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Adaptive multilevel methods are methods for solving partial differential equations that combine adaptive grid
refinement with multigrid solution techniques. These methods have been shown to be very effective on sequen-
tial computers. Recently, a technique for parallelizing these methods for cluster computers has been developed.
This paper presents an overview of a particular adaptive multilevel method and the parallelization of that method
via the full domain partition.

1 Introduction

This paper describes an approach for the fast solution of partial differential equations (PDEs). The individual
aspects of the approach have been published previously [8, 9, 10, 11], but this paper brings them together in one
source for the first time. Consequently, many of the details are omitted in this paper. The interested reader is
referred to the references.

The objective is to develop a method that uses modern fast solution techniques on parallel computers. We
consider two-dimensional second-order scalar linear elliptic partial differential equations of the form
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where �, �, �, � and 	 are functions of � and �, and � is a bounded, connected, polygonal domain in � �. This
class of model problems is frequently used as a numerical test bed for new methods. However, a solver for this
class of problems can often be used as a core elliptic solver for more interesting classes of problems, such as time
dependent problems, nonlinear problems and systems of equations.

The target computational environment for the parallel methods described in this paper is a moderate sized
(10’s of processors) cluster of PCs or workstations. This is a distributed memory machine in which one uses
message passing to communicate between the processors. This type of architecture is becoming common place
in smaller research labs, and is sort of a “poor man’s supercomputer”. One of the main differences between a small
inexpensive cluster and the massively parallel supercomputers found in large labs is the interconnection network.
A large part of the expense of the supercomputers is the network that allows the processors to communicate
relatively quickly. In contrast, the network on a cluster is slow, both in latency (the time to start a message)
and bandwidth (the maximum number of bytes per second). The large latency can be particularly damaging to
algorithms that send small messages with little computation between them, because the program execution time
will be dominated by the latency of sending messages. Therefore, it is important in this environment to develop
algorithms that send messages as infrequently as possible.
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The numerical methods we consider are adaptive multilevel methods. These types of methods were shown to
be very effective for elliptic problems using sequential computers in the 1980’s [1, 5, 7, 13]. Since then, much of
the research has been toward parallelizing them. These methods are particularly challenging to parallelize due to
the irregular structure of adaptively refined grids and the varying distances that arise in a multigrid cycle.

By an adaptive multilevel method we mean a method that combines a finite element method with adaptive mesh
refinement and a multigrid solution technique (see Fig. 1). In the case of a parallel algorithm, it also includes a
load balancing step, since otherwise the adaptive refinement would cause some processors to be responsible for
more of the grid than others. One begins with a very coarse grid (possibly just fine enough to define the domain),
and cycles through three phases until some criterion for termination is met (for example, an error estimate is
small enough).
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Fig. 1 High level algorithm for the parallel adaptive multilevel method.

The first phase is load balancing. When performed before refinement, it is called predictive load balancing,
because you are predicting how much refinement will occur in different regions, and what redistribution of ele-
ments will balance the load after that refinement. It is crucial that load balancing be very fast so that it does not
dominate the “real” work.

The second phase is adaptive grid refinement. The goal is to concentrate the effort into the regions where it will
do the most good by placing a finer grid in those regions. This is achieved by computing a local error estimate for
each element, and refining those elements with the largest error estimates, in an attempt to equilibrate the local
error throughout the grid.

The third phase is the solution of the PDE on the current grid. This includes the discretization via finite
elements, and the solution of the resulting algebraic linear system. The solution from the previous grid provides
a good initial guess, and a sequence of grids related to the adaptive refinement provide a nested sequence of grids
for the multigrid method.

The remainder of the paper is organized as follows. In section 2 we define the full domain partition, which
forms the basis for the parallelizations in the remainder of the paper. In section 3 we describe the newest node
bisection method for adaptive refinement, and parallel adaptive refinement. Section 4 describes a load balancing
algorithm that is based on the refinement tree obtained from adaptive refinement. In section 5 we describe the
hierarchical multigrid method and its parallelization.

2 Full Domain Partition

In this section we describe the full domain partition, which was first introduced in [8]. It provides the basis for
the low-communication parallelization of the adaptive multilevel method.

In the traditional approach to data decomposition, the domain is partitioned into � regions, where � is the
number of processors, and the data is distributed across the processor memories accordingly. In addition, each
processor contains “shadow” (or “ghost”) data which is a copy of neighboring data that the processor needs to
use (see Fig. 2). This eliminates the need to communicate every time a piece of neighboring data is needed, but it
does require a communication step whenever the neighbor changes the value, if this processor will use it before it
changes again. For example, with a multigrid algorithm a communication step is needed after the computation on
each level of the multigrid cycle. This is too often (i.e., not enough computation between communication steps)
on parallel systems with a large start-up time for sending messages, such as clusters of PCs.
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Fig. 2 (a) A uniform grid partitioned for four processors. (b) The grid seen by one processor with the tradi-
tional data distribution. (c) The grid seen by one processor with the full domain partition. Shadow nodes are
shown in gray.

In the full domain partition, the domain is also partitioned and the data distributed across the processors with
shadow copies of neighboring data. But, in addition each processor contains more shadow data to provide a grid
that covers the full domain. See Fig. 2. The additional elements come from the coarser grids. It is as if each
processor performed adaptive refinement of the global grid with refinement restricted to its own partition plus
refinements outside its partition only when they are needed to maintain compatibility (see section 3). In fact, that
is how the full domain partition is generated.

For two dimensional problems, the amount of extra data is 
�
�
���� where � is the number of nodes in the

global grid and � is the number of processors, and is about twice as much as the shadow data in the traditional
approach [8].

Fig. 3 shows an example of the full domain partition of an adaptively refined grid partitioned for four proces-
sors. The top of the figure shows the global grid separated into four partitions. Each partition is assigned to a
processor. The remainder of the figure shows the full domain partition grid on each processor.

3 Adaptive Refinement

The objective of adaptive grid refinement is to generate a grid that is coarse where the solution is well behaved,
fine near singularities, boundary layers, etc., and has a smooth transition between the coarse and fine parts. Such
a grid can dramatically reduce the number of nodes needed to obtain an accurate solution for marginally smooth
problems, and can recover the optimal order of convergence for non-smooth problems.

Many approaches to performing adaptive refinement have been presented over the years. In this section we
first give a brief description of the method known as newest node bisection. Further details of this method can be
found in [6]. We then show how to parallelize adaptive refinement algorithms by using the full domain partition.
Further details of the parallel algorithm can be found in [10].

The general idea of adaptive refinement is to first compute an error indicator for each element and then refine
those elements that have the largest error indicators. The computation of error indicators has been the subject of
much research, and will not be addressed in this paper. See [15] for a good treatment of error indicators. We
consider here the process of refining triangular elements.

The newest node bisection of triangles was first introduced in [14]. A triangle is divided to form two new
triangles by connecting one of the vertices, called the peak, to the midpoint of the opposite side, called the base,
as in Fig. 4. The new vertex created at the midpoint of the base is assigned to be the peak of the new triangles. As
illustrated in Fig. 5, repeated application of this refinement will result in only four triangle shapes, and therefore
the angles are bounded away from 0 and . It can be shown with simple geometry that triangles labeled with the
same number have the same shape, and further refinements continue with these shapes.
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Fig. 3 The partition of an adaptive grid into four parts, and the full domain partition seen by each processor.

It is important that the final triangulation be compatible, i.e., given any two triangles their intersection is either
empty, a common vertex, or a common side. Compatibility can be maintained during the refinement process
by dividing pairs of triangles rather than individual triangles. A triangle is said to be compatibly divisible if its
base is either the base of the triangle that shares that side or part of the boundary of the domain. If a triangle is
compatibly divisible, then divide the triangle and the neighbor that shares the base simultaneously as a pair. If
the triangle is not compatibly divisible, then after a single bisection of the neighbor it will be. So in this case,
first divide the neighbor by the same process, and then divide the triangle and the neighbor simultaneously, as
illustrated in Fig. 6.
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Fig. 4 Newest node bisection of a triangle.
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Fig. 5 The four shapes of triangles that arise during repeated application of newest node bisection.
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Fig. 6 Maintaining compatibility during refinement. Peaks are labeled P.

We now consider the parallelization of the adaptive refinement algorithm in the context of the full domain
partition. This parallelization is applicable to any adaptive refinement method, not just the newest node bisection
method.

With the full domain partition, each processor contains a compatible grid covering the entire domain, hence
each processor can perform a refinement of that grid independent of the other processors without concern for
conflict along the partition boundaries. To create the full domain partition, each processor examines only the
triangles in its partition when selecting triangles that have large error indicators. Outside its partition, triangles
are only refined for compatibility. This process does not require any communication, thus it performs a large
block of computation without communication. A communication step to synchronize the grids occurs after the
refinement is complete on each processor. Some triangles outside the processor’s partition may be refined (for
compatibility), and the owner of any such triangle must be informed so that it can insure that its copy of that
triangle is refined. A list of any triangles owned by other processors that were refined by this processor is sent to
the other processors. Upon receiving the list, a processor looks to see which triangles it owns, and refines them if
they have not already been refined.



8 W. F. Mitchell: Adaptive Multilevel Methods

Numerical computations were presented in [10] to examine the speedup obtained by performing adaptive
refinement in parallel. These results were obtained with a cluster of four 200 MHz Pentium Pro-based computers
with 128 MBytes of memory, connected by fast ethernet.

Laplace’s equation is solved on the unit square with Dirichlet boundary conditions set such that the solution is

	�	
��� �	�	�� ���

where
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An example adaptive grid for this problem is shown in Fig. 7. The program is terminated when the grid has
approximately 20,000 vertices. Numerical results for this problem are given in Table 1. The wall clock time for
the refinement portion of the program is given, and includes the communication time at the end of the refinement
phases. The speedup is defined as the time spent on one processor divided by the time spent on � processors. The
efficiency is defined as the speedup divided by the number of processors. These results show excellent speedup
and efficiency when using a small number of processors.

Fig. 7 Sample adaptive grid generated for the adaptive refinement speedup example.

Processors Time(s.) Speedup Efficiency
1 10.49 - -
2 5.92 1.77 .86
4 2.70 3.89 .97

Table 1 Speedup results for adaptive refinement.

4 Load Balancing

To effectively utilize a parallel computer it is important that the data be distributed over the processors in a
balanced manner, so that each processor will complete its work load at approximately the same time, i.e., no
processors will sit idle waiting for other processors to complete their work. In a parallel adaptive multilevel
method, the load will quickly become unbalanced as more refinement occurs in some partitions than others. Thus
in each loop through the phases of the algorithm a load balancing step is performed. This consists of computing
a new partition that will balance the load, and redistributing the data among the processors in accordance with
this partition.

The load balancing step may occur after the refinement phase (regular load balancing) or before the refinement
stage (predictive load balancing). Predictive load balancing implicitly or explicitly estimates what the grid will
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look like after refinement, and might produce a less balanced load for the solution phase than can be obtained with
regular load balancing. However, it has the advantage that the load is better balanced during the refinement phase,
and communication costs are reduced by redistributing less data (the data of the coarser grid before refinement).

The goal of the partitioning method is to balance the load while keeping the size of the boundaries between
partitions small, to minimize communication. In the context of adaptive multilevel methods, it is also crucial that
the algorithm be very fast, so that it does not dominate the time to perform adaptive refinement and multigrid
solution. Several methods to determine such a partition have been developed and implemented in Zoltan [3], a
library of dynamic load balancing routines.

We describe one such method, the refinement tree based method, which was developed in the context of the
full domain partition. Further details of this method can be found in [11].
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Fig. 8 The correspondence between elements of the grid and nodes of the refinement tree.

The refinement tree is a representation of the refinement process that produced an adaptive grid from an initial
grid, as illustrated in Fig. 8. The nodes of the tree correspond to the grid elements that existed at some point
during the refinement process. The children of a node correspond to the grid elements that were created when
the corresponding element was refined. Leaf nodes correspond to the elements of the final grid. An artificial root
node may also be added as the parent of all the initial elements.

The nodes of the tree are weighted with a number that represents the amount of work associated with the
corresponding element. Interior nodes may be weighted (for example, to represent the work on a coarse grid of a
multigrid algorithm), but usually weights are only applied to the leaf nodes. If all the leaf nodes are given a weight
of 1.0, then the resulting partitions will all have the same number of triangles. For predictive load balancing, the
error indicator used to guide the adaptive refinement is an appropriate weight, since those elements with a large
error indicator will be refined more times than those with a small error indicator.

The refinement tree based partitioning algorithm consists of two phases. In the first phase, every node is
labeled with the sum of the weights in the subtree rooted at that node. This is accomplished by a depth first
traversal of the tree, and takes 
��� operations where � is the number of nodes in the tree. In the second phase,
a truncated depth first traversal of the tree is performed to create the partitions. The desired size of each partition
is determined by dividing the summed weight at the root node by the number of partitions, and the partitions
are initialized to be empty. During the traversal, the summed weights at the nodes are examined relative to the
size of the partition under construction. If it is small enough to be added to the partition without exceeding the
desired size, then it is added and the subtree is not traversed. Otherwise, the children are visited and the subtree
will be split among two or more partitions. Fig. 9 illustrates this process for a simple grid partitioned into two
parts. If there are � partitions and the depth of the tree is 
������, one would expect the second phase to require

�� ����� operations.

In a parallel implementation, the grid is distributed over the � processors. Each processor contains a refinement
tree that includes at least the initial grid and the part of the grid belonging to this processor. Parts of the grid
belonging to other processors will have been pruned from the tree. Thus the summation of the weights must be
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Fig. 9 Assignment of elements to two partitions via the refinement tree partitioning method.

done in a distributed manner. This can be accomplished with two tree traversals and one all-to-all communication
step. In the first tree traversal, the weights are summed for nodes that belong to this processor. Leaf nodes that
are pruning points are given the weight 0.0, but otherwise the summation occurs as usual. The processors then
exchange information to provide the summed weights for the pruning points, by each processor sending what it
has as the summed weight for each node that is a pruning point on a different processor. Note that a processor
may receive contributions for a pruning point from more than one processor, and the sum of these is the correct
summed weight for that node. Now with the summed weight available for the pruning points, a second traversal
is performed to obtain the correct summed weights for the entire tree.

Each processor now has sufficient information to perform the second phase of the algorithm independently.
Without further communication, all processors will obtain the same partition, except for details within parts of
the grid that the processor does not have. These details are not needed since all the processor needs to know is
the new assignment for the elements it currently has so that it can send those elements to the new owner during
the redistribution of data.

For a grid with � elements, if each processor has 
����� elements and 
�
�
���� shadow elements, the

expected number of operations on each processor is 
�����.
Numerical experiments were performed to compare the refinement tree partitioning algorithm (designated

RTK) with the recursive coordinate bisection (designated RCB) algorithm from Zoltan [3] and a multilevel dif-
fusive method (designated Metis) from ParMETIS [4]. This experiment was conducted on a cluster of eight 400
MHz Pentium II based PCs connected by a fast ethernet switch. Further details of the experiment can be found
in [11].

Laplace’s equation was solved on the unit square with Dirichlet boundary conditions with a singularity at
(0.7,1.0). The program was terminated when there were 64,000 vertices in the grid. Repartitioning occured
seven times during the load balance/refine/solve loop. Runs were made using from 2 to 8 processors. Figure 10
shows an example grid with approximately 1000 vertices and the four-set partitions produced by each of the three
methods.

Table 2 shows the execution time of the partitioning algorithms. This is wall clock time and includes all of the
time spent by the partitioner during the run, including communication. It is easily seen that RTK is slightly faster
than RCB and two to three times faster than ParMETIS.
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Fig. 10 (a) Sample grid, and partitions for four processors from (b) RTK, (c) RCB, and (d) Metis.

Processors RTK RCB Metis
2 1.19 0.90 2.45
3 0.84 0.92 1.99
4 0.74 0.98 1.85
5 0.71 0.72 1.84
6 0.63 0.71 1.84
7 0.60 0.85 1.90
8 0.64 0.97 2.04

Table 2 Time for partition (sec.).

Table 3 shows a measure of the quality of the partitions, the number of cut edges in the final grid. A cut edge
corresponds to a triangle side that is shared by triangles in different partitions. The number of cut edges reflects
the volume of data that must be communicated during the solution process. These results show no significant
difference between the methods in terms of quality of partition.

5 Multigrid

The multigrid method has been established as perhaps the most efficient method for solving the linear systems
that arise from the discretization of differential equations. The popularity of this method can be attributed to the
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Processors RTK RCB Metis
2 639 300 207
3 491 669 414
4 842 572 713
5 847 860 872
6 1120 1098 1019
7 1204 1212 1145
8 1343 1130 1337

Table 3 Number of cut edges.

fact that it is optimal in the sense that one multigrid cycle can reduce the norm of the error by a factor that is
bounded away from 1 independent of � , the size of the linear system, while using only 
��� operations. In this
section we present a multigrid method based on the hierarchical basis, and the parallelization of the method in
the context of the full domain partition. Further details of the sequential algorithm can be found in [7], and the
parallel algorithm in [9].

Fig. 11 Construction of the hierarchical basis for linear elements in 1D.

The hierarchical multigrid method uses both the nodal basis and the hierarchical basis. The usual nodal basis,
����

�
���

, for the space of piecewise linear functions on a given grid, ��, is defined by

� �� is 1.0 at node � and 0.0 at all other nodes,

� �� is a linear function over each element,

� �� is continuous over the whole domain.

In contrast, the hierarchical basis is defined using the family of nested grids, �� ��
�

���
, from the refinement process.

The hierarchical basis begins with the nodal basis on the initial grid, ��. As refinement proceeds, with each
element division one or more new nodes are added, and for each node a new basis function is defined as a nodal
basis on the current grid, but the existing basis functions remain unchanged. Fig. 11 illustrates construction of
the hierarchical basis for piecewise linear functions in one dimension.

A 2-level hierarchical basis for grid �� can also be defined by starting with the nodal basis for the grid � ��� and
defining the higher level basis functions as above. It can be shown that conversion between the nodal basis and
the 2-level hierarchical basis forms of coefficient vectors and finite element stiffness matrices is easily performed
with a small number of operations per node [7].

The sequential hierarchical multigrid algorithm is based on performing a sequence of transformations between
nodal and 2-level hierarchical bases. The � �� grid in ���� is obtained by using the first � levels of refinement in
the adaptive grid. When working on level �, the points that are in grid � � 	 are referred to as black points, and



ANAC header will be provided by the publisher 13

those that are in grid � but not in grid �� 	 are referred to as red points. With the rows and columns ordered such
that the black points come before the red points, the equations formed by using a 2-level hierarchical basis can
be written �

��� ��

�	

��	 �		

��
��
�	

�
�

�
��
�	

�
(2)

where the subscripts � and � correspond to black and red points. (For simplicity of notation, the designation of
the associated grid level is omitted.) Note that by definition of the hierarchical basis, the coarse-coarse block,
���, of the 2-level hierarchical matrix is the nodal matrix of the coarse grid. This suggests the use of

����� � �� � ��

�	�	 (3)

as the coarse grid problem. Such a formulation can be shown to be equivalent to the standard formulation of the
multigrid method in the case of piecewise linear elements. However, it is more easily generalized to other finite
element spaces. With this formulation, one cycle of the multigrid algorithm can be described as in Fig. 12.
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Fig. 12 Algorithm for one cycle of the hierarchical multigrid method.

The full domain partition provides a means of adapting this algorithm for parallel computation. Since each
processor has a compatible, hierarchical adaptive grid that covers the whole domain, the multigrid algorithm can
be run on each processor in parallel. Obviously, some level of communication is necessary, since the individual
grids do not contain sufficient resolution over the entire domain. These communication steps occur only twice
per multigrid cycle. The first communication step occurs when we reach the coarsest grid, i.e., just before the
line “solve coarse grid problem on level 1” in Fig. 12. The second communication step occurs at the end of the
cycle, i.e., after the last line in Fig. 12. Thus, again we have a large block of computation between relatively few
communication steps.

The key difference between the sequential and parallel versions is the computation of the � �

�	
�	 term in Eq.

3. None of the processors contain all of the data to compute this term, so the computation is distributed over the
processors. The contributions of each processor to this term are communicated in the first communication step,
along with the current solution values at the nodes owned by each processor. After this communication step, all
processors have the same value for the solution and the modified right hand side at all the owned and shadow
nodes. In the second communication step, only the solution at owned nodes is sent to other processors to update
the solution at shadow nodes.

Processors
1 2 4 8 16 32 64

.093 .093 .094 .099 .098 .101 .098

Table 4 Multigrid contraction factors for an adaptive grid with about 60000 vertices.

The computational results of the parallel algorithm are not exactly the same as those of the sequential algo-
rithm, because the contribution of other processors to the ��

�	
�	 term do not arrive until the middle of the cycle.

During the first half of the cycle, the values from other processors are generally from the previous cycle, and
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thus not quite correct. However, only a small part of ��

�	
�	 comes from other processors, and it is only off by

the amount that �	 changed, so this has only a small effect on the rate of convergence of the multigrid method.
An experiment was performed [9] with Laplace’s equation to examine the effect of this lag on the rate of conver-
gence. Table 4 shows the observed contraction factors (i.e., the factor by which the error is reduced by one cycle)
when using between 1 and 64 processors. It is observed that the error is reduced by approximately a factor of 10
independent of the number of processors.

computer nproc time (s) scaled scaled
(vertices) speedup efficiency
PPro 1 3.16 – –
(16K 2 3.79 1.67 .83
per proc) 4 3.13 4.04 1.01

8 3.76 6.72 .84
SP2 1 14.09 – –
(64K 2 15.71 1.79 .90
per proc) 4 16.62 3.39 .85

8 17.89 6.30 .79
16 20.83 10.82 .68
32 25.31 17.81 .56

Table 5 Multigrid speedup results for scaled problem size.

Experiments were also performed [9] to examine the speedup obtained by parallel computing. Two parallel
environments were examined: a cluster of Pentium Pro-based computers connected by fast ethernet, and an IBM
SP2. On the SP2 we used the ethernet connection between processors, not the high speed switch, to study the
performance in a high latency environment. Computations were performed with a scaled grid size, i.e., the size
of the grid grows proportional to the number of processors. In the ideal situation, the computation time would
remain constant as the number of processors (and size of the grid) increases. On the PPro cluster, a grid with
16,000 nodes per processor was used, and on the SP2 the grid contained 64,000 nodes per processor. Table 5
shows the results of these computations. We observe parallel efficiencies above 50% throughout the range of
number of processors considered, with the efficiency usually above 75%.

6 Conclusion

This paper presented an overview of a parallel adaptive multilevel method based on the full domain partition. It
gave a general description of each aspect of the algorithm, while leaving the detailed description to the references.
Numerical results were presented to demonstrate the effectiveness of the algorithms. These results show that the
parallel algorithms presented in this paper can achieve high parallel efficiency on small cluster computers.

The methods described in this paper have been implemented in a public domain Fortran 90 code, PHAML,
which can be downloaded from [12]. PHAML includes several example problems to demonstrate its use. It has
also been demonstrated that existing codes can be parallelized relatively easily by using the full domain partition.
The program PLTMG, which has been around for nearly two decades, was recently parallelized [2] by techniques
nearly identical to those described in this paper.
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