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1 Introduction trolled. A horizontal machining center was used. Parts were pro-
: . : L duced with features similar to those in this study. The results
Given a particular machine tool, estimating beforehand the Shdicated that most part errors fell within two standard deviations

rors in features for the parts produced by that machine is nOt‘fmeasured machine errors. However, under uncontrolled condi-
clearly defined process. Although there are general guides for Bns, a recent study by Chatterjgé] has shown that there is a

Ezrtg?[;]n;egg:ing;ens I\Ilgtig)r(lg?rlsrtnair:;asﬁji Ilﬁs?lELl[]té])T ?g Itc;]reznuo_l significant deviation in machine tool performance between static
Y ! %%d operating conditions, where machine parameters are likely to

thors’ knowledge there have been no published practical ca . : :
studies on how to estimate uncertainties of errors of machined pé?éy due to cutting and thermal loads. Shin and [#developed
S

. ; . . . inematic model for a multi-axis machine tool in order to pre-
features in production environments. This paper describes a ¢ ct deterministic errors. They added stochastic terms to the pre-

z::?:%irllré ;thc')%hwihp:rr]t Ovrvjesr fg ?:gll(%dtvsgr?tngﬁg Ctg pﬁa Sp;?ctiﬁgtbo %&:ted errors and theoretically estimated the means and variances
on the same machine. The part designed had drilled and mill gnggzrils(gfmatlc errors, but provided no experimental data

holes and a circular sldsee Fig. 1L The shop manager indepen- . . . . .
dently selected a three-axis machining center on the shop floor forThe inaccuracies of drilling operations have been studied by a

e ) . number of authors. These results, however, are in general not
the production job. With shop assistance the error componentsf {mulated in terms of uncertainties. Kaminski and Crafofst

E)haer (ng;lEitt?jilevzgrshr:s{:‘ljllg:?h?lrJT|1t{I;1F():II‘?ir?g]rensetli‘ z:ggya;ﬁgep:a? ate that drilling operations give rise to forces in ¥XeY andZ
. . ; . -~ directions as well as torque. They found that the tool deflects more
manufacturing could only be accomplished in business day inc nder dynamic cutting conditions than under static simulated

ments Wit.h a maximum of five business_ qlays allowed for rce loads. Lehtihet and Gunasdi®d use a simulation to show
gntelzje ;’;gﬁ%gi?g:?;g?&?*g; sthee strrn?gth ég'gg Z?s?r:ert\tql:s Soev%-q influence of tolerance specification, size of the tolerance zone,
P y 9 Propagaie size density, and production errors on the probability of pro-

tion of error formula from the ISO Guidéd]. An analytic formula ; .
was developed and then used to estimate the variation in diStarrqr%twgmirt]iCZTCri%?gleforr]oclﬁi.lI L\s:h dEer:;r?g r?qrg)ctiio%mt]od:esxcpﬂzisn ihe
between selected features, such as hole centers. To estimate S i . S .

e S . - rmation of odd-sided polygonal holes during initial penetration.
certainties of orthogonality of perlp_heral hole centers, it was d}’ujii Marui and Ema[lF.’)L—)% find that the dngiII poin? deflects
:g{lzgjnzg;lg?‘taﬁohgﬂgt?oﬁggomtegggtl%f:;N g rl,(ﬁldt\t/)veeﬂiy\f\ghneerepgrt %ng an elliptical orbit during whirling vibration. Magrab and

. - ilsinn[14] model a drill bit as a twisted Euler beam under axial

were measured on a coordinate measuring mact@hM) and . ; .
an analysis of variance technique was used to separate the unloearqlmg that is clamped at both ends. The representative set of
tainties generated by the measurement and by manufacturing.

nges obtained exhibit a complex out-of-plane twisting-type mo-
types of features were analyzed in this stufly: uncertainties of tion that suggests a possible explanation for the out-of-roundness
the distance between hole centers &®dorthogonalities of pe-

of certain drilled holes.
ripheral hole centers. The essential techniques employed are In a work that relates to the current study Shen and Duffie
sented in this paper in order to form a basis for estimating t

Ei%'—lq developed an uncertainty analysis method that allows the
uncertainties associated with production parts. For a more detai

lgadeling and computation of component error uncertainty
discussion, along with supporting metrology data, see Gilsinn aﬁﬁurces that lead to coordinate transformation uncertainties. They
_ , ) n
Ling [4].

ow how uncertainties propagate in the homogeneous transfor-
Various authors have discussed different aspects of the probl tions of points, products of transformations and inverse trans-
of machining uncertainties. Under a controlled set of experimen

grmations. They characterize the uncertainties associated with
Wilhelm, Srinivasan and Farabaugf] have demonstrated thatwbrkplece positions and orientations in terms of two components,
the measured behavior of the machine tool could be related

d)ias and a precision uncertainty component. They demonstrate
variations found in prismatic part features cut on that machiffd@t the bias and precision components can be propagated inde-

tool. The machining and metrology conditions were tightly Corpen_dently and comb_ined to represent the u_ncertainties of the co-
ordinate transformation relations. They validate the method by

Contributed by the Manufacturing Engineering Division for publication in theusIng Monte Carlo SImU|atIO(Bauer[17]) but do not report ex-
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Fig. 1 Test part specifications. Dimensions are in millimeters. e : e
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Fig. 2 Laser Ball Bar (LBB) configuration
CMM measurements to the sampling strategy. 88| proposed
a general mathematical basis for representing vectorial tolerances.
He developed a nonlinear, best-fit algorithm to evaluate vector
tolerances for both analytic geometric elements and free-form saenters to the drilled hole-centers. The large square with 150 mm
faces. He then studied the uncertainty of the best-fit result caussides was machined to check the orthogonality or perpendicularity
by the sampling strategy and dimensional errors. Phillips, Bo®f the machine’s< and Y-axes. This property is sometimes called
chardt, Estler and Buttre$49] examine the uncertainty of small squareness. The large internal circular features will not be dis-
circular features as a function of sampling strategy, i.e. the numisgissed in this paper.
and distribution of measurement points. They study the effect of Although ASME B5.5420] outlines techniques for performing
measuring a circular feature using a three-point sampling strateggrametric error measurements of machine tools using instru-
and show that the measurement uncertainty varies by four ordgrents such as laser interferometers, precision straight edges, ca-
of magnitude as a function of the angular distribution of the megacitance gauges, and electronic levels, a laser balLi&8) was
surement points. used to make measurements of the spatial position of the tool
This paper is organized as follows. Section 2 briefly describ&sing a technique called trilateratigsee Fig. 2 Trilateration is a
the machine tool measurement procedure and the part design. $ee¢hnique in which a tetrahedron is formed with three base points
tion 3 describes a kinematic model of a three-axis machine tddkertices attached to the machine table, and the fourth attached to
along with the methods of estimating errors for point locatiorihe tool holder. The three base points define a coordinate system.
linear distances, and orthogonalities. The uncertainty estimates $omple geometric relationships allow the spatial coordinates of the
CMM measurements of the parts are given in Section 4. Sorf@urth point or tool to be determined relative to this coordinate
observations about the case study are given in Section 5, wétystem. If the base sockets are aligned parallel to one machine
some final conclusions given in Section 6. axis and the plane formed by the base is coplanar with the table
surface then the measurement of errors with respect tX-dpds
. . andY-axis motions are taken at the table surface level. As the tool
2 Machine Metrology and Part Design moves through space relative to the table, the lengths of the edges
The milling machine used to manufacture the test parts washange causing the tetrahedron to deform. The LBB uses an in-
three-axis vertical machining center with Xraxis (Longitudinal terferometric technique to measure the lengths of the tetrahedron
table travel of 1020 mm(40 in), a Y-axis (Cross tablgtravel of edges and thus the tool position. The resulting measurement in-
762 mm(30 in), and aZ-axis (Vertical headl maximum travel of cludes all effects that can cause positioning error: geometric, ther-
560 mm (22 in). The programming resolution for all three axesnal and elastic. Various error components of the machine tool are
was 0.001 mn{0.0001 in. The repeatability was reported by themeasurable by the LBB including linear displacement errors,
machine manufacturer as 0.005 ng@n0002 ir) by the VDI 3441 straightness errors, squareness errors as well as roll, pitch and yaw
method and+0.0025 mm(=+0.0001 in by the JIS 6330 method. errors. For a detailed discussion of the LBB and a comparison of
The part, shown in Fig. 1, was designed to illustrate severtle results of LBB measurements with ASME B5.54 measure-
characteristics of the machining center. The holes around the outegnts see Ziegert and MiZ@1]. The spatial measurement accu-
edge have several purposes. First, drilled holes in the center weaey of the LBB was tested on the MOORE M60 CMM at the Y12
used to compute uncertainties in drilled hole-center positioninfacility, at Oak-Ridge, Tennessee, where it was found that the
The “squared” outer holes allowed comparison of milled holemean difference between the LBB measured coordinates and the
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M60 reported coordinates for all measured points was QuéH ] X Disgassrtient
with a standard deviation of 0.&m (see Srinivasa and Ziegert < ‘ ’
[22]). For a discussion of the use of a LBB in dynamic patl
measurements see Schmitz and Zie¢28{ and in modeling and
predicting thermally induced errors see Srinivasa and Zi¢g&ett
The machine measurements were made by the following proc
dure. Five passes in both a forward and reverse direction we..
made consecutively in a large work volume that contained tZ%
smaller work volume that enclosed the machined parts. The nu%
ber of passes made was limited by machine time available, whi%
was an eight-hour business day. This provided ten sets of date%
a basis to model each of the error components of the machini,
center. The LBB measured all twenty-one-error components th-
characterize the errors for a three-axis machining center. The d
was used to develop regression models of the error component: |
functions of the positions along each machine axis. e

s
2
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3 Part Uncertainty Through Model Prediction

Predicting part uncertainty by using a kinematic machine to.. Kpasitien fmm}
model required a number of approximations. First, various error .
components were assumed to only enter in a linear fashion. SE- 3 LBB measurements of machine tool error components
ond, analysis of the measured machine error components ingjo"Ving the mean least squares trend line with uncertainty

. o : and using a coverage factor of two

cated thermal drift between measurement repetitions. Since ther-
mal drift could not be controlled during the measurement process,
the measured curves were treated as bona fide repeat curves. The
resulting uncertainty models were therefore assumed to be congke coordinate systems of the machine tool and the CMM so that
vative. Finally, in order to estimate the orthogonality of peripherahe origins and axes overlapped. Since the data taken by the LBB
hole center alignment, Monte Carlo simulation was used. This wa&s measured relative to the machining center’s coordinate axis,
done since the models predicted hole center errors in both of théormulating models from the LBB data required linking the part
andY components, and a standard least squares linear fit could nggin from the CMM measurements to the machine tool coordi-
be directly applied because it would require that there be errorsrnate system.
only one of the components. Figure 3 shows the shifted data values recorded by the LBB for

. . . the X-displacement component errdt; = 5,(x), along with un-

3.1 Kinematic Model for a Machining Center. The €on- certainty bands using a coverage factor of fiwominal 95% con-
struction of the kllnematlc model followed the procgdure of Dorhdence. The other nine component errors show similar trends.
mez [24]. The axis system assumed has xis directed to- g figure shows a linear trend over the work volume of the test
wards the right, the¥-axis toward the machine, and tizZeaxis harts Linear regression models were fit to each of the nine data
directed vertically. Since uncertainties were estimated based Qi gince eight of the measurement steps fell within the work
planar locations of such points as hole centers in Fig. 1, only thg)yme of the part being milled, only the data from those eight
planar portion of the kinematic model is given here. The followingntereq the regression analysis. In that case eighty observations
error components enter into the pla_nar kinematic error model fQfare made for each of ten error components. The measurements
the three axis mill:E,=4,(x), X-axis scale error,=4,(x), \yere normalized to part zero so that the zero point on the hori-
Y-straightness oiX; Es=4,(y), Y-axis scale ermorEs=d.(Y),  zontal axis represented the part zero. The figure shows a definite
X-straightness off; Es=e¢,(x), X-rotation of X (roll of X); E¢  effect of thermal conditions. There was a general tendency of the
=&y(x), Y-rotation ofX (pitch of X); E;=#,(x), Z-rotation ofX  4ra9hs for the displacement and straightness errors to rise as test-
(yaw of X); Eg=e(y), X-rotation ofY (pitch of Y); Es=&,(y). jng progressed. For this initial study, we aimed at minimizing the
Y-rotation of Y (roll of Y); Eyg=#,(y), Z-rotation ofY (yaw ofY);  nymper of variations during the process. We desired to perform
En=a,, angle between th& and Y-axes withY motion. A o study at a thermal equilibrium for the machine tool, which is
generalized straightness error due Xestraightness error of ihe ysyal practice on a typical shop floor. However, the shop floor
Y-motion is given byE,—Ey,Ay, whereAy represents incremen- cqsjed down after normal working hours, which had a direct ef-
tal steps along th&-axis. The final planar error equations used @t on the machine tool temperature and its geometrical error

e
b
o

<3 4

analyze the data are given by the following equations. components. A future study might consider fully characterizing
E,=E,+E,+2Es+YyE;+2Ey+YE o~ YE;y the thermal range of the machine and its direct correlation to
(1) errors on the production part. The angular error components rose

E,=E,+E;—zE—XE;—zEg through the third pass, with retreat indicating a reversal of rotation

after about five hours of continual running. This thermal effect
{ptroduced a nonstationarity in the data such that traditional as-
sumptions on the variance of sample repetitions would not apply,
but for the purpose of this study we have elected to consider them
@S legitimate repeats and the resulting analysis is accepted as be-
ing conservative. The LBB measurement of the angular error,
identified as the eleventh errdg;;= «,,, between theX and Y
axes, was independent of coordinate position. Table 1 gives these
angular errors measured by the LBB in arc seconds and radians.
The mean error in radians, estimated standard deviation and de-
3.2 Regression Models for the Component Errors. In or- grees of freedom are also given. These were used to estimate a
der to compare the results obtained from modeling measured noanfidence interval for a future observation of the angular error.
chine tool errors with calculated errors on the machined paifable 2 gives the slope and intercepts for the linear trend equa-
measured by a CMM, the first task was to mathematically aligions describing the error components.

For the selected machine tool an effect&&alue for the produc-
tion of the parts was estimated as follows. Shop personnel in
cated that although the maximum travel for thexis was 560
mm (22 in) the useful travel of th&-axis without tool or chuck
was 431.8 mm(17 in.). The length of the tool used, plus chuc
insert, was 304.8 mr(lL2 in.). This produced an effectiv&-travel
of 127 mm(5 in.). Any local Z-axis travel to produce the required
parts was considered small relative to thend Y-axis travel so
that, in the modelZ was taken as fixed at 127 mm.
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Table 1 LBB measurements of the angular errors between the To evaluate the uncertainties(E,), Uc(Ey), the uncertainties of

Xand Y axes individual error components were determined by using machine
characterization data. These uncertainties were estimated from
their equations. The methods are described in Montgomery and

Angular Error BetweerX andY Axes

Pass # Errofarcseg Error (radians Peck[27]. Since the component errors are modeled as linear equa-
1 —6.99 33905 tions, their regression equations take the form
2 —6.43 -3.1E-05 _
3 ~7.39 ~3)58-05 y=XB+r ®)
: :g-;g :g-%g:gg wherer refers to the regression error and, in geneyas ann
Mean _33F-_05 X 1 vector of observations is annx2 matrix of the regressor
Est. Std. Dev. 1.62—06 variables.B is a 2<1 vector whose components age; the line
Deg. Of Freedom 4 intercept andB, the line sloper is annx1 vector of random

errors. The least squares estimator ®fis given by the well-
known formula

B=(X"X)"XTy. ()
3.3 General Propagation of Uncertainties Using the Kine- Gi dinat hich Id be al th di
matic Model. In order to estimate the uncertainties a simplify=>'V&N & coordinatex, , wnich could be ajong the or y coordl-
pate axis depending on the approximate error component equation

ing assumption was made that the individual error terms we {is bei luated. th dicted value i ted
uncorrelated since it was difficult to estimate or measure the cr&Q@ IS being evaluated, the predicted value IS computed as

correlation terms for each component error. Since the LBB mea- y=x73 7

surement instrumentation used did not allow simultaneous mea-

surements of all component errors this assumption was necessafjerex’ =[1x,] is the regressor variable. A point estimate of the
According to theLaw of Propagation of Uncertainfyoutlined future observatiory, is given by(7) as

in the ISO Guidg 1], Taylor and Kuyat{2], Coleman and Steele N

[25] and Wheeler and GanjR6], if a variableE, such as those in Yo=Xof8 ®)

Eqg. (1), is a function ofN stochastic components that are uncorA confidence interval for this predicted observation is

related. - = =
Yo— kpVo2(1+x3(XTX) ™ xo)

E=f(E;, ".En) 2

Y ~2 TyT -1
The combined uncertainty &, u.(E), can be estimated in terms =Yo=Yot kp‘/o (1+X(X7X) " "%o) ©
of the uncertainties of the components, ignoring second ordeherek, is the coverage factor, taken here lgs=2 [2]. This
terms, by interval is referred to as prediction intervalfor a future obser-
N ) vation of y, [27]. It is more conservative than the confidence
uz(E)%E (‘?_) U2(E;) 3) mtervgl for the mean, but is more appllca_ble for parts production
¢ =1 |\ 9E; ' since it depends both on the error of the fitted model and the error
associated with future observations of parts. The term
Vo2(1+x5(XTX) "Ixo) will be referred to as thetandard uncer-
tainty with the understanding that it is the standard error of a new

The variances of the positioning errors in Ef). can therefore be
computed from the propagation of uncertainties law as

UZ(E,) =U?(E;) + UA(E4) + Z2U?(Eg) + y2u?(E;) + Z2U?(Ey) observation given a value of the regressor variable. The expanded
standard uncertainty is then
+y?U?(E1o) +y?u*(Eyp) =
@ U(x0) =251+ (XTX) o) (10)

U2(E,) = U*(E,) + U?(Es) + 22u%(Es) + X?u%(E;) + 2°u?(Eg)
where
~, Y'y=B™XTy
o=
Table 2 Error component coefficients n—2

Figure 3 shows the linear equation fit to tkeaxis scaleE,, data
as well as the upper and lower uncertainty bands based on the

(11)

Kinematic Error Component Coefficients

Displacement Errors interval in Eq.(9).
Nilr?dﬁ?n '”trirr%ept At this point we will show how the formulas above, used to
) estimate an uncertainty interval for the next observation for a
Sy(X) —-1.8E—-05 —5.8E-03 linear regression problem, can also be used to estimate an uncer-
3y(x) —3.78€E-06 41E-03 tainty interval for the next sample of the angular error given in
5,(y) —18%-05 4.3E-04  T3pje 1. Although the angular error model is considered to be a

~3.8E— AE -~ ; JHE .
oY) 3 88? 06 3.4€-03 constant, the representation we select is given by(Bqwith the
Rotational Errors y vector given by the five angular errors in Table 1 and e

| | S .
Nir?dpiren. Qféf:npst matrix given by[111117. The parameter estimates are then
. . . - . - — T 71 T
) 37E-09 —3aE_o5 Jdven 5by Eq. (6), which in this case isg=(X X) .X Y .
&y(X) —3.0E—08 -6.0E-06 =1/58;_,E;;=E;;. Thus the least squares model in this case is
£5(X) —2.87E—-08 3.0€—-05 the mean of the samples. Furthermongz=[1], so that
iygg 3B %, 3o 05 X3(XTX)"xo=1/5. The coverage factor is again selected as 2. In
ex(y) —5.6X-08 1.5E—05 this case, the confidence interval for a future sample of the angular
X-Y Axes Angle Error error between th& andy axes is given by

Slope Intercept _ 6 o 5
Nondim. Radians Ep— 2 /g 52< Ep<Eq+21 /g &2 (12)

ayy 0.0CE+00 —3.3E-05

where
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Table 3 Line end-point uncertainties

5 5

., 1 -

=7\ 2 Eu= B2, Euy (13)
1= =

X Axis
which for the data in Table 1 is 2.88849 12 radian squared. Nominal Variance Uncertainty UEnXCF’;{‘;iﬁfy
Th(_arefo_re the_ uncertainty interval for a future angular error obsé@{hmber (mm)  Error (um)  (um)? (um) (um)
vation, in radians, is
3 10 2.4 10.6 3.3 6.6
—3.7035%8—-5<E;;<—2.9588%—5 14) o9 10 12.6 24.6 5.0 10.0
) o 1 140 8.2 24.6 5.0 10.0
where the estimated standard deviation for a future sample is Y Axis
1.8617%—6 radians.
From the entries in Table 2 one can substitute estimates into the _ _ _ Expanded
individual component error equations of the general form Hole ~ Nominal Variance Uncertainty Uncertainty
Number (mm)  Error (um)  (um)? (pem) (pem)
y=px+ B (15) =3 10 10.0 437 6.6 132
The degree of freedom of each of the first ten estimates is seveng/ 140 16.8 43.7 6.6 13.2
eight, since there are eighty samples used to estimate the line 140 106 524 72 .

error component functions, and the degree of freedom of the last
is four. The estimates of® for each of the error components
identified in Section 3.2 are given by
80 3.4 Linear Distance Uncertainties. Estimating distances
s 5 . between hole centers is a planar problem so we will only be con-
91778 Zl (BEi=Bxi—Bu)" [, =12567 cerned with thex andy errors at the hole centers. Suppose that
two points, &,,y1) and x,,y»), are given on a part, such as the
1 (& centers of two drilled holes. Each of these points has an error
012:7_8{ 2 (Eiﬁzyiﬁl)z}, j=34,8,9,10 (16) associated with it, given byEg,Ej) and Ej,Ey). The estimated
=1 length,L, is then computed from

5
s . L?=(x +Ex =%~ ED?+(y1 +Ey—y,—E)®  (20)
Ull_Z ) (axy,i_1372) - . .
=1 and the nominal length,,, is computed from
With these one can now estimate the variances of the variables on L3=(x,—X) 2+ (Y1—Y2) 2. (21)
the left of Eq.(15) at a specific pointX,y) in the machine tool ) . . .
workspace. These are given by Since the variance of the actual_ Iezngth is azpprommately th_e vari-
. ance of the estimated length, i.e; (L) ~ug(L), then, using
Z(E )= o2 1 N (Xo—X) {19567 Egs.(20) and(21), the estimated variance of the actual length is
u i) =0 A —an . —5 (> =1,£,9,0, T
i 11807 380 (%) J given by 2 2
— (Xl_XZ) 2 1 2 2 (yl_yZ)
. 1 - Uao(L)=| ——| (UZ(E}) +UZ(ED) + | ———
u2<E1>=012[§)+ %} j=348910 (7 Lo | oo Rt L
i—1YiTy
=1 X (UZo(Ey) +UZ,(E2)) (22)
UX(Ep) = 051[ ﬁ] . The validity of this equation depends on the statistical indepen-
5 dence of the error terms on the right of £E82).

In order to estimate a confidence interval of a future error re- USing Ed.(22) three length uncertainties were estimated. These
sponse one must add the combined standard uncertainty about¥fg&e chosen to reflect the essential nature of the part uncertainties
mean at a pointx,,y,) with the combined standard uncertainty” general. The lengths chosen were the center-to-center lengths
bout the mea and compute th re roots of from hole number 3 to hole number 9, from hole 9 to hole 15, and
about the meatz and compute the square roots o finally from hole 3, to hole 15 as given in the part numbering

2 (E V= (U2(E 2 2(E 2 202(E 2 scheme shown in Fig. 4. The estimates are given in Table 4. This

USo(Eyx) = (US(Eq) + o) + (U(Ey) + o)) + Z5(u“(Eg) + o 9 9

ool B = (U(E) . 0+ (HES) f) oW (Es) + 05) table is consistent in that the uncertainties squared of the lengths
+y3(U3(E;) + 02) + Z5(U?(Eg) + 05) between hole-centers are less than the sum of the squares of the

s o= 5 0 5 ) component uncertainties.
+yo(U“(Eqp) + +yo(U“(Eqp)+ , ) .
Yo(U(Ea0) 710 +Yo(UT(Ea) + o) (18) 3.5 Hole Center Orthogonality Uncertainties. If the part,

2 (E V= (Uu(E 2 2(E 2y 4+ 220 U2(E 2 hown in Fig. 1 and Fig. 4, were ideal, the line through holes 9

USo(Ey) = (US(Ey) + 05) + (U(E3) + 03) +Z5(u“(Es) + 0%) S g a Fig. 4, , ) 9

o (%2 2 (W 2 oL (Es)+ o5 through 15 would lie at right angles to the lines through holes 9
+X3(U3(E7) + 03) + Z3(U(Eg) + 03). through 3. However, real parts seldom, if ever, satisfy this prop-

erty due to machine orthogonality errors. In general there is a
small difference between the actual angle that the two lines form
and a right angle. This is termed an orthogonality error. Due to

The prediction error atxy,Y,) can be estimated by substituting
Eq. (16) and Eq.(17) into Eq. (18) and use a coverage factor of

two to write inherent machine variability, the set of copies of the part was
E, = 2\U2 (E,) expected to have a distribution of orthogonality errors. .
X cot =X (19) Since each of the hole-centers has a point uncertainty this
2 means that there is error in both tikeand Y positions of the
E,=2\uZ,(E,)

center. This fact introduces a problem with finding the best line
Equations(1), (18) and (19) were used to estimate the values irthrough the centers of the holes. Assume that we are given points
Table 3 for three points that were used as line end-points in tfwe,y;), -, (Xy,Yn) @and we wish to find the least squares line
next section. The table shows the nominaly) location the through the points. The assumption behind the least squares esti-
X-axis andY-axis error, the estimated error variance, uncertaintpation of coefficients is that the linear first order model can be
and expanded uncertainty. written asy= B+ B1Xx+r where ther term represents the devia-
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Fig. 4 Numbered peripheral holes of Fig. 1

tion in they variable from the line. Thus all of the error in the
approximation is assumed to be relegated toythiariable and the

X variable is assumed to have no error. For this application, we
desire to fit equations to data in which both variables are subject

to error. The relevant methods are called errors in variatdes
Mandel[28]). Since the algorithms for this form of data fitting ar

Table 5 Orthogonality uncertainty  (not expanded )

Sample Standard

Mean Orthogonality Deviation Standard Uncertainty
(arc se¢ (arc se¢ (arc se¢
—-6.4 13.9 13.9

X= BO,V+ lgl,vy

Since the slopes were small and the tangent of a small angle is
approximately the angle in radians we equated the slopes with
angles. But in order to preserve the sign convention with respect
to the horizontal axis the slope of the vertical line in E26) must
have its sign changed. Thus the two angles were given by

01=B1n
0,=— By
and the difference, or orthogonality error, was given by
Ab=6,—0,
The uncertainty of the orthogonality was computed as
UZH(A 0) = UL 0) + U2 01) =UZy(B1y) + Ui Bun)  (27)

For each horizontal and vertical line combinatid® was com-

puted using Eq(24) through Eq.(26). This process was repeated
a large number of timedyl, and the estimated standard deviation
o was computed. The standard uncertainty was computed from

(25)

(26)

(28)

3 1
Us(A6) = 0'2( i

he results from a simulation witt =1000 are given in the

T
e'I'ﬁ";lble 5.

not universally available we chose a Monte Carlo approach i

which thex andy distributions of the hole centers were sampled a

large number of times, horizontal and vertical lines fit to the re4 Part Uncertainties by Coordinate Measuring Ma-
sulting points, and angular differences from right angles comnine Measurements

puted. The uncertainty in this large sample of orthogonality errors

could then be computed.

The twenty-one parts, made according to Fig. 1, were measured

To generate an orthogonality error angle, twenty-eight randoom a CMM at NIST with an estimated uncertainty ofuin in

samples were selected from a normal distribution with zero me

positioning error. The following point locations were measured:

and unit standard deviation, since there were fourteen holes usiee hole-center locations for the drilled holes, and the hole-centers

to estimate orthogonality. Although there were thirteen physic

af the milled holes. Five repeat measurements for each of these

holes, hole number 3 was repeated for horizontal fitting and vegeints were made on part numbers one through four, where a

tical fitting. There were then two random numbers associated wi
each hole, one foX and one forY, designated b\R,, R,. For

#all variation between measurements was noted. Therefore, only
two repeat measurements were performed on the remaining parts.

each of the fourteen hole-centers the following simulated pointsAn analysis of variance procedure was used to isolate the

were computed

x:R+I§X+ RXUCO(EX) (23)

y=y+ Ey+ RyUcof Ey)

manufacturing error from the coordinate measuring machine error.
Manufacturing and measurement uncertainties were estimated.
The analysis of variance procedure was applied to estimate the
uncertainties of the locations of the hole-centers for both drilled

and milled holes as well as to estimate the orthogonality. An es-

The horizontal and vertical least squares lines through the apptionate of the uncertainty of the distance between features was also

priate new hole centers were computed using the normal equ@veloped.
tions for the horizontal lines and the appropriate equations for the . . .
vertical lines. The fitted horizontal and vertical lines took the form 4-1 An Analysis of Variance Strategy. For each machined

part, the errors in hole-positions were measured by a CMM rela-

Y= Bont B1nX

(24)
Table 4 Line length uncertainties
Length Uncertainty
Nominal Estimated Error Variance Uncertainty Expanded Uncertainty
(mm) (mm) (mm) (um)? (um) (pm)

3-9 130 130 0.000 87.3 9.3 18.6
9-15 130 130 0.000 49.1 7.0 14.0
3-15 183.848 183.847 0.001 65.1 8.1 16.2
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Table 6 Uncertainty statistics for drilled-holes 3, 9, and 15. The uncertainties are not expanded

uncertainties.
Summary Drilled Hole Statistics

X Axis Location CMM Measurement
Hole Nominal Error Variance Uncertainty Variance Uncertainty
Number (mm) (um) (um)? (m) (um)? ()
3 10 2.7 641 25.3 1.10 1.1
9 10 5.0 511 22.61 1.19 1.1
15 140 —-4.5 566 23.79 0.71 0.8

Y Axis Location CMM Measurement
Hole Nominal Error Variance Uncertainty Variance Uncertainty
Number (mm) () (um)? () (jum)? ()
3 10 8.0 1294 36.0 0.74 0.9
9 140 -1.4 1209 34.8 0.68 0.8
15 140 -1.6 1421 37.7 0.98 1.0

the inner 150 mm150 mm square shown in Fig. 1. TheandY  deviation of the repeated measurements for padf=32,(n,
locations of the centers of each drilled and milled hole on each Ofl), total degrees of freedom: Vp(#):(Eizil(ni)(Mi

the twenty-one parts were measured a multiple number of times=/, ) )
Associated with each hole-center, two analysis of variance tablegt))/(21—1), estimate of the between part uncertainé(s)
were formed, one for theX-measurements and one for the=(S(n—1)§)/df, estimate of the within part uncertainty. The
Y-measurements. Each table represented all of the location mEeatio F=V,(u)/V(s) was used to determine whether there is a
surement errors for the same hole on each of the parts. The cgnificant difference between the two variance estimétésnt-
umns represented the repeated measurement errors from the n@@imery and Peck27]). For the cases of concern here, the test
nal, as measured by the CMM. The measurement means were gl€e for theF distribution at the 95% level with 20 degrees of
calculated means for the repeated error measurements for the Igiffdom_ forVip(w) and 34(i.e., 54—-20 degrees of freedom for
numbers of the respective rows. The degrees of freedom were thafs). Since there are 54 total measurements for each hole center,
listed in a column. Finally, the measurement uncertainties wepder all of the parts, was approximately 1.89. The reader is re-
the standard deviations of the repeated hole-location error mégired to Dixon and Massel9] for a discussion of the analysis

ariance for a one-way fixed-effects classification model.
surements for that row. The measurement means had a gr& SXt this point we need){o introduce some further terminology.
mean and a variancé.e., mean of means and a variance of_et
mean$. These were taken as the manufacturing error and its vari-
ance for that hole. That is, these gave estimates of the manufac- 2
turing process uncertainties. An overall average variance could be N= E N (29)
computed from the column of measurement standard deviations, =1
called the pooled variance, which was taken as an estimate of tieethe total number of measurements over all the parts. Then, the
uncertainty of the measurements. This uncertainty gave an egiboled mean, called the mean manufacturing error or grand mean,
mate of the measurement process uncertainty. Once the manufagiven by
turing and measurement uncertainties had been estimated, the part 21
uncertainties could be computed from the previous formulas. — ZisaMis (30)

The analysis of variance techniques were based on Dixon and - N

Massey[29] and Mood and Graybill30]. The notation used here The pooled standard deviation is
is as follows:n;, the number of measurements of thth part;
i, the mean of the repeated measurements fori pgyrt standard Sp=VVp(S) (31)

Table 7 Uncertainty statistics for milled-holes 3, 9, and 15. The uncertainties are not expanded

uncertainties.
Summary Milled Hole Statistics

X Axis

Location CMM Measurement
Hole Nominal Error Variance Uncertainty Variance Uncertainty
Number (mm) (jum) (um)? (jum) (jum)? ()
3 10 11.2 86.92 9.3 1.39 1.2
9 10 14.8 158.37 12.6 0.834 0.9
15 140 3.6 202.31 14.2 1.92 14

Y Axis

Location CMM Measurement
Hole Nominal Error Variance Uncertainty Variance Uncertainty
Number (mm) () (m)? () (um)? (pm)
3 10 11.2 73.15 8.6 0.30 0.6
9 140 9.6 246.05 15.7 0.19 0.4
15 140 4.7 237.28 15.4 0.33 0.6
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o.06F T " " i u Figure Fa) shows theX mean measured errors for the centers

-w-o Holed of the three drilled holes numbered 3, 9 and 15 in FigY Bnean
-~ Hole 8 - . ) .
~%-~  Hole 15 measured errors show similar error formations. The first thing to

be noted about the measurements is that part 13 shows a signifi-
cant negativeX-mean error for all three drilled holes compared to
the other parts. This appears to be reflected intmeean errors
for that part also. Notice also the significant center location errors
for parts 3, 19, 21 and 2{& mistaken part blank number for part
20). Figure 3b) shows sharp error differences for tkemeasure-
ments of milled holes 3, 9 and 15 which are also reflected irythe
measurements. Note that the error range for the milled hole errors
is less than that of the drilled hole center errors.
Figure 6 shows the position errors of the holes for the predicted,
0.0} milled and drilled peripheral hole-centers.
5 The arrows show the direction of the hole center error and the
magnitude of the arrows represent scaled magnitudes of the errors.
-0.06¢ . . . : . Note that the model predicted directions and magnitudg.
@ 5 mPartNumt::r 20 s 6(a)) closely align with those for the milled holg&ig. 6(b)),
whereas the magnitudes and directions of the drilled hole centers
(Fig. 6(c)) vary drastically from the predicted and milled hole

Drilled Hole-Center X Error (mm)

e Hoe3 centers.
0038¢ v paed 4.3 Estimating the Uncertainty of a Machined Length Fea-
ture From CMM Measurements. The lengths and uncertain-

ties of these lengths were computed for the measured distances
between holes 3, 9 and 15 on the machined parts. The summary
statistics of the measured errors and uncertainties are given for the
..4  three hole-center features in Tables 8 and 9. The error variance

PORE estimates given in these tables were computed as the pooled vari-
S | ance of the mean. The uncertainty estimates were computed as the
2R square roots of the respective variance estimates. Table 8 gives the

results for the drilled hole-centers for feature holes 3, 9, and 15,
while Table 9 gives the results for the milled square hole-centers
for the same feature holes. The tables give the nominal coordi-
nates of the hole-centers, relative to the part origin in the lower

Milled Hole-Center X Error {mm)

¥ L left corner. Although not shown in the tables, the measurement
¥ x PN uncertainties fell approximately at the quoted CMM value of 1
5 10 15 20 25 um.
(b) Part Number Table 10 gives the summary results of the center-to-center

length errors for drilled and milled hole-centers as well as the
and mean X (b) errars for centers af milled holes, Vertical axis predicted length errors. The table also includes the expanded un-

represents errors in mm. Horizontal axis represents part certainties of the length errors.

numbers. 4.4 Estimating the Uncertainty of Machined Part Hole
Center Orthogonality From CMM Measurements. The pe-
ripheral milled hole centers were selected as points to be used for
estimating orthogonality. The milled holes were designed to have

An estimate of the standard uncertainty of the grand mean is givégir nominal centers form lines parallel to the edges of the parts.

Fig. 5 Mean X (a) errors for the centers of the drilled holes

by Two nominally orthogonal lines of holdthe bottom row and left
side row were selected to estimate the uncertainties in the or-
S thogonality of these two lines of holes. The procedure of estimat-
u= \/_N (32) ing orthogonality was as follows.

For the centers of the holes along theaxis a least squares fit
An estimate of the uncertainty of a future measurement sampleoisthe line formy=mx+b was made for each of the repetition
given by error measurements for each of the parts. This produced a table of
estimated slope values fon,,. Since the deviation ofmj, from
zero was small the values ofy, could be used as angle estimates
S (33)  since for small angles taay~a in radians anany is the tangent of
) ) the slope angle. Next the leftmost vertical line of hole centers was
The corresponding expanded uncertainty of a future measuremgintyith an equation of the formk=m,y+b. The sign of the
can then be taken as resulting slope had to be reversed and then it could be added to
U.=2u (34) the h_oriz_onta_ll s_lope to determi_ne the orthogonality error. This cal-
f f culation is similar to that leading to E¢25) and Eq.(26). The
4.2 Hole-Center Location Uncertainties for the Manufac- 'esults are summarized in Table 11. Note that the variance of the
tured Parts. Tables 6 and 7 show thé andY errors of the hole Metrology uncertainties is an order of magnitude less than the
centers 3, 9, 15, the center location uncertainties, and the measif@giance of the manufacturing error so that the measured and
ment uncertainties. The measurement uncertainties are appréRnufacturing variances could be considered approximately equal
mately the quoted uncertainty for the CMM at NIST. As the tabledS €xpected.
show the drilled hole uncertainties are higher than the milled ho2 Discussion
uncertainties. These are typical for the other holes in Fig. 1. Typi-
cal error measurements are shown in Fig. 5.

1+ !
Us= N

When we compared the predicted errors computed from LBB
measurements for the peripheral holes, the mean errors of the
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Fig. 6 Arrows represent the direction and scaled locations of
the predicted (a), the milled (b), and the drilled (c) hole center
locations

Journal of Manufacturing Science and Engineering

Table 8 Manufactured length uncertainties between drilled-
hole centers. The uncertainties are not expanded uncertainties.

Manufactured Length Between Drilled Holes

Nominal Actual  Actual  Actual Actual

Length Length  Error Variance Uncertainty
Hole-Hole (mm) (mm) (um) (um)? (um)
3t09 130 129.978  21.6 2549 50.5
9to 15 130 129.991 9.5 1097 33.1
3to 15 183.84776 183.843 22.5 1997 44.7

measured parts tended to be larger. The manufacturing uncertain-
ties for a given feature measurement were greater than those pre-
dicted by the LBB measurements. The signs of the errors for both
the predicted errors and the measured errors tended to be consis-
tent for the milled holes but not for the drilled holes as shown in
Fig. 6. Tables 6 and 7 indicate that the uncertainties associated
with drilling operations tend to be larger than those for milling
operations. A possible explanation for this may be the fact that a
drill bit has a tendency to hop slightly before the flutes bite into
the material being machined. The predicted LBB uncertainties fall
less than both the drilled and milled center-to-center uncertainties
but tend to be closer to the milled uncertainties. This is reasonable
considering the results shown in Fig. 6.

The range of the predicted hole center variances oKtkerors,
based ugon the LBB measurements, fell between 18 and
24.6 um-. For theY-errors, the predicted variances fell between
43.7 um? and 52.4um?. For the parts measured by the CMM the
variances were significantly larger. TMemachine error variances
for the drilled holes fell between 51im? and 641um?. For the
milled holes the centeX-machine errors ranged from 86u@n? to
202.3um?. The Y-machine error variances tended to be larger for
both drilled and milled hole center errors. For the drilled holes the
Y-machine error variances fell between 12092 and 1421um?.

For the milled holes thé&-machine error variances fell between
73.2 um? and 246.1um?. We noted that the¥-machine error
variances were in general greater than Xamachine error vari-
ances in both the model prediction and CMM measurement cases.
As a diagnostic tool this suggests a potential malfunction in the
y-axis of the machining center.

The differences between the uncertainties for the drilling and
milling of hole centers are carried over to the estimates of hole-
to-hole center lengths. These are shown in Tables 8 and 9. The
variances for the center-to-center lengths for the drilled holes
ranged from 1097m? to 2549um?, whereas for the milled holes
they ranged from 30%:m? to 367 um?. The work of Wilhelm,
Srinivasan and Farabaud] showed that the position errors of
the test part holes fall in general within two standard deviations of
the measured machine errors. Their work however was conducted
under controlled laboratory conditions. The parts in this study
were not milled under controlled conditions, but under ordinary
shop environment conditions. The results of this study suggest
that for the particular machining center used, the potential length
errors of manufactured parts could fall as far away as seven stan-
dard deviations of the measured machine errors for drilled holes

Table 9 Manufactured length uncertainties between milled
hole centers. The uncertainties are not expanded uncertainties.

Manufactured Length Between Milled Hole Centers

Nominal Actual  Actual  Actual Actual

Length Length  Error Variance Uncertainty
Hole-Hole (mm) (mm) (um) (um)? (um)
3to9 130 129.998 1.6 325 18
9to 15 130 129.989 11.2 367 19.2
3to 15 183.84776 183.838 10.0 305 175
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Table 10 A comparison of the upper and lower expanded uncertainty limits for the hole-to-
hole lengths based on the CMM measurements and the model estimates based on the LBB
machine measurements

Drilled Hole Expanded Uncertainty Range

Center-to-Center Lower Uncertainty Mean Length Upper Uncertainty Range Width

Lines Bound (um) Error (um) Bound (um) (pem)
3to9 —-122.6 21.63 122.6 245.3
9to 15 —75.7 9.51 75.7 151.4
3to 15 -111.9 22.45 111.9 223.8

Milled Hole Expanded Uncertainty Range

Center-to-Center Lower Uncertainty Mean Length Upper Uncertainty Range Width

Lines Bound (um) Error (um) Bound (um) (pm)
3t09 —-37.6 1.59 37.6 75.2
9to 15 —49.6 11.17 49.6 99.2
3to 15 —45.0 9.96 45.0 90.0

Expanded Uncertainty Estimates Based on LBB Machine Metrology

Center-to-Center Lower Uncertainty Mean Length Upper Uncertainty Range Width

Lines Bound (um) Error (um) Bound (um) (em)
3t09 -18.7 0.00 18.7 37.4
9to 15 -18.2 4.2 18.2 36.4
3to 15 -16.5 0.3 16.5 33.0

and three for milled holes. This indicates that machining uncehis could be a significant result, if established, and encourage
tainties under a production environment can potentially be muélrther research along this line. But what does seem clear is that
larger than those obtained under controlled conditions. The axacertainties are process dependent.
panded center-to-center uncertainty ranges shown in Table 10 are
consistent with the previous findings. The ratios of the drilled ho@ Conclusions
ranges to the predicted ranges fell between four and seven,
whereas the ratios for the milled holes fell between two and three.There are a number of conclusions that can be drawn from this
The predicted mean orthogonality error from Table 5-i6.4 study. The first and foremost is that machining uncertainties can
arcsec and the uncertainty is 13.9 arc sec. These were based®restimated for production machines but uncertainties obtained
the Monte Carlo method of estimating orthogonality from the mdrom measurements of machine error components account for
chine tool model and LBB measurements. From Table 11 tiealy a small part of machined part uncertainties. These uncertain-
mean manufacturing orthogonality error from the CMM measurées, of course, only apply to the individual machine being studied,
ments was—1.5 arc sec with an uncertainty of 28.7 arc sec fopowever it would be interesting to do a parallel study on a pro-
drilled holes. For milled holes the mean orthogonality error wegtiction machine from the same family to determine whether there
0.4 arcsec with an uncertainty of 15.5 arc sec. In this case tAee any commonalities. It also seems clear that further study is
model estimates over-predict the orthogonality error. However tieeded to determine those aspects of the machining processes that
model results produce an uncertainty near to that for the millel$ad to the significant uncertainties affecting machined parts.
hole orthogonality. The ratio of the drilled-hole orthogonality un- In terms of machine metrology, setting up the particular LBB
certainty to the metrology uncertainty was 7.9. In the case of tifier measuring the machine tool component errors was cumber-

milled-hole orthogonalities the ratio was 4.8. some, but it did provide measurements for all of the components
In all of the analysis of variance tables tRdests indicated that necessary to model the machine tool. It was possible to take all of
there was a great deal of variability between parts. the measurements in a reasonably short time without changing

Since this was a limited study a relation between the predictétures for each component measurement.
uncertainties and the measured uncertainties in a production enviThe law of Propagation of Uncertainties provided a means of
ronment could not be quantified. However, the authors feel thegtimating both point location and length uncertainties when com-
bined with an adequate kinematic model of the machine tool un-
der study. There were uncertainties, such as for orthogonality,
where the law was not applicable directly. These uncertainties

Table 11 Summary of the orthogonality statistics from CMM occurred in cases where there were no clearly understood func-
measurements tional relationships between quantities that would allow the law to
- - — be applied. In these cases some form of simulation or Monte Carlo

Summary Drilled Hole Orthogonality Statistics technique would have to be applied to estimate the uncertainties.
Manufacturing Manufacturing Manufacturing Metrology Metrology Finally, it was clear that there should be further studies to try

Error Variance Uncertainty  Variance Uncertainty and estimate and separate out the nonstationary effect of the ther-
(arc se¢ (arc se¢? (arc se¢ (arcsef®  (arcseg mal drift in order to obtain a proper estimate of the machine tool

—1.470 825 28.7 12.08 36 error component variability. These studies should also investigate

possible measurement techniques to determine the cross-

Summary Milled Hole Orthogonality Statistics correlation of the various machine tool error components.

Manufacturing Manufacturing Manufacturing Metrology Metrology

Error Variance Uncertainty  Variance Uncertainty

(arc seg (arc sed? (arc seg (arcsep? (arcseg  Acknowledgments
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