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A model and numerical framework is developed for piezoelectric
materials. The model treats the piezoelectric and electrostrictive
effects by incorporating orientation-dependent, single-crystal
properties. The method is implemented in Object Oriented Fi-
nite Element program, a public domain finite element code, so it
can be applied to arbitrary two-dimensional microstructures
with crystallographic anisotropy. The model is validated against
analytic solutions. Consistency of the method for known cases
permits application of the technique to more complicated two-
dimensional systems. The piezoelectric and electrostrictive re-
sponse is determined for a few simple device geometries and
provides insight for design and convergence criteria.

I. Introduction

PROGRESS towards optimal microstructures in high-perform-
ance electromechanical actuators and sensors depends, in

part, on the development of novel materials, device architecture,
amplification mechanisms, and processing techniques.1 In pie-
zoelectric materials, the effect of microstructure on the local
state of stress and polarization is not simple to model because
the fields are coupled, and the coupling is not necessarily spa-
tially uniform. Furthermore, reliable models depend upon the
proper incorporation of the physical properties at a microstruc-
tural level.

The spatial interactions of fields and material properties in a
microstructure depend on fine-scale details. The macroscopic
response may vary considerably for similar microstructures with
the same microstructural parameters. To investigate the effects
of microstructure on properties, two categorically different ap-
proaches may be considered: the fine scale effects can be spa-
tially averaged and the microstructure approximated as a
homogeneous material; or the spatial distribution of the prop-
erties of a particular microstructure can be incorporated into a
complex model that treats all known interactions to the level of
spatial resolution. The first, or homogenizing, approach will not
describe those macroscopic properties that depend strongly on
localized interactions but should be an economic method for

calculation of those properties that depend on the mean of the
microstructural distribution. In this paper, we describe a new
method that adopts the second approach, which utilizes all
available microstructural data.

Generally, the homogenization approach derives from fun-
damental work by Rayleigh,2 Eshelby,3 Hill,4 Budiansky,5 and
Hashin.6 For piezoelectric materials specifically, several homog-
enization approaches have been developed. Most of these meth-
ods are based on analytic solutions to electromechanical fields
around a piezoelectric ellipsoidal inclusion.7 The homogeniza-
tion theory for composites containing piezoelectric inclusions is
complex but has been successfully developed.8–16 Another ho-
mogenization method, the multiple-scattering method, reduces
the calculation of effective properties from a set of integral
equations that derive from a Green’s function to the superpo-
sition of a linear system of equations.17

However, if effects due to peculiarities of a particular micro-
structural feature (such as spatial correlations of crystallograph-
ic orientations, morphological texture, interface or boundary
proximity effects, or defects such as pore and crack distribu-
tions) are to be calculated, homogenization approaches are very
impractical. Homogenization methods that apply to cases where
local variations in the microstructural fields are significant or
have non-linear couplings (e.g., electrostriction, photoelasticity,
electro-optic effects, etc.), would be useful, but are equally im-
practical. Moreover, when material response depends on im-
probable events or spatial correlations (e.g., when considering
the reliability of piezoelectric devices with a dilute concentration
of defects) homogenization approaches will not suffice.

The microstructural method reported in this paper provides a
means to assess the effect of such correlations, non-linearities,
and statistics. It can be used in samples with large spatial cor-
relations or in materials that suffer the inadequacies of small
number statistics, where the solution derived from the homog-
enization approach deviates greatly from the actual distribution
of fields. The method is intended to improve processing design
for devices, particularly when the device scale is similar to that
of the microstructure or the relevant design feature depends on
extremes of microstructural distributions.

Ultimately, piezoelectric function depends on the relationship
between the spatial variations of the mechanical and electric
fields as well as the anisotropy of the underlying single-crystal
properties of each grain in a microstructure. It is not straight-
forward to develop criteria to determine which properties are
confidently predicted by an effective medium approach and
those that are directly related to localized interactions.
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This paper describes a modeling framework for microstruc-
tural effects on complex piezoelectric microstructures. The
framework is implemented with the finite element method and
verified for simple geometries. The method is implemented in
two dimensions (with plane stress and plane strain conditions).
Numerical convergence with mesh size and direct applicability
to simulations of device geometry are demonstrated. The anal-
ysis performed on the tested device geometries provides a set of
simple guidelines for piezoelectric actuator design.

In a companion paper,18 the numerical method is used to
determine the effects of crystallographic texture in polycrystal-
line BaTiO3 and PZN–PT.

II. Model Framework

(1) Equilibrium Equations and Constitutive Relations

If a non-piezoelectric phase undergoes a transition to a piezo-
electric phase, the material’s symmetry changes by the loss of an
inversion center. In some cases, the piezoelectric phase transition
induces a non-zero remnant strain and electric polarization. The
magnitude of remnant strain can be reversibly changed with in-
creased polarization and stress. If crystallographically equiva-
lent remnant states of strain can be set by applying a very strong
field, the material is called a ferroelectric.z

It is possible to derive the conditions of local equilibrium of
an electromechanical solid ðH � s2 ¼~0; H � ~D ¼ 0Þ by minimizing
a functional form of the total free energy.21,22 The computa-
tional method presented in this paper follows directly from disc-
retizing the variational formulation and substituting the
electromechanical constitutive equations for each homogeneous
region of a microstructure. The equilibrium equations are sat-
isfied automatically when the discrete form of the free energy
functional is minimized. With the free energy functional the
computational method is reduced to specification of the consti-
tutive equations, discretization, and subsequent numerical solu-
tion.

For the specification of electromechanical constitutive rela-
tions, mechanical and electrical fields are coupled through ma-
terial properties:

sij ¼ CE
ijkle

T
kl � CE

ijkldmklEm

Di ¼ Ee
T

ij Ej þ dijkCjklmeTlm
(1)

The symbols are defined in Table I. Each coefficient follows
Nye’s notation.23

For cases in which the material properties are also functions
of applied fields, a higher order approximation is obtained by
expanding the physical properties with respect to the intensive
quantities:

Esij ¼ Es;0ij þ gklijskl þ LkijEk (2)

dijk ¼ d0
ijk þ Gijklmslm þ gijklEl (3)

CE
ijkl ¼ CE;0

ijkl þ wijklmnsmn þ xijklmEm (4)

In the limit of infinitesimally small changes with respect to
equilibrium, the total strain can be expanded in terms of the
contributions from each applied field:

eTij � eelasticij þ eelectricij þ � � � (5)

Table I. Glossary of Symbols for Thermodynamic Properties

Summary of symbols for thermodynamic properties

Definition Name

CE
ijkl Stiffness tensor at constant electric field

~D Total polarization or displacement vector
Di ith component of displacement vector
~E Electric field vector
Ei ith component of electric field
F Total Helmholtz free energy
dijk Piezoelectric tensor (d-form)
eijk Piezoelectric tensor (e-form)
f Helmholtz free energy density
ui ith component of the spatial displacement vector
Gijklm Electro-elastic tensor

Fifth rank tensor expressing linear correction to
piezoelectric tensor due to change of stress. Zero for crystals
with inversion center symmetry.

Gijklm ¼ qdijk
qslm

����
s2o; ~Eo

(29)

Lkij Electro-optic tensor

Linear correction to dielectric response. This correction
only exists in materials lacking an inversion center.

Lkij ¼
qEsij
qEk

����
s2o; ~Eo

(30)

O Volume of solid
Oo Reference volume
gijkl Photoelastic/electrostriction tensor

First-order correction to permittivity due to stress. Also
electrostriction tensor, i.e., first-order correction to the
piezoelectric tensor due to applied field ~E.

gijkl ¼
qEsij
qskl

����
s2o; ~Eo

¼ qdijk
qEl

����
s2o; ~Eo

(31)

E
2

Dielectric permittivity tensor
E e
2T

ij Dielectric permittivity at constant total strain

The dielectric permittivity at constant strain is related to the
dielectric permittivity at constant stress through the rela-
tion 21:

E E
2T

ij ¼ ðEs
2

ij � djmnC
E
mnkldijklÞ (32)

e
2T

Total strain tensor
eij
T ijth component of total strain tensor
xijklm Electric hardening tensor

Contribution to stiffness from induced polarization. Absent
in centrosymmetric materials.

xijklm ¼ qCijkl

qEm

����
s2o; ~Eo

(33)

s2 Stress tensor
sij ijth component of stress tensor
f Electric potential
wijklmn Higher-order stiffness tensor

Reversible stress hardening coefficient.

wijklmn ¼
qCijkl

qsmn

����
s2o; ~Eo

(34)zAtomistically, the removal of an inversion center correlates with the directed displace-
ment of one or several atoms in a unit cell. In most cases, the stress- and electric field-free
directed displacement will occupy one of several equivalent crystallographic positions, called
variants. If the directed displacement is induced by the application of an external field, then
the system will switch to the variant that minimizes its free energy.19,20
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The electric contribution to the total strain defines the piezoe-
lectric coefficient tensor:

eelectricij ¼ dkijEk (6)

Substituting Eq. (3) in Eq. (6) and defining eelectrostrictiveij as the
quadratic contribution to strain yields:

eelectrostrictiveij ¼ gijklElEk with gijkl ¼
q2eTij

qEkqEl
(7)

Cubic and higher order contributions of the electric field to the
total strain are neglected, but can be incorporated into the for-
mulation.

An alternative description of the quadratic contribution to
strain from an electric field is described in terms of the polar-
ization vector ~P, where the corresponding electrostrictive tensor,
Qijkl, relates strain to polarization change:24,25,y

eelectrostrictiveij ¼ QijklPkPl with Qijkl ¼
q2eTij

qPkqPk
(8)

By expanding

gijkl ¼
qdijk
qEl

¼ q
qEk

qeTij
qPn

qPn

qEl

 !
(9)

an electric field representation can be related to a polarization
field:

gijkl ¼ Qijmnkskmk
s
nl þ Lknldmijb

s
mn (10)

where

ksij � Esij � E0dij (11)

and

bsinE
s
jn � dij (12)

Here, dij5 1 if i5 j and zero otherwise.
For systems in which electro-optic effects can be neglected,

the dielectric and piezoelectric tensors take the following form:z

dijk ¼ d0
ijk þQijmnkskmk

s
nlEl (13)

and

Eeij ¼ Es;0ij � djmnC
E
mnkldikl þ CijklQklpqksprk

s
qse

T
rs (14)

(2) Plane-Stress Formulation

For a piezoelectric solid whose material properties are homoge-
neous out of a specified plane, such as in a ferroelectric film, the
description of the local thermodynamic state of a polycrystalline
solid can be reduced to a quasi-two-dimensional representation.
For a piezoelectric material subjected to in-plane surface trac-
tions and electric displacements, but free to deform out of the
plane (i.e., in a state of plane stress), the electromechanical free
energy density is24

f ¼ 1
2
eTij C

E
ijkle

T
kl � 1

2
EiEe

T

ij Ej � EieijkeTjk (15)

with

eijk � CE
jklmdilm (16)

Define eð2Þij as the two-dimensional in-plane part of the strain
with indices i, j5 {1, 2} (the out-of-plane index is taken as 3),
and Zi as the out-of-plane components:

e
2T ¼ eð2Þ

Z1

Z2
Z1 Z2 2Z3

 !
(17)

For plane-stress conditions:

si3 ¼ CE
i3klðeTkl � dmklEmÞ ¼ 0 ½i ¼ 1; 2; 3� (18)

Let dm
(2) be the two-dimensional in-plane contribution to the

piezoelectric tensor

dm ¼ d
ð2Þ
m

dm31

dm32

dm31 dm32 2dm33

 !
(19)

Here, dm3i is the out-of-plane contribution to the piezoelectric
tensor.

Equations (18) and (19) imply

CE
i3kl eð2Þkl � d

ð2Þ
mklEm

� �
¼ �2CE

i3j3ðZj � dm3jEmÞ

½ikl ¼ 1; 2 and jm ¼ 1; 2; 3�
(20)

which gives

Zi ¼ � 1

2
xijC

E
j3kl eð2Þkl � d

ð2Þ
mklEm

� �
þ dm3iEm;

½ijm ¼ 1; 2; 3 and kl ¼ 1; 2�
(21)

with xijCj3kl
E � dij. Using Eqs. (15), (16), and (21), f is

f ¼ 1

2
eð2Þij Dijkle

ð2Þ
kl � 1

2
EiwijEj � EieijkE

ð2Þ
jk (22)

where the plane-stress stiffness is

Dijkl � CE
ijkl � CE

ij3nxnmC
E
m3kl

½ijkl ¼ 1; 2 and mn ¼ 1; 2; 3�
(23)

and the plane-stress permittivity is

wij � Eeij þ di3mC
E
3m3ndj3n

½ij ¼ 1; 2 and mn ¼ 1; 2; 3�
(24)

Equation (22) is the plane-stress analog to Eq. (15).

(3) Numerical Solution

The formulation described in Section 2.2 was implemented by
applying the finite element method (see Appendix A). The nu-
merical implementation results in a set linear equations (Eq. (22))
of the form K~V ¼ ~b in each degree of freedom. The final form of
this matrix depends on the mesh and element properties. ~V is a
vector with components corresponding to each unknown degree
of freedom (nodal displacements and voltage) and ~b is a vector of
the surface specified contributions from each degree of freedom
(surface forces, electrostatic surface charges, boundary voltages
and displacements). The global stiffness matrix, K, is typically a
sparse M�M matrix and can be determined a priori, in the lin-
ear case.M corresponds to the number of degrees of freedom not
determined by the boundary conditions in the system.

yThe polarization vector is related to the applied electric field ~E and total polarization ~D
by:

Pi ¼ Di � E0Ei

where E0 is the permittivity of vacuum.
zBecause this is an expansion about a stable state, it is implicit that hysteretic effects,

domain wall motion, charge separation, mass diffusion, and other irreversible kinetic effects
cannot be operative, thus these equations apply. In a ferroelectric, there may be irreversible
phase transitions that include switching events and local motion of domains.
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The global solution can be obtained by a suitable numerical
method for solving large sparse linear systems. The current im-
plementation utilizes the conjugate gradient method.26 The so-
lution is an approximation in two senses. The first is the
numerical approximation to the linear system of equations
and the second is due to discretization. The quality of the so-
lution to the linear equations is ensured by requiring that the
residual r ¼ jK~V � ~bj=j~bj is less than a specified tolerance.27 A
maximum value of r is specified prior to solution. With regard to
discretization, a numerical solution should capture the relevant
features and variations of the fields and asymptotically converge
to the exact solution with mesh refinement.

In the case of a material microstructure with local field-de-
pendent properties, the form of the global equilibrium equation
has a similar form, but is generally non-linear (i.e., the stiffness
matrix depends on the (unknown) solution), Kð~VÞ~V ¼ ~bð~VÞ. In
this case, a solution is obtained by applying Newton’s method.28

Newton’s method has quadratic convergence. Other techniques
for solving non-linear systems, such as the Picard and the Mod-
ified Newton’s, were tried but did not converge as fast as New-
ton’s method.27,28,J

III. Model Validation and Discussion

(1) Model Implementation

The framework described in the sections above was implement-
ed by modifying the Object Oriented Finite Element program
(OOF), version 1.29OOF is a freely available software developed
at NIST for the analysis of properties of microstructures. Be-
cause OOF is designed to operate on two-dimensional geome-
tries, such as those from microstructural images these
modifications permit solutions for arbitrary two-dimensional
microstructures of piezoelectric phases with spatially variable
crystallographic orientation. The solutions consist of both elec-
tric and mechanical fields. The additions to the code enlarge the
variety of physical behaviors that can be calculated by the OOF
program.ww Examples of such calculations in a polycrystalline
microstructure are given in a companion paper.18 In this section,
we demonstrate that the method is numerically stable and con-
verges to known solutions for simple cases.

The modified version of OOF is applicable to systems where
the electric field does not vary out of the plane. This is a valid
assumption for materials whose dielectric tensor coefficients are
much larger than the surrounding medium, e.g., an order of
magnitude larger. Therefore, the modified code is applicable for
thin film microstructures embedded in a low dielectric constant
medium, such as vacuum.

(2) Homogeneous Materials

The numerical model was applied to a square, 1 m� 1 m single-
crystal thin-film piezoelectric with isotropic dielectric properties
to demonstrate that it yields sensible results. Piezoelectric coef-
ficients correspond to Barium Titanate (point group 4mm).30,31

Crystals belonging to the 4mm point group have three inde-
pendent piezoelectric coefficients: d33, d31, and d15 in Nye’s ma-
trix notation.23 Small values for the elastic tensor coefficients
were selected to distinguish contributions between the direct and
converse piezoelectric effects. The material properties are sum-
marized in Table II. A 100 V potential difference was applied
between the two edges with normals oriented in the positive and
negative x-directions. All four in-plane edges were free to elas-
tically deform in two dimensions. The material was also free to
deform out of the plane. The crystal was oriented such that its c-
axis remained in-plane at a counterclockwise angle y with re-
spect to the x-axis of the laboratory reference system. The equi-

librium elastic and electric fields were calculated within OOF as
a function of crystal orientation y.

The exact and numerical solutions for this case have uniform
electric and strain field distributions. Figure 1 compares the nu-
merical and analytic solutions for angular variations of the uni-
form piezoelectric strains eij, normalized by their values at y5 0.
The normalized angular dependencies have exact expressions:

e11
d33E1

¼ cos3 yþ d15 þ d31

d33
sin2 y cos y (25)

e22
d31E1

¼ cos3 yþ d33 � d15

d31
sin2 y cos y (26)

e33
d31E1

¼ cos y (27)

The absolute value difference between the analytical and OOF
predictions is shown in Fig. 2.

The simulation results were computed on 5� 5 node regular
meshes.zz The tolerance was set to r5 1� 10�12. Each simula-
tion required about a million floating point operations (1Mflop)
for convergence (1 ms on an SGI Origin 2000).

To demonstrate the convergence of the non-linear case, an
electrostrictive system (BaTiO3, point group m3m, properties in
Table III) was simulated. The solution was obtained for a square
domain (1 mm� 1 mm). The c-axis was oriented parallel to the
x-direction. A voltage difference along the x-direction was

Table II. Physical Properties for Hypothetical Single-Crystal,
Piezoelectric Solid. Piezoelectric coefficients correspond

to BaTiO3.

Symbol Value Units Symbol Value Units

C11 2.751 Pa d31 �34.7 pC/N
C33 1.649 Pa d33 85.7 pC/N
C44 0.543 Pa d15 392.0 pC/N
C12 1.789 Pa Es11 10.0 mF/m
C13 1.516 Pa Es33 10.0 mF/m

− 3 − 2 − 1 0 1 2 3
− 3

− 2

− 1

0

1

2

3

Z

X

Fig. 1. Angular dependence of three contributions to normalized
strain, e11, e22, and e33, (out-of-plane). Solid lines correspond to analyt-
ic predictions; dots show the Object Oriented Finite Element program
solution.

JThe solution was obtained by solving the global equilibrium equation with an initial

trial solution vector ~V0for ~V1to a tolerance rL: jKð~V0Þ~V1 � ~bð~V0Þj=j~bð~V0Þj � rL. The global

equilibrium equation was iterated (jKð~VN�1Þ~VN � ~bð~VN�1Þj=j~bð~VNÞj � rL) to find ~VN until

a non-linear tolerance jKN
~VN � ~bN j=j~bN j � rNL.

wwA new version of OOF, currently under development, will address piezoelectric micro-
structures without significant modifications.

zzBecause the system lacks an implicit length scale, the obtained results are independent
of mesh resolution. Below, a simulation is presented that incorporates a length scale that
permits evaluation of mesh refinement.
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applied in steps of 10 V ranging from �100 to 100 V; the sides
parallel to the x-axis are electrically unconstrained. All edges are
mechanically unconstrained.

By applying Eq. (13), and assuming that d0
ijk ¼ 0 (the case for

point group m3m) the strain in the direction of an electric field
applied along the x-direction is

e11 ¼ ðEs11 � E0Þ2Q11E
2
1 (28)

The electrostrictive constant is given in matrix notation.23

Linear and non-linear tolerances were set to rL5 10�4 and
rNL5 10�7, respectively. The domain was divided in a uniform
mesh with a total of 25 nodes. Each simulation took on the or-
der of four Newton steps to converge. Each Newton step took
on the order of 1 Mflop. A comparison between the OOF cal-
culation and the exact response is shown in Fig. 3.

IV. Convergence with Discretization

To assess discretization effects (i.e., mesh refinement), a simula-
tion length scale is required for comparison with mesh size. Two
hypothetical linear piezoelectric devices with such length scales
were simulated (see Figs. 4 and 6). The simulated actuators
will be referred to as anti-parallel and dead-layer devices,
respectively.

The anti-parallel device (Fig. 4) is composed of two otherwise
identical piezoelectric layers with anti-parallel c-axes. They are
1.0 mm long and 0.25 mm thick. Their material properties cor-

respond to point group 4mm and are summarized in Table II.
The layers are perfectly bonded. The left edge of both layers is
perfectly clamped to an infinitely stiff perfect conductor. The
right side of the bilayer is bonded to a perfectly compliant (zero
stiffness) perfect conductor.

Numerical solutions for the deflection of the bilayer appear in
Fig. 5 as a function of mesh refinement. The highest resolution
mesh (16 384 nodes, 49 152 degrees of freedom) required 5152
iterations to converge (a total of 4� 105 Mflops). The meshes
with the coarsest resolution (20 nodes, 48 degrees of freedom)
required 23 iterations to converge (a total of 7.5 Mflops). The
convergence tolerance was 1� 10�12 for all refinements. Figure
5 suggests that approximately 32 elements across the character-
istic length scale is sufficient for convergence.yy

In the anti-parallel piezoelectric device, a non-zero electric
field component perpendicular to the applied voltage difference
is observed. In this device, when a voltage difference is applied,
the converse piezoelectric effect induces a change of shape in the
y and z directions, which correspond to crystallographically
allowed contributions to the contraction/expansion at these

Table III. Physical Properties Used in Single-Crystal

Calculations for Electrostrictive BaTiO3
30,32,33

Symbol Value Units

C11 172.80 GPa
C12 81.96 GPa
C44 108.22 GPa
Q11 11.1� 10�2 m4/C2

Q12 �4.42� 10�2 m4/C2

Q44 5.85� 10�2 m4/C2

Es11 17.4 mF/m

−1×105 1×105−5×104 5×104
0

0

1×10−7

2×10−7

3×10−7

4×10−7

Fig. 3. Comparison between analytical and numerical electrostrictive
response. Solid line corresponds to analytic response (Eq. (28)). Circles
correspond to the Finite Element calculation.

Fig. 4. Schematic representation of anti-parallel device. The left side is
clamped to an infinitely stiff contact. The right side is mechanically free.
The bilayer is composed of two oppositely poled layers of total in-plane
thickness ly, and equal length lx. Upon applying a voltage difference, the
bilayer bends displacing the upper right corner a distance u.

0 21 3 4 5 6
0

1

2

3

4

5

6

7

θ (radians) (radians)

Fig. 2. Absolute value difference between Object Oriented Finite
Element program and analytical predictions to piezoelectric strain (see
Eqs. (25)–(27)). Filled circles correspond to e11 with a multiplying factor
of 1� 104, e22 to open circles with a multiplying factor of 1� 105, and
triangles to e33, with a scaling factor to 1� 107.

yyThe number and distribution of elements required to reach a valid calculation depends
on the studied geometry or microstructure, boundary conditions, materials properties, etc.
Application of more sophisticated techniques such as mesh refinement algorithms to resolve
for large localized spatial gradients improves the solution greatly.
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boundaries. Via the direct piezoelectric effect, the material’s de-
formation induces a change of polarization at the interface,
which in turn induces a non-zero contribution to the electric
field, perpendicular to the externally applied voltage difference.

The anti-parallel device is an inefficient piezoelectric actua-
tor—its geometrical arrangement induces a large amount of
stored mechanical energy at the interface. These localized me-
chanical and electrical energy densities could cause depoling,
particularly for those transducers operating at temperatures
close to the Curie temperature. Away from the Curie tempera-
ture, localized mechanical energy density distributions affect
mechanical reliability.

The second piezoelectric transducer, the dead-layer device, is
a piezoelectric strip perfectly bonded to a non-piezoelectric, me-
tallic substrate (Fig. 6). The bottom layer is a perfectly conduct-
ing isotropic material with Young’s modulus of 100 GPa and
Poisson’s ratio of 0.33. The c-axis of the piezoelectric layer
makes an angle of 54.741 with respect to the laboratory y-axis.
This orientation was chosen to maximize the single-crystal pie-
zoelectric response observed in Fig. 1.

The numerical error in bending of the dead-layer device can
be observed in Fig. 7 as a function of element size. The solution

for the coarsest mesh (20 nodes, 48 degrees of freedom) required
about 2.5 Mflops. The solution for the finest mesh (16 384
nodes, 49152 degrees of freedom) required about 1200 Mflops.

Compared with the anti-parallel piezoelectric device, no re-
sidual, lateral electric fields (in directions perpendicular to the
applied voltage difference) are produced. The electrical energy
necessary to displace this actuator is less than the contributions
from the anti-parallel device.

The magnitudes of the electric and stress fields in the dead-
layer device reaches their maximum value at the interface of the
active layer, particularly where the internal boundary meets the
surface of the device. Here, the local properties mismatch and
boundary conditions induce the observed effect. Therefore, po-
larization domain switching and mechanical failure is favored to
initiate at the surface and interface of the device. The maximum
displacement in the dead-layer device is maximized by the choice
of orientation of the c-axis Q3.

V. Summary and Conclusions

A model and numerical framework was established for the
solutions of equilibrium electric and mechanical fields. The
numerical implementation provides a method for calculating
the response of a two-dimensional device as a function of its
boundary conditions and geometry. Linear and quadratic rep-
resentations of piezoelectric material properties were developed
and provide a second-order model for reversible electromechan-
ical materials. The solutions are accurate and consistent with
simple geometries for which analytic solutions were derived.
Numerical solutions were obtained for specific piezoelectric lay-
er-like geometries. The geometries provide a length scale that
can be used as a normalizing parameter to test numerical con-
vergence with respect to mesh refinement. This convergence cri-
teria is used in a continuing paper as a reference length scale to
establish the validity of the calculations.18

The electromechanical response was compared for two hy-
pothetical piezoelectric devices. The analysis suggests the re-
sponse of these types of devices can be optimized by orienting
the c-axis to a value that maximizes their response.

Surfaces and internal interfaces play an important role in de-
termining the response of a piezoelectric device. A specific
microstructure and well-determined applied fields lead to a dis-
tribution of mechanical and electrical energy that impacts di-
rectly on the life and reliability of the device; advanced actuator
devices can benefit from such analyses.

The results for simple geometries in this paper are useful for
developing design strategies for piezoelectric devices and can be
summarized as follows:

(1) The macroscopic response of a piezoelectric actuator is a
result of the spatial contributions from the direct and converse

Fig. 6. Schematic of bilayer (dead-layer) system. Left side is clamped to
an infinitely stiff contact. The right edge deforms freely. The device is
composed of two layers of thickness ly

s for the substrate and ly
l for the

piezoelectric layer. The length of the device is lx. The substrate is a per-
fect metallic conductor. Upon applying a voltage difference, the bilayer
bends displacing the upper right corner a distance u. The angle of the c–
axis with respect to the y–axis of the laboratory reference system was set
to provide a larger displacement than the anti-parallel device.
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Fig. 7. Normalized vertical displacement of the upper-right corner in
dead-layer piezoelectric device as a function of normalized element size.
Here Du

ly
� 105 ¼ 14:432ðAe=AÞ0:934.
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Fig. 5. Bending of piezoelectric anti-parallel device as a function of
normalized element size. The normalization factor, A, is the total area of
the bilayer. The y-axis is the difference between the vertical deflection of
the bilayer device, for a particular mesh size, and the asymptotic solu-
tion, normalized by the thickness of the bilayer. The solid line is the
regression curve of the convergence rate: Du

ly
� 105 ¼ 11:628ðAe=AÞ0:97.
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piezoelectric effect. For a specific electromechanical transducer,
the resulting electric and strain fields are a consequence of the
spatial interactions of the inherent geometrical features (micro-
structure) and result in fields in directions that may not be par-
allel to the macroscopic applied field.

(2) Coherent internal interfaces where piezoelectric proper-
ties change discontinuously will result in regions of large elastic
energy density and potentially affect mechanical reliability.

(3) The spatial incompatibility of elastic, dielectric, and
piezoelectric properties results in localized spatial regions of
electrostatic and elastic energy, which are favorable sites for
depoling of the device.

(4) A sensible choice for the numerical value and cry-
stallographic orientation of the utilized piezoelectric materials
for single-crystal devices will maximize the macroscopic
response and will minimize the induced mechanical energy dis-
tribution.

One of the main benefits of this modified version of OOF is
its ability to easily capture complex microstructural features
through simple point-and-click operations. Thus, this frame-
work permits the description of a wide variety of microstructural
features, such as pore and crack distributions, electromechani-
cally dead layers, and interactions with static ferroelectric
domains.

A further extension of this framework to account for spatial
charge distributions and its impact on the local fields is easily
included. Such addition only requires the full form of Cou-
lomb’s Law, i.e., H � ~D ¼ r, as well as the relevant constitutive
thermodynamic relations already established in Section 2.34 Sim-
ilarly, the description of static (and pinned) domains can be
readily assessed, by automatically identifying these microstruc-
tural features on a scanned micrograph (i.e., by carefully iden-
tifying the local Euler angles of each variant). Furthermore, the
thermodynamic equilibrium of the underlying ferroelectric do-
mains can be explored. Here, the local state of a volume element
of material is determined by the electromechanical Gibbs free
energy. If this free energy reaches a local maximum value (spec-
ified by the material’s single-crystal coercive electric field or
stress tensor) the element will attempt to acquire an orientation
that simultaneously decreases the local free energy. A Monte
Carlo algorithm, similar to the one utilized for other instances of
OOF (e.g., Kessler, Griffith, or Valeria elements) will easily in-
corporate these ideas.29 However, the imposed constitutive laws
should comply with the crystallographic constraints imposed by
the parent phase and the involved variants of the ferroelectric
phase.19,35

The results in this paper establish the validity of the numerical
method and its convergence behavior. The convergence to
known solutions provides confidence that application of this
numerical model to complex microstructures will provide a valid
solution where analytical solutions are impossible. Thus, this
paper establishes the groundwork for the numerical method for
analysis of microstructural properties that is utilized in the com-
panion paper.18

Appendix A. Finite Element Formulation

In the absence of body forces and localized electrostatic charges,
the virtual change in the electromechanical free energy is:36Z

O
ðs2de2 � ~D � d~EÞdO ¼

Z
SM

d~X � s2 �~ndS

þ
Z
SE

df~D �~ndS
(35)

whereO is the volume with bounding surface S with unit normal
~n. The subsets of S (SM and SE) where mechanical tractions
(s2 �~n) and surface charge (~D �~n) are specified may overlap. The
strain, e2, and electric field, ~E, are functions of the spatial de-
rivatives of the displacement field~u and electrostatic potential f.

The finite element approximation is introduced by disc-
retizing the domain (volume) into a complete set of non-over-
lapping homogeneous subregions (elements). Each element is
connected to its neighbors through shared discrete values
(nodes). Within each element, n, the fields are described by lin-
ear combinations of functions Nj

n (shape functions).zz Substitu-
tion of Nj

n into Eq. (21) reduces the integral to a set of coupled
linear equations.28,37

By substituting the two-dimensional electromechanical prop-
erties derived in Section II into Eq. (21) one finds for the case of
linear triangular elements:JJ

D
Bn
ijDijklB

m
kl �Bn

ijemijG
m
m

�Gn
i eijkB

m
jk �G

m
i wijG

n
j

� �
~u m

fm

� �

¼ ðs2 �~nÞSM

ð~D �~nÞSE

 !
(36)

where m and n are the indices for each node in the element (i.e.,
m, n5 1, 2, 3 for triangular elements). The symbols are defined in
Table V.

Table IV. Physical Properties for Barium Titanate Used in
Calculations of Piezoelectric Bending Devices (Anti-Parallel

and Dead-Layer)
30,31

Symbol Value Units Symbol Value Units

C11 275.1 GPa d31 �34.7 pC/N
C33 164.9 GPa d33 85.7 pC/N
C44 54.35 GPa d15 392.0 pC/N
C12 178.9 GPa Es11 17.442 mF/m
C13 151.6 GPa Es33 0.965 mF/m

TableV. Glossary of Used Symbols in Finite Element
Numerics

Summary of symbols for implemented finite element method

Definition Name

Bj
m Displacement-to-strain conversion matrix

Dijkl Two-dimensional stiffness tensor. For a solid under
plane-stress conditions, Dijkl is given by Eq. (23)

Gj
m Finite element gradient vector mth Element, jth node

(see Zienkiewicz)26

K Total stiffness matrix
Km Stiffness matrix (defined by Eq. (36))
Ni

m Trial function in mth element, ith node
P Number of nodes in element
aj
m, bj

m,
cj
m

Trail function coefficients in triangular mth element,
jth node

~b Total body force
~u Total degrees of freedom vector
~um Vector of degrees of freedom (contains the mth

element voltage and displacement fields)
xj
m, yj

m Nodal positions of jth node, mth element
D Area of triangular element
df Electric potential test function
fm Finite element approximation to electric potential in

mth element
fi
m Nodal electric potential in mth element, ith node

wij Effective two-dimensional permittivity matrix. The
explicit form is given by Eq. (24)

zzThe shape function Nj
n interpolates within the values associated with each of its nodes;

it is unity at node j and zero at the other nodes.
JJThe algebraic details of the derivation of the final equations is omitted here but is a

direct extension of the treatment in standard finite element method texts.36–38
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