

he latter two items follow at once. h

With the above proposition, we may describe the infinitesimal Cartan decompositionsusnd
p % k directly in terms of tensors of Pauli operators. Letj denote either 0,x, y, or z, with s j

I2 in case j =0 and Pauli matricessx, sy, or sz as appropriate otherwise. A multi-indexJ
j1j2¯ jk¯ jn denotes a string of lengthn, andJ will be said to be nonzero if somejkÞ0. Finally,

et is^J denotei ^k=1
n ss jkd. Then susNd= %all nonzeroJRhis^Jj. We have the following corollar

iscovered independently by Bremneret al. sRef. 5, Theorem 5d which has recently reappeared
different contextsRef. 1, p. 243d.
Corollary V.3: Continue the convention of the previous paragraph, and write
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susNd = s %
#J=0 mod 2

Rhis^Jjd % s %
#J=1 mod 2

Rhis^Jjd . s35d

he above is the infinitesimal Cartan decomposition ofusiHd, i.e., p= %#J=0 mod 2Rhis^Jj, and k

%#J=1 mod 2Rhis^Jj. In particular, K is the Lie group of those unitaries which are exponentia
amiltonians with time reversal anti-symmetry with respect to*.

Proof: Distinct Pauli matrices anti-commute, each hasss jd2= I2, andsy is purely imaginar
hile sx, sz, andI2 are real. Considering the tensors case by case completes the proof.h

. A time reversal polar decomposition

We next consider the polar decomposition which may be derived from the CCD. In
reatments, the polar decomposition of a general Cartan involution is proven and theG
KAK theorem is derived from it. We next use the CCD to produce a polar decomposition fo

eversal symmetry. This practical decision avoids rearguing theG=KAK theorem for compa
roupssRef. 21, Theorem 8.6, Sec. VII.8d.

Corollary V.4: SupposenPSUsNd is a phase normalized quantum computation in n qu
hen we may writen=expsiHpdexpsiHkd for some Hamiltonians Hp, Hk such that Hp has time

eversal symmetry and Hk has time reversal anti-symmetry with respect to the spin-flip*.
Proof: Let n=k1ak2 be the CCD ofnPSUsNd. Then in particularn=sk1ak1

†dsk1k2d. SinceK is
group,k1k2 is a time antisymmetric evolution by Proposition V.2. Moreover, leta=expiH for

H Pa,p a time symmetric Hamiltonian. AsiH Pp, we haveusiHd=fs−isyd^ng†siHds−isyd^n=
iH. Moreover, kPK is a symmetry of the concurrence formfEq. s10dg which as a matri
quation demandskTs−isyd^nk=s−isyd^n. Hencek1

Ts−isyd^n=s−isyd^nk1
†, and fork1iHk1

†Pp:

usk1iHk1
†d = fs− isyd^ng†k̄1siHdk1

Ts− isyd^n = k1fs− isyd^ng†siHds− isyd^nk1
† = − k1siHdk1

†.

s36d

husk1siHdk1
† has time reversal symmetry, and the usual matrix exponential formulafvalid since

UsNd is linearg showsk1ak1
†=expfk1siHdk1

†g. h

Remark V.5:Note that the vector space decompositionsusNd=p % k makes clear any suchn
ay be approximated by rapid pulsing of the time symmetric and anti-symmetric facto
pplying the Trotter formulase.g., Ref. 36, Sec. 4.7.2d. However, the decomposition above
uires no such pulsing of the time-symmetric and time-antisymmetric Hamiltonians.

. Kramers’ nondegeneracy

Finally, we rederive Kramers’ degeneracy in the case of* and note a further,*-specific
ondegeneracy property. Recall Kramers’ degeneracy26,27 proves that the eigenstates of a col

ion of an odd number of spin12 electrons become doubly degenerate in the exclusive prese
time-reversal-symmetric interaction, such as an electric field. The degeneracy is broken

ntroduction of a magnetic field. In terms of an energy HamiltonianH of the system, the dege
racy corresponds to 2 or greater dimensional eigenspace for energy eigenstates.

Lemma V.6: Suppose thatuclPHn is an eigenstate of some traceless Hamiltonian H w
as time reversal symmetry, with eigenvaluelPR. Then the spin-flip*ucl is also an eigenstate
igenvaluel.

Proof: Since iH has time reversal symmetry,usiHd=−iH. Thus s−isyd^nsiHd+siHds−isyd^n

0, and taking a complex conjugate producess−isyd^nsiHd+siHds−isyd^n=0. Now siHducl
lucl, so that

siHd*ucl = siHds− isyd^nucl = − s− isyd^nsiHducl = − s− isyd^nilucl = il*ucl. s37d

his concludes the proof. h

Theorem V.7 fcf. Kramers’ degeneracy—Refs. 26, 27, and 39sp. 281dg. Let H be a traceles
amiltonian on some number n of quantum-bits. Suppose H has time reversal symme
espect to*. Let l be a fixed eigenvalue of H. Then either (i)l is degenerate with even multiplicity

1 Jun 2005 to 129.6.88.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



o e
w

y
e n-
v
g one.

nal,
i ot
b

nde-
g rsal
s r in the
s ce and
h

ed with
t -
e on
t

w may be
fi as spin
c param-
e n.
c city. With
t

=

W
T

flip
W ction of
n
w

is
d ue
l
c rence
c
z n is
s t half of
t
=

impor-
t pplying
T l
s

062104-16 Bullock, Brennen, and O’Leary J. Math. Phys. 46, 062104 ~2005!

Downloaded 0
r (ii) the normalized eigenstateull has Cnsulld=1. For n odd, case (i) holds: alll are degenerat
ith even multiplicity.

Proof: Let l j be some eigenvalue ofH. By Lemma V.6, bothul jl and *ul jl are energ
igenstates. Should these two states be linearly independent, thenl j is degenerate. If any eige
alue is nondegenerate, saylk, then by antiunitarity of*, we must have*ulkl=eiwulkl for some
lobal phasew. UsingCnsulkld= uklku*ulklu we see that this eigenstate must have concurrence

Suppose in particularn=2p−1. ThenCns−,−d is antisymmetric and vanishes on the diago
mplying kl ju*ul jl=0 for all j . Consequently,ul jl and*ul jl are Hermitian orthogonal and may n
e dependent, implying casesid. h

Thus, for the spin-flip* there is in addition to the Kramers’ degeneracy a Kramers’ no
eneracy. As always, ifn is odd so that the totaln-qubit system is a fermion, then a time reve
ymmetric Hamiltonian implies that all energy eigenstates are degenerate. Yet moreove
pecific case of* andn even, a nondegenerate eigenstate must also have maximal concurren
ence be entangled.

We provide some illustrative examples. First note that there are many systems endow
ime reversal symmetric Hamiltonians. In particular, any system withsexclusivelyd pairwise near
st neighbor coupling between qubits hasiH Pp, by Corollary V.3. An example of an interacti

hat occurs in many solid state systems is the quantum XYZ model:

HXYZ = o
k j ,kl

Jxs j
xsk

x + Jys j
ysk

y + Jzs j
zsk

z s38d

ith Jx,y,zPR where the sum is taken over all nearest neighbor pairs and the boundaries
xed or periodic. In one dimension, these nearest neighbor coupled systems are known
hains. Spin chain Hamiltonians are of great theoretical interest, for under the appropriate
ter regime they exhibit long range classical correlations near a quantum phase transitio30 We
an characterize the dynamics of entanglement in spin chains using the concurrence capa
his goal in mind we observe the following useful fact:

Proposition V.8: Letp, k be as in Corollary V.3. If iHPp and HPRN3N, then lcsu=e−iHtd
he−2il j tj where tPR parameterizes time andl j PR are the eigenvalues of H.

Proof: By Definition III.5 the concurrence spectrum of the unitary generated byiH, u=e−iHt is

lcsud = specfs− isyd^n†eiHts− isyd^nse−iHtdTg = specse−iHte−iHTtd

= specse−2iHtd = he−2il j t;l j P specsHdj. s39d

e have useds−isyd^n†iHs−isyd^n=−iH and therefores−isyd^n†Hs−isyd^n=H becauseH is real.
he third line is a consequence ofH being Hermitian. h

The quantum XYZ Hamiltonian has time reversal symmetry with respect to the spin-*.
e next demonstrate how to build up entanglement with such a system. Consider a colle
qubits laid out in a cyclic array interacting under the Ising class of Hamiltonians given byHXYZ

ith Jx=Jy=0: HIs=o j=1
n Jzs j

zs j+1
z , where we identifysn+1

z =s1
z.

The eigenvalues are given byhl jj=hJzsn−2okjk % jk+1d ; j = j1j2. . . jnj,30 where the addition
one modulo 2 over the componentsjk of the binary expansion ofj . For n even, each eigenval

j is paired with another of opposite sign and in particular,l0=−lN−1 with ul0u=nuJzu=lmax. The
oncurrence spectrum ofu=e−iHIst is composed of complex conjugate pairs and the concur
apacityk̃nsud may be computed explicitly. Thenk̃nsud=maxhuo j=0

N−1aj
2e−2il j tu ;z†z=1,zTz=0j where

=o j=0
N−1aju jl, per Eq. s14d. Maximum capacity is obtained when the convex hull conditio

atisfied which occurs precisely when the concurrence spectrum extends outside the righ
he complex plane. The minimum time at which this occurs is given bye−2ilmaxtmin= i or tmin

p /4ul0u=p /4nuJzu.
The existence of a time reversal symmetry in the interaction between qubits gives us

ant information about the nature of quantum correlations in the energy eigenstates. A
heorem V.7, we immediately find that the ground state of a HamiltonianH with time reversa

ymmetry has maximumn-concurrence if it is unique. Examples of interactions satisfying these
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onditions are the XYZ Hamiltonian withsJx=Jy=Jz=J.0d, denoted the XXX Hamiltonian, an
he XY HamiltoniansJx=Jy,Jz=0d.30 In particular, the XXX Hamiltonian withJ.0 has bee
hown to have nondegenerate ground states in any number of dimensions, with or without
oundary conditions, provided the underlying lattice has a reflection symmetry about som
ibid.d.

To illustrate this phenomenon we consider what happens when the time reversal sym
roken by adding a time-antisymmetric term to the XY Hamiltonian:

H = o
j=1

n

JS1 + g

4
s j

xs j+1
x +

1 − g

4
s j

ys j+1
y D +

hz

2
s j

z, s40d

heresn+1
a ;s1

a. The presence of the linear term proportional to the total spin projection op

z=o j=1
n s j

z, breaks the time reversal symmetry so thatiH ¹p whenhzÞ0. For zero magnetic fie
nd 0øg,1, the Hamiltonian is time reversal symmetric and the ground state is nondeg
eaning the concurrence is maximal. In the isotropic casesg=0d, the Hamiltonian commutes wi

z and eigenstates are independent ofhz. For magnetic field strengths below some critical va
hu,hcrit the ground state corresponds to an eigenstate with eigenvaluesz=0 of the operatorSz.
his ground state has maximal concurrence. Foruhzu.hcrit, the ground state corresponds to
igenvalueszÞ0 and the concurrence is zero.7

I. CONCLUSIONS

We show that the odd-qubit concurrence canonical decomposition admits generaliza
ll constructions studied on the even qubit CCD. In particular, a generalized pairwise conc
apacity may be defined, and the operators for which this is maximal are characterize
onvex hull condition on the concurrence spectrum. Again for an odd number of qubits, w
hat for large oddn most unitaries have maximal concurrence capacities. Moreover, we prov
xplicit algorithm for computing the odd-qubit CCD.

These advances are complemented by new interpretation of the original inputs toG
KAK theorem which define the CCD. Specifically, they may be rewritten in terms of

eversal symmetry* which is the spin-flip inn quantum bits, and the CCD is best understoo
erms of such symmetries. For example, the odd-qubit CCD is a typeAII KAK decomposition
nd as such must have degenerate eigenvalues. In fact, this recaptures Kramers’ degenera
dd-qubit spin-flip, and a more careful study of the arguments reveals a Kramers’ nondege
ondegenerate eigenstates of* time reversal symmetric Hamiltonians only exist when the num
f quantum bits is even andmoreovermust be highly entangled. Specifically, suchull are highly
ntangled in the sense that the concurrenceCnsulld= uklu*ullu=1. Finally, the polar decompositio
xtracted from the CCD in the usual way accomplishes the following: any unitaryn-qubit evolu-

ion is a product of precisely one time reversal symmetric and one time reversal antisym
volution.
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