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Velocity fluctuations in a steadily sheared model foam
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Numerical simulations are conducted to calculate velocity fluctuations in a simple two-dimensional model of
foam under steady shear. The width of the velocity distribution increases sublinearly with the shear rate,
indicating that velocity fluctuations are large compared to the average flow at low shedstiateslip flow)
and small compared to the average flow at large shear rates. Several quantities reveal a crossover in behavior
at a characteristic strain ratg, given by the yield strain divided by the duration of a bubble rearrangement
event. For strain rates abowg, the velocity correlations decay exponentially in space and time, and the
velocity distribution is a Gaussian. For strain rates belpw the velocity correlations decay as stretched
exponentials in space and time, and the velocity distribution is broader than a Gaussian.
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[. INTRODUCTION ration (one local energy minimuijrto another. Similar strain-
induced rearrangement events have been seen in Lennard-
A foam or emulsion is a dispersion of easily deformableJones mixtures at low temperatufé8]. At high shear strain
bubbles of a gas or droplets of a liquit—4]. When packed rates, on the other hand, the flow is smooth and laminar, with
above the close-packing density, the bubbles or droplets déll the bubbles continually rearranging. The crossover be-
form away from the spherical shape and adjust their positween the two regimes occurs at the shear ngte y, /7y,
tions and shapes in order to minimize the total interfaciawherey, is the yield strain andy is the duration of a rear-
area. The resulting packing configuration lies in some locatangement event.
energy minimum. The typical energy barrier to rearrange I_n_this paper, we focus on fluctuations of th_e veloc_ities of
bubble configurations is of the order ®{ y,R)?, wheres, is  individual bubbles around the average velocity profile. We
the interfacial tensiony, is the yield strair(of the order of a  Study three main quantities: time correlations of velocity
few percent for three-dimensional foarf§] or emulsions ~fluctuations, spatial correlations of velocity fluctuations, and
[6,7]), andR is the typical bubble size. The thermal energy isthe dlstrlb_utlon of velpcr[y quctuatlons.. _We find a clear
roughly 1610 times smaller than the characteristic energyCrOSSOVer in th_e behavior of these quantities at the character-
barrier height for typical bubble sizémicrons or larger As  iStic strain ratey, . At shear rates higher thay,, where the
a result, the bubbles cannot spontaneously rearrange and QW is smooth, the velocity fluctuation distribution is Gauss-
plore the phase space in search of a global energy minimunf and the velocny_ correlations decay exponentially in
When foam is sheared, however, enough energy is suppliegpace and time. Below, , where the flow is intermittent, the
to the system to overcome the energy barriers and bubbledistribution is broader than the Gaussian and the velocity
can rearrange. As a result, foam yields and flows under gorrelations decay more slowly than exponentially in both
sufficiently high applied shear stress. space and time. This striking change in dynamical behavior
This paper is one of a serif8—12] that explore the ques- with decreasing strain ratgis apparently unaccompanied by
tion of how a simple two-dimensional model fodB] yields  any diverging length scale and appears to be a signature of
under steady shear flow. The behavior depends on the pactie approach to jamming.
ing fraction of bubbles¢. Simulations on the quiescent sys-  In Sec. Il, we review the model, the numerical methods
tem[13,8,9,14 show that there is a special packing fraction used to solve it, and the quantities calculated. Sections I
¢* near random close packing, above which the pressurand IV contain our results. Section V is a discussion of the
and shear modulus of the system are nonzero. Abp¥e extent to which ideas from statistical mechanics can be ap-
~0.84 (in two dimensiong the system is therefore jammed plied to the collective behavior of this driven, athermal sys-
[15]; it has a nonzero yield stress in a disordered state. In thitems.
paper, we will concentrate on the regime aba¥®. In this
regime, experiments on three-dimensional fod)46], and
emulsions[ 6], two-dimensional foam§17,18, and numeri- Il. MODEL AND METHOD
cal simulations of the mod¢B—12] show that the nature of
foam flow depends on the rate at which it is sheared. At very
low shear strain rates, the flow is characterized by localized, Our simulations are carried out on a two-dimensional ver-
intermittent rearrangement events that occur at a rate proposion of a model introduced by Duridi8,9]. The model and
tional to the strain rate. In these rearrangement events, ththe numerical method we have used is discussed elsewhere
bubbles move from one stable, disordered packing configy-10], so our description here will be brief. The foam is de-

A. Model
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scribed entirely in terms of the bubble radii and the time- B. Units
dependent positions of the bubble centers. The details of the We will use dimensionless quantities throughout. Thus

microscopic interactions at the level of soap films and vertiyenresents the distance in units of the average bubble diam-
ces are subsumed into two pairwise additive interactions besier 4 and't represents the time in units of a characteristic
tween bubbles,. which arise when the .dlstar_1_ce beMeeﬁme scale in the modelk, set by the spring constant and
bubble centers is less than the sum of their radii. The first, &¢ friction coefficient. This is the characteristic relaxation
repulsion that originates at the cost of energy to distorijme arising from the competing mechanisms for elastic stor-

bubbles, is modeled by the compression of two springs inge ang viscous dissipation, and it measures the duration of a
series with individual spring constants that scale with the

Laplace pressures/R;, whereo is the liquid-gas surface rearrangement event. _Similarly/, represents the shear rate
tension ancR, is the radius of bubblé Bubbles that do not Mmultiplied by 74. Thus, y is the Deborah number or, equiva-
overlap are assumed not to interact. The second interaction igntly for this system, the capillary number. Energies are
the viscous dissipation due to the flow of liquid in the films. measured in units a d?, whereZ, is the interfacial tension.

It, too, is assumed to be pairwise additive and is modeled by

a drag force proportional to the velocity difference between C. Quantities calculated

overlapping bubbles. We simplify this further by using the . . .
mean-l?izldgapproximation, alsg (iymployed by Dui/ﬁaprl(%, _ When_the _system is under _steady _shez_ir Wlth_the _velocr[y
in which the drag force is proportional to the difference be-I" thex direction and the velocity gradient in tiyedirection,
tween the velocity of a bubble and the average flow at théhe average velocity profile is lineafv(y)) = yyx, wherey
position of the bubble. In a previous study, we found that thganges from zero at the bottom plate ltcat the top plate.
mean-field approximation makes no difference to the statisNote that we have imposed a linear profile by adopting the
tics of rearrangement event40], despite the fact that the mean-field approximation, where the drag force is propor-
mean-field version of the model is not Galilean invariant. Wetional to the deviation of the bubble velocity from the linear
note that the mean-field version is a better reflection of thehear profile. However, in earlier work we showed that the
physics of a two-dimensional monolayer foam experimentaverage velocity profile is linear even if the mean-field ap-
where shear is applied indirectly to the monolayer by shearproximation is not adopted and shear is imposed by the
ing the water subphase. Such experiments have been carriggundary{10]. Most experiments on sheared foam have also
out by Dennin and co-workefd7,18. . observed an average velocity profile that is linear
~ We study a two-dimensional foam periodic in thelirec- 15517 16,18,2)1 but one experiment has observed shear
tion and trapped between parallel plates in yhdirection. — pandingr22]. It is possible that shear banding was observed
Bubbles that touch the top and bottom plates are fixed 19, yhe |atter experiment due to the nonuniform stress in their

them, and the top plate is moved at a constant velocity in th? : :
- . . ial tt metr t further experiments shoul
x direction. Thus, bubbles are divided into two categorles—ad al Couette geometry, but further experiments should be

“boundary” bubbles, which have velocities that are deter'dorg)euiomrzﬁloi‘\(l)ecjzlissqéjr? fﬁgr;l.uctuations around the average
mined by the motion of the plates, and “interior” bubbles g

whose velocities must be determined from the equations ’c#near profile. To elimjnate initial transients, we measure the
motion. We have checked our results by using periodic2/erage velocity proﬁ!e. Once t_he measur(_ad profile is within
boundary conditions, with Lees-Edwards boundary condi>% Of the expected linear profile, we begin to collect data.
tions for steady-state shear, and have found that the differefy® measure fluctuations of individual bubble velocities
boundary conditions lead to only small quantitative differ-around the average profile. Thus, we defider(r,t)
ences. We use thepaRskIT2[20] library for sparse matrix =Vi(r,t)— yyi(r,t)x, wherev;(r,t) andy;(r,t) are the ve-
solutions and the Runge-Kutta algorithm with a variable timelocity and height, respectively, of bubbiecentered at posi-
step determined by the error tolerance to integrate th&on r at timet. We concentrate on three quantiti¢$) the
coupled differential equations of motion. autocorrelation functiodAv(t) - Av(0)); (2) the equal-time

To introduce polydispersity, the bubble radii are drawn atspatial correlation functiogAv(r)-Av(0)); and(3) the dis-
random from a flat distribution of variable width; in all the tribution P(Av).
results reported here, the bubble radii vary from 0.6 to 1.4 The Durian model contains two key features that allow it
times the average bubble radius. The shape of the bubble site display nontrivial velocity correlations. First, it is not an
distribution appears to have no effect on viscoelasti@iyor  equilibrium system; it is in steady state. Second, the bubble
the statistics of rearrangement eveft§] as long as it is packings are disordered.
sufficiently broad. Note that it is important to include poly- ~ For an equilibrium thermal system with a Hamiltonian,
dispersity because a monodisperse system will crystallize urthe velocity autocorrelation function is nontrivial, but the
der shear, especially in two dimensions. spatial correlation function always satisfiesv(r)-Av(0))

In all our runs, the system is first equilibrated with all =&(r), whered(r) is the Dirac-delta function. The velocity
bubbles treated as interior bubbles, and with a repulsive inef bubblei is always completely uncorrelated with the ve-
teraction between the bubbles and the top and bottom platdscity of bubblej, unlessi=j, because of the separation
so that the bubbles cannot penetrate the plates. The bubblbstween position and momentum degrees of freedom in the
that touch the top and bottom plates are then converted tblamiltonian. In addition, the velocity distribution is always
boundary bubbles. Gaussianthe Maxwell-Boltzmann distribution
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It is important that we are studying disordered bubble 002 —————F——————F7—————T 71—
packings. In a periodic packing, the energy increases wher
the system distorts affinely, and the energy drops when all
the bubbles rearrange simultaneously. In a disordered foan
however, the deformation is nonaffine and some bubbles
shift their relative positions to avoid distorting. This also
allows nontrivial velocity distributions and correlations.

We study fairly small systems, typically 64, 225, or 625
bubbles. To obtain adequate statistics, averéigeiicated by
anglular bracketsare taken over configurations as well as
over time. For the velocity distributiorB(Av), each distri- .
bution is collected over 1000—10 000 time steps, covering & oo s Lo o o 0 v v 0 v 0 s
total strain of at least 10, for at least nine different initial 0 0.2 0.4 06 0.8 1
configurations. For the correlation functions at strain rates

below :)’x, we average over at least 10 000 time steps cover- E
ing a total strain of 10 for ten different initial configurations. : SE /SE ]
At or abovey,, however, we average over at least 5000 time ¢ [ an e _:
steps covering a total strain of 10 for only five different E ]

0.02 —

100 g —— 1 —— 13

initial configurations because very little variation with con- [ ]
figuration is found. Error bars are based on variations amonc 1k -
runs with different initial configurations as well as fluctua- g
tions within each run. - J——
The magnitude of the correlation functionsratO or at 0.1 -%. ————— St /st 3
t=0 is the mean-squared velocity fluctuatigiv)?). This ' ]
varies by several orders of magnitude over the range of shee
rates studied. In plotting our results, it is convenient to scale
the correlation functions by(Av)?) so that we can show
results for several different shear rates at once. Accordingly,
we define the scaled correlation functions FIG. 1. (a) Total potential energy as a function of strain for a
) 225-bubble system at area fractieh=0.9 driven at a constant
F(r)=(Av(r)-Av(0))/((Av)%), shear rate ofy/=10"°. Note that the elastic energy increases gradu-
ally as bubbles increase the amount of overldeform), and de-
creases precipitously due to intermittent bubble rearrangement

In addition to studvi locit lation functi events(b) Characteristics of energy drops relative to energy rises as
n addition fo studying velocity correfation TUnctions, We , ¢t of shear rate. Solid circles: the average time derivative of
also examine several velocity fluctuation distributions. We,

. an energy drop relative to the average time derivative of an energy
have separated theandy components to obtaiR(Av,) and  jise The solid line is a fit to a power law with exponenD.4.

P(Avy) separately. We will show below thd&(Av,) and  open circles: the average duration of an energy drop relative to the
P(Avy) are very similar. However, the calculation &fv,  average duration of an energy rise. The dashed line is a fit to a
requires subtraction of the average shear profile, which intropower law with exponent 0.4. This shows that a negligible fraction
duces some error, so we focus BQAv,). We also compute of time is spent on energy drogisubble rearrangements the zero

two other distributions,,(Av,) andPy,(Avy). In Durian’s  shear rate limit.

model, the distortion of bubbles is measured globally by the

total elastic energy stored in all the springs connecting overdrop 6Eq, decreases relative to the average slope of an en-
lapping bubbles. The distributior,,(Av,) and Pq,(Avy) ergy risedsE,, as the shear ratg increases. Conversely, the
contain velocity fluctuations that occur when the elastic enaverage duration of an energy dréf, increases relative to
ergy is increasing and decreasing, respectively. The rationalbe average duration of an energy risg, as the shear rate
for separating the two distributions is based on a speculatioincreases. The straight lines are fits to the power laws
on the nature of bubble motion under shear. Suppose WgEdn/5Eup=0-14;fO'4andé‘tdn/&up:7-9'7°'4- Thus, in the

begin with a system in a local energy minimum. Under ajimit of vanishing shear rate, energy drafmibble rearrange-
small applied shear strain, the bubbles will distort. As thementsg occur infinitely rapidly relative to the energy rises
shear strain increases, the packing configuration eventualbbubme distortions

becomes unstable and bubbles rearrange their relative posi- By sorting the velocity fluctuations into two distributions
tions. Figure 1a) shows a plot of the total elastic energy as adepending on whether the energy is rising or dropping, we
fun_ction of strain for a system driven at a constant shear ratezn examine separately the bubble motion during distortion
of y=10"°. Similar plots for stress vs strain are shown inand rearrangement events. Note that the separation is not
Refs.[8,10. Under steady shear, the elastic energy rises aentirely clean because we compute only theal elastic en-
bubbles distort(overlap and then drops as bubbles rear- ergy of the system; because events can be localized and in-
range. Figure () shows that the average slope of an energytermittent, the elastic energy may drop in one region of the

——
—-—
—
—
4
-
—

0.01 UL ' ' el L ' M S R |

C()=(AV(D)- AV(0))/((Av)?). (1)
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FIG. 2. Standard deviation of thgvelocity distribution as a
function of shear rate. The width of the distribution narrows with F(r) ' o 4=0.02
decreasing shear rate. The line is a fit to a power law with exponen 06l © a y=0.005
0.6. o o ,;,=10'4

sample and rise in other regions. However, large rearrange

ment events involving large drops of energy should still be 02
isolated inPy,. Moreover, since a vanishing fraction of time

is spent on energy drops in the zero shear rate limit, the tota 0
velocity fluctuation distribution approach®g, in that limit.

Ill. RESULTS: VELOCITY CORRELATION FUNCTIONS 25

In defining the correlation functiors(t) andF(r) in Eq. (c) 501
(1), we have scaled the actual correlation functions by their 2k 8 y=00001] T
zero-time or zero-separation valug&\v)?). This quantity
has a strong shear rate dependence. In Fig. 2, we plot th 15 |
standard deviatiorﬁvE\K(Avy)z) (similar results are ob-
tained for velocity fluctuations in thex direction. The 1L
straight line is a fit to a power law with exponent 0.6; this
provides an adequate fit, but note that there is a systemati 05
upwards curvature in the data on this log-log plot, suggesting
a more complex dependence on shear rate. Recent expel
ments on driven granular materials observe similar power- 0
law scaling of velocity fluctuationg23—26. This scaling is r
interesting because it implies that fluctuations diverge rela- ) ) ) )
tive to the average flow in the limit of zero average flow. FIG. 3. Correlation functions(@ The velocity autocorrelation

S - . L .- function C(t) [Eq. (1)]; (b) the velocity correlation functiof(r),
\é\/eecw\l/llcdlscuss the significance of this scaling in detail in Eq. (1); (c) the radial distribution functiom(r). In all three plots,

the correlation functions are shown for several different shear rates,

e . 2: _
In an eqtumtbr.lum _?yst.entlzv t—T/m, vtvhere t:ﬂ? .Bct):fz as marked. The curves in plafg) and(b) represent fits of the tails
mann constant is unityl is the temperature, anah is the to Egs.(2) and (4), respectively.

particle mass. It is tempting to associate an effective tem-
perature withév based on this relation. However, there is nono kinetic energy in our system, we cannot extract an effec-
inertia in our system so the massis undefined. In previous tive temperature from velocity fluctuations.

papers, we have calculated an effective temperaiyye

based on linear response relati¢hs,12. If we comparesv A. Shape of correlation functions

to Te, we find that they have very different shear rate de-
pendences. Figure 2 shows tldat decreases with decreasing

y and appears to vanish 3s-0. In contrast, we find that

Several correlation functions are shown in Fig. 3 for 225-
bubble systems ap=0.9 at several different strain rates. In
. Figs. 3a) and 3b), we plot the scaled velocity autocorrela-
Tert appears to level off to a constant value at IoW11,12.  tjon function C(t) and the scaled velocity correlation func-
If we associateSv with a temperature, this would imply that tjgn F(r), defined in Eq(1). In Fig. 3c), we plot the pair
the effective masen of the bubbles must diverge in the limit correlation functiong(r).
vy—0. This is probably not a sensible interpretation of the In an equilibrium liquid,C(t) is nonmonotonic and dips
results. It is more reasonable to conclude that since there tselow zero[27]. The dip is attributable to short-ranged re-
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pulsive interactions that push particles away from each other 1.1 . 115
The functionF(r), on the other hand, is identically zero in L P b3 (a)

an equilibrium system since the velocities of different par- <« #

ticles are uncorrelated. Finally, the pair correlation function 0.9} } } 148
g(r) in an equilibrium system is very similar to the one we |3t 6.8 Bl i

calculate for the sheared system. }
In examining Fig. 3, first note thai(r) is nearly indepen- 0.7 }

dent of y, while C(t) andF(r) are much more sensitive to 0.6 }

'y. Thus, there is no noticeable change in structure, but there } & N -

is a significant change in the dynamics with decreasing shea ~ 2-° %

rate. 0.4 1 | | f o)
The velocity autocorrelation functio@(t) does not al- (b)

ways decay monotonically with time at all shear rates, as 1L } I8 s 410

shown in Fig. 8a). We find thatC(t) dips below zero at high . } i 11 } ﬂ

shear ratesy=0.05. At high shear rates, the behavior of the ‘4 4 } 18

time. The repulsive spring interactions between bubbles
should lead to dips in the velocity fluctuation autocorrelation
function in this regime since the packing fraction is high =
(¢=0.9 in Fig. 3. In other words, a bubble will reverse 0'4} } 12
direction relative to the average shear when it approaches } }

neighboring bubble too closely. This picture is supported by
the behavior of spatial correlations in the velocity. The scaled 35 -
correlation functionF(r) is nonmonotonic and can even be

negative fory=0.05. Aty=0.1, the first dip inF(r) occurs s o {

foam is liquidlike, with all the bubbles rearranging all the f: g
P

in the first neighbor peak a@f(r). Thus, neighboring bubbles :

tend to move in opposite directions, as expected due to the 201 . i

repulsive interactions. 15 ’ 5
It is more surprising that there isot a dip in C(t) at 10 - t . .

lower shear ratefsee Fig. 8)], since the packing fraction is g1l * . |

still high and the repulsive interactions between bubbles are ‘ . ° .

even stronger relative to viscous interactions at low shea 8.0'001 0.001 0.01 01 1

strain rates. Some insight can be gained by studying the spe. ¥

tial correlation functionF(r), shown in Fig. 8o). At lower
shear rates/(r) is positive at allr. Thus, neighboring tion C(t) as a function of shear ratéa) Fitting parameters to Eq.

butbble_?ht_er?d _to mO\liedm thf satn:e tﬂlrectllon_at IO\:ver sh?a(rz)’ wherep, (circles is the stretching exponent and (triangles
rates. This Is in marked contrast to the velocity autocorrela, yq rejaxation time(b) Fitting parameters to Eq3), where ¢,

tion function for an equilibrium liquid, which is always non- (circles is the coefficient of the exponential term and(triangles

mcl)l'flo_tonic l:;]gcause Ith(.e kinetiﬁ e”ergy offparticles Ieadls R the relaxation time(c) The time 7, over whichC(t) decays to
collisions. This correlation in the motion of nearby bubb €S1/e2. This increases with decreasing shear rate, but saturatgs at

implies that a bubble does not have to reverse direction when ;-3
it travels a distance comparable to the interbubble spacing.

FIG. 4. Fitting parameters for the velocity autocorrelation func-

Thus, it is possible foC(t) to decay monotonically. guishable from those provided by Eq. 2 in Figaj3 This
The curves shown in Fig.(8) represent fits o€(t) tothe  form is a linear combination of an exponential and a
function, stretched exponential:
C(t)=exd — (t/7)"], 2

C()=aexd —t/m]+(1—-a)exd —VU/r,], (3

where 7, and B, are fitting parameters. This function evi- wherea, andr, are fitting parameters. The results terare
dently provides a reasonable fit as long as the correlatioshown as circles in Fig.(8). Evidently, C(t) is a pure ex-

function is always positive, and it gives a fairly good fit to ponential at shear rates aboye-0.01, and crosses over to
the envelope when the correlation function dips below zeropgnexponential behavior at low shear rates. The behavior of
The fitting parameters are shown in Figa# The exponent -, (triangle$ from this fit is very similar to the behavior for
B (circles starts at unity at high shear rates, and crossege fit to Eq.(2). Note that the fitting parameters and 7,
over to 0.6 at low shear rates. Meanwhile, the paramster are not a very good measure of the relaxation time since the
(triangles increases by one order of magnitude with decreasform of the fit changes with shear rate. We therefore define
ing shear rate, and levels off at aroumer 0.001. the relaxation timer, as the time in whichC(t) decays to

An alternate fitting function provides fits that are indistin- 1/e2. This definition is arbitrary; we have avoided the more
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standard choice of the decay t®because it is important to 1.1 | | ni.2
include the difference between exponential and stretched i | (a) 3 SRR
exponential decay. The time scatgis plotted in Fig. 4c). H ’
The behavior ofr, is qualitatively similar to that ofr; and 0.9 } } % 11
75, but 7. increases by a larger factor over the range of shea } 1
rates studied. L } }} 194

From these fits in Fig. 4, we conclude that the autocorre- 4.7 : lo.s
lation function has several distinct regimé$) At high shear 5 —>
rates (/=0.05), C(t) dips below zero; this is similar to the 08 } ¢ o
behavior in an equilibrium liquid(2) At intermediate shear 0.5 . } ﬁ 5 o
rates (0.0% y<0.1), C(t) decays exponentially with a de- 0k . . 805
cay time that increases with decreasing shear @eAt B )
lower shear rates (0.0@1'3/<0.01), C(t) crosses over to a 1L (b) i * . @
broader-than-exponential decay and the decay time continue o % [
to increase(4) At low shear rates ¥<0.001), the scaled 0.8 ﬂ ¢
correlation functionC(t) appears to become independent of } . % é2
shear rate(Note that the velocity autocorrelation function 0'61 } } 1 11
itself, ((Av)?)C(t), still depends on shear rate because the Blie - 4 >
amplitude((Av)?) depends ony, as shown in Fig. 2.We D P
suspect that the reason wBy(t) appears to saturate at low 0.2 1} } } E "
is that it is dominatedparticularly at short timesby the | \ . a
dynamics during rearrangement events.;AsIecreases, re- 0 (c) 0-5
arrangement events occur less frequently. Since bubbles ai
hardly move when they are not rearranged, the contribution ar I b
to the velocity autocorrelation is very small, except during %e 3 %
rearrangement events. Therefore, the amplitude of the veloc ST { 7
ity autocorrelation function decreases. Since the main contri- {
bution to the autocorrelation function still comes from rear- 2r }} 7
rangement events, the shape @ft) remains the same at . o
short times. At longer time scales, however, there should be ¢ r ®
tail. We know that other autocorrelation functions, such as
the stress autocorrelation function, decay more and more ou : ' i

- . . - o 0.0001 0.001 0.01 0.1

slowly as+y decreases, with a time scatg~1/y. This time ¥

scale also sets the magnitude of the viscosity. The velocity

autocorrelation function should also reflect this slow relax- FIG. 5. Fitting parameters for the velocity correlation function
ation time. Even in simulations of equilibrium liquidg7],  F(r) as a function of shear ratéa) Fitting parameters to Ed4),
this time scale is difficult to resolve because short-time feawhere B, (circles is the stretching exponent and (triangles is
tures dominate the velocity autocorrelation function. We surhe correlation lengthib) Fitting parameters to Ed5), where«,
mise that we do not observe the tail because the amplitude [§ircles is the coefficient of the exponential term agg(triangles
similarly small in the sheared foam. is the corrzelatlon length(c) The distancet, over whichF(r) de-

Similar behavior is observed in the spatial correlationc®s 1 1€°.
functionF(r). The curves shown in Fig.(B) are fits ofF(r)

: ues ofa, and &, are shown as circles and triangles, respec-
to the function r & g p

tively, in Fig. 5b). The agreement between the results from
F(r)y=exd — (r/&)P], (4)  the two fits, Eqs(4) and(5), confirms that the spatial corre-
lation function decays as an exponential at high shear rates,
whereé, andg, are fitting parameters shown in Figah At~ and as a stretched exponential at low shear rates, but that the
high shear rates, the exponeit is unity, as shown by the correlation length remains short at all shear rates. We have
circles in Fig. %a). Between '?,%0_02 and '7%0.001, B, a[so plotteds,, the dis.tance at which(r) decays to ¥, in
drops to roughly 0.5. Meanwhile, the correlation length ~ Fig- 5(). Note that¢, increases by only about a factor of 3
(triangles increases slightly, but is essentially fixed aroundOver four decades of shear rate, and is comparable to the
the bubble diameter at all shear rates. average bubble diameter. .
We have also used an alternate fitting form Fr): Why do we observe exponential decay@(t) andF(r)
at high shear rates and stretched exponential dec&(Of
F(r)=a,exgd —r/&]+(1—a,)exd — \/@], (5) andF(r) at low shear rates? In viewing movies of our simu-
lations, we have observed that the rearrangement events are
wherea, and¢, are fitting parameters. The quality of the fits discrete and localized at low shear rates, but are continuous
is indistinguishable from those for E@}). The resulting val-  at high shear rates. The size of rearrangement events that we
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FIG. 7. Area fraction dependendg) The relaxation timer, as
a function of¢ at two different shear rates. At=10"* (circles, Te
increases ag decreases towards close packing.y& 102 (tri-
angle$, 7. is independent ofp. (b) The correlation lengtt€, is
independent of¢ at both y=10"% (circles and y=10"2 (tri-
angles. For y=10"2, error bars are omitted because they are
smaller than the symbols.

FIG. 6. System-size dependende) The relaxation timer,,
over which the velocity autocorrelation functidb(t) decays to
1/e?, at two different shear rates. AA:: 104 (circles, 7, decreases
with increasing system size. At=10"2 (triangles, 7, is indepen-
dent ofN. (b) The correlation lengtl,, over whichF(r) decays to
1/e2, at two different shear rates. At=10"* (circles, &e increases
with increasingN, but aty=10"2, &e is independent oN.

observe is consistent witlfe, namely, of the order of a are short ranged and decay exponentially. On the scale of the
bubble diametef10]. Similar results are seen in experiments system-size, there are no long-ranged correlations and there-
on three-dimensional foanj§] and two-dimensional foams  fore there are no system-size effects. At low shear rates,
[17]. At low shear rates, when the flow is intermittent, therehowever, the correlations decay as a stretched exponential
are, therefore! pronounced. kingtic het_erogeneities in the SYSiue to kinetic heterogeneities. At=10%, we note that
tem. We_ believe that this gives rise to the stretchedr(r) has not decayed to zero on the scale of the system size
exponential decay dZ(t) andF(r), in much the same Way j,'Fig 3(b). In order to obtain a good average over the ki-
as kinetic heterogeneities give rise to stretched-exponenti etic heterogeneities, one must study the system on length

decays of correlations in glassforming liquids. scales large as compared to the size of the heterogeneities
(&) Therefore, there are slight differences between the 225-

1. System-size dependence particle and 625-particle systems.
We have calculated the velocity correlations for three dif-
ferent system sizef\=64, N=225, andN=625 bubbles, 2. Area fraction dependence
all at an area fractiogp=0.9. The quantities, and &, are Earlier studie§13,8—10,14 have suggested that there is

plotted as a function oN in Figs. 6a) and @b) for two 5 special point near random close packing* &0.84) and
different shear rateg=0.01 andy=10"“. We find thatr,  zero shear rate that has some properties reminiscent of a
and¢, are independent of the system size at the higher shearitical point (and others that are definitely unusual for a
rate y=0.01. At y=10"% however, r, decreases ang, critical point[14]). At close packing, the pressure and shear
increases with the system size. A9r64, there is a pro- Modulus vanish as power lay3,8,14, the stress relaxation
nounced difference in the correlation functions, but bath  time becomes very largg8], and the distribution of ava-

andé&, appear to approach saturation for the two largest sysl@nche sizes appears to approach a pure power| I
tem sizes; their values foN=225 andN=625 overlap Here, we examine the dependence of the correlation func-

within the error bars. tions on area fraction. The correlation time and distange,

Why do system-size effects appear at low shear rates, b@nd €. are shown in Figs. (& and b) for two different
not at high shear rates? At high shear rates, the correlatiorshear ratesy=0.01 andy=10"“. Evidently, the correlation
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FIG. 9. Diffusion coefficient obtained from displacement distri-
butions (open circleg and by integrating the velocity autocorrela-
q tion function over time(solid triangle$ as a function of shear rate.
The two results are the same, as expected. Note that the diffusion
coefficient cannot be described as a pure power law in shear rate.

= y/L=0.5
y/L=0.75

<(Ay )2>

dimensional diffusion equation with reflecting boundaries.

Both fits yield the same diffusion coefficient. We have also

plotted the mean-squared displaceméfit(t) —y;)?) as a

0 & : s : : ‘ function of time in Fig. 8b) for three starting values foy; ,

0 100 200 300 400 500 600 namely, 0.28, 0.8_, and 0.7&. By symmetry, the results

for y;=0.29. andy;=0.79_ must be the same, on an aver-
FIG. 8. (a) Distribution H(y,t,y;) of y coordinates of bubble g€, so this serves as a check on our statistics. The curves are

positions at times= 100 (solid) andt= 300 (dotted, given an ini-  fits to the data to the one-dimensional diffusion equation

tial position of y;=0.25.. The curves are fits to the one- With a single fit parameter, namely, the diffusion coefficient

dimensional diffusion equation with the same diffusion coefficientD,, for all times and ally; . The agreement between the simu-

at both times(b) Mean-squared displacements in theirection for ~ lation data and the curves shows that bubble motion in the

initial y positions ofy;=0.28_ (circles, y;=0.5. (squares and transverse direction is diffusive.

y;=0.79 (triangles. The curves are fit to the one-dimensional dif-  We have also calculated the diffusion coefficient by inte-

fusion equation with the same diffusion coefficient aganfor all  grating the velocity autocorrelation function according to the
times and ally; . equation

time 7, increases in the double ”mi’;;/ﬂo and ¢— ¢*, D=fx(vy(t)vy(0)>dt. (6)
consistent with previous conclusiof8]. However, the cor- 0

relation lengthé, has no noticeable dependence@®nThus,
¢. does not diverge ag— ¢*. In Fig. 9, we plot the diffusion coefficient obtained by inte-
grating the velocity autocorrelation function over tits®lid
triangles as well as the diffusion coefficient obtained by
fitting displacement distributionsopen circles for several

As a check on our results for the velocity autocorrelationdifferent shear rates. The two results are in excellent agree-
function, we have calculated the self-diffusion coefficient inment, as they ought to be.
the transversgy) direction (i.e., perpendicularto the shear Figure 9 shows that the diffusion coefficient decreases
direction in two different ways. First, we obtain it by inte- with decreasingy. This is similar to the behavior of the
grating the velocity autocorrelation function over time. Sec-giffusion coefficient for a particle in an equilibrium liquid,
ond, we calculate the distribution of particle displacements ifyhich decreases with decreasing temperature. However, the
the y direction, H(y,t,y;), and fit the results to the one- yelocity autocorrelation function, whose integral over time
dimensional diffusion equation with reflecting boundaries.yjelds D, appears to be very different in the two cases. In
Here,H(y,t,y;) is the probability of finding the particle gt  |iquids, D decreases precipitously with decreasing tempera-
at a timet after the particle was af; . ture because the positive and negative portion8(@j come

A typical result for the y-displacement distributions closer to canceling each other, while the zero-time value of
H(y.t,y;=0.29.), wherel is the spacing between bound- the correlation functiofAv?) decreases linearly witff as
aries in they direction, at two different time intervals at a 2xT/m. In the sheared foam, in contrast, the diffusion coef-
shear rate ofy=0.05 is shown in Fig. @. The curves ficient decreases with decreasing shear rate because the zero-
through the data are fits to the solution of the one-time value of the correlation functiogfiv?) decreases, while

B. Transverse diffusion coefficient
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FIG. 10. Distribution ofy coordinates of bubble positions at ~ FIG- 11. Distribution of they component of bubble velocities as
time t=25, given an initial position of;=0.29_, at high shear rate & function of shear rate. The units for velqmty in this plot corre-
(y=1). The two peaks flanking the central peak show that theSPond toL/74. Note that at high shear rateg%0.02), the distri-
bubbles tend to get trapped in tlyedirection and do not simply bution narrows with decreasing, but does not change shape. For
diffuse; this is an evidence that the bubbles are organized int@/<0.02, the distribution develops a tail at high velocities.
strings at high shear rate.

total distribution. In all cases, we calculate the distribution of
C(t) is always positivegsee Fig. 3. As discussed earlier, in the absolute value of the velocity because the distributions
dense liquidsC(t) typically crosses over to a negative value are symmetric imAv,,. All three distributions show a quali-
on the collision time scale because the particles have kinetigatively similar behavior; asy decreases, the distributions
energy. . become narrow. Above the crossover shear mte0.02,

At high shear rates, aroung~ 1, the displacement distri- the functional form of the distribution does not appear to
bution does not appear to be diffusitiecannot be fit by the  depend on shear rate, but the width of the distribution de-

solution to the one-dimensional diffusion equation with re- reases with decreasing Below y,, the width of the dis-

flecting boundaries A typical result for the displacement bt ) q ith d i abut th
distribution in this regime is shown in Fig. 10. This figure is tnbution continues to decrease with decreasygout the

based on 20000 different trajectories. Each trajectory begin@iStribution develops a progressively larger tail at high ve-
aty,=0.28. and ends at some heigptfter a time interval locities. The dependence of the width of the distributiéw,

of 25. Figure 10 is a histogram of the finalvalues. When ©n shear rate was shown earlier in Fig. 2.

we view movies of the simulations in this regime, we ob-

serve that the bubbles organize into strings that move in the A. System-size dependence

x direction. Similar strings have been observed in simula- Quyr results forP,,(Av,) are independent of system size
tions of colloids under shear and are believed to be a systenfigr the two sizes we have studied, namelly= 225 bubbles
size effec{28]. In our case, we find that the observed behav-and N=625 bubbles, at an area fraction ¢£=0.9. This is

ior depends on the boundary conditions; if we use periodigjustrated in Fig. 12, which shows the distributiéy ,(Av,)
boundaries in thg direction instead of fixed boundaries, we for N= 225 (symbolg and N=625 (lines at three different
find that strings do not form ag=1 and that the displace- shear rates, ranging from high to low. The slight difference at
ment distribution remains diffusive. Thus, the strings we ob-y= 105 s probably due to the fact that we have better sta-
serve appear to be finite system-size artifacts. tistics for the larger system.

IV. RESULTS: VELOCITY DISTRIBUTION B. Area fraction dependence

In an equilibrium Hamiltonian system, the velocity distri- ~We have studied four different area fractions above
bution of particles is Gaussian with a width that depends orthe close-packing value of ¢.~0.84, namely, ¢
the temperature and the particle mass. In our driven dissipa= 0-85,0.90,0.95,1.0. In these runs, the dimensions of the
tive system, there is no particle mass because we neglegystem were held fixed and the number of bubbles varied to
inertia, and there are no thermal fluctuations. However, theréhange the packing fraction; &t=1.0, the system contains
are fluctuations that arise when the sheared bubbles jostl=250 bubbles. The distributioR,,(Av,) at a low shear
each other. The resulting distribution for theomponent of  ratey=10"° is shown for these different values #fin Fig.
the velocity(transverse to the shgas shown in Fig. 11 for 13(a). Interestingly, we find that for the three highest area
a 625-bubble system @=0.9. The distributions$,,(Av,) fractions, the shape of the distribution is roughly the same,
andPgn(Avy) (i.e., the distributions of velocities incurred  but for $=0.85, the area fraction closest #y., the distri-
when the total elastic energy is increasing and decreasin@ution has a noticeably different shape and is significantly
respectively; see Sec.)lappear qualitatively similar to the narrower. This implies that the distribution is sensitive to the
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FIG. 12. The distributiorP ,,(Av), namely, the distribution of
y velocities when the total energy increases as a function of system o N ]
size. The area fraction is fixed a@t=0.9. The symbols correspond ~ FIG. 14. Distribution ofy velocities,P(Av,), at different shear
to N=225 and the curves td=625. At each shear rate, there is no rates on a semilog plot. Here, the veloclty is scaled bysv, the
significant difference between the results for the two different sysstandard deviation of the distribution. A Gaussian distribution is a
tem sizes. Error bars are not shown if they are smaller than thbalf-parabola and is shown in gray. At high shear ratgs0.01),
symbol. the distribution is approximately Gaussian. At lower shear rates,

however, the velocity distribution develops a much broader tail.

area fraction forg close to¢., but is relatively insensitive
to ¢ at values far abovep.. It is not surprising that the get weaker asp decreases because the bubbles are less
distribution is narrower neap. ; the velocity fluctuations are tightly packed.
driven by the repulsive interactions between bubbles, which ™ p¢ high shear rates, we find that the width of the distribu-

tion increases slightly but systematically with decreasing

10° area fraction, as shown in Fig. (8 for the distribution
10° - 1 Pup(Avy) at y=1.0. This is the opposite of the trend ob-
10° L i served at low shear rates. At these high shear rates, viscous
. el | dissipation is much more important than the repulsive inter-
<>1> ) actions between particles. As we saw from the displacement
~a 10 - 7 distribution in Fig. 10, particles tend to organize into strings
o 10° | § along the shear direction that are held in place by the repul-
101l | sive interactions; at high shear rates, repulsions therefore
" tend to suppress velocity fluctuations in thelirection. We
107 T surmise that due to this reason the distribution grows broader
10°° - as the area fractiotand, correspondingly, the strength of
10°  10°°  0.0001 °-°°1Av 0.01 01 1 repulsive interactionsdecreases towards, .
y
10 ' ' ‘ C. Shear rate dependence
! | The shape of the distribution changes markedly with shear
0.1 . 1 rate. In Fig. 14, we have replottee(Av,) as a function of
~. 0.01} ¥=1.0 ] Avy on a semilog plot. Here, we have scalad, by the
g 0.001 i standard deviation of the distributioay, shown earlier in
n.% . Fig. 2. At high shear rates, the distribution does look ap-
: 10 T proximately Gaussiafa Gaussian distribution is plotted for
10°F . comparison in heavy black; it is a half parabola on a semilog
10°k (b) i plot). This is not surprising, given our results for the velocity
o7 . correlations in Sec. lll; the velocity correlations decay very

102 rapidly with separation at high shear rates so that different
bubbles are essentially uncorrelated with each other. There-
fore, the distribution is Gaussian, as it is in an equilibrium

FIG. 13. Velocity distributionP,,(Av,) as a function of area liquid. At lower shear rates, where velocities of different

fraction ¢. (a) At a low shear ratey=10"°, the distribution is bubbles are correlated, the distribution clearly develops a

independent ofp for $=0.90, but is slightly narrower near close non-Gaussian tail. Our results suggest the following picture:

packing at¢=0.85. (b) At a high shear rate of=1.0, the distri-  as the shear rate decreases, the scale of velocity fluctuations
bution widens slightly with decreasing. also decreases. However, once the flow becomes intermittent

0.001 0.01
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FIG. 15. Fourier transform of the velocity distribution, the func-
tion Q(k) as defined by Eq(8), for velocities collected while the
total elastic energy is increasin@,,, and decreasingq,. As Y
decreaseq,, andQgq, deviate from a power law df? (Gaussian
behavioy at smaller and smaller values kf

(v<w,), rearrangement events involving several bubble
lead to a non-Gaussian tail. At very low shear rates, the di
tribution arises entirely from rearrangement events. The o
servation of a non-Gaussian velocity distribution is the remi
niscent of recent results for driven granular gas2$-32,

although it is not clear for all geometries that granular gase

approach a Gaussian distribution at high driving rates.

The rest of this section is devoted to the nature of the . )
rsupported by the observation that the power-law behavior at

distribution at low shear rates. It proves useful to Fourie
transform the velocity distribution:

- 1 (=
P(k)E;fo dAv,P(Avy)cogkAv,). (7)

We define the function
Q(k)=—InP(k). ®)

WhenP(Av,) is Gaussian, theQ(K) is a straight line with

a slope of 2 on a log-log plot, with a prefactor &2/2. The
functions Q,,(k) and Qqgn(k) are derived fromP,(Av,)
andPgn(Avy) through Eqgs(7) and(8). Figure 1%a) shows
Qup(k) vs k for several different shear rates. As expected

Qup(K) is a straight line with a slope of 2 at high shear rates. , ~ 1 (

As vy decreases below 0.01-0.05, however, we find that
Qup(k) deviates away from a power law of 2 at highAt

low k, however,Q,,(k) is still approximatelys, k?/2 for y

S

s

b(e.g., the granular temperatlirscales sublinearly with the

PHYSICAL REVIEW E67, 061503 (2003
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FIG. 16. Coefficiens of k? at low k for Qup(K) (triangles and

Qqn(k) (circles. The straight line is a fit 0§,, to a power law of
0.67.

=5x10"4, and we can extract the coefficieff,. When a
similar procedure is carried out f@y,(k), it leads to simi-

lar results. The resulting values sf, andsy, are plotted in
Fig. 16. Fory=0.01-0.05, both distributions are Gaussian
S0 Qup and Qq, are pure power laws with exponeat=2
ands,,=sq,. Below y~0.01, howeverQ,, and Qq, both
deviate from the Gaussian behavior at higtand the coef-
ficientss,, andsy,, obtained from fits t@Q,, andQ, at low

k are no longer identical to each other. Figure 16 shows that
San>Sup at low shear rates. Note that we also find thgatis

a power law in'y over the entire range of shear rates, with an
exponent of~=2/3, as shown by the dotted line. This is con-
sistent with results on other driven athermal systems such as
ranular media, where the magnitude of velocity fluctuations

“driving velocity [23—-26.

At shear rates below 810 4, the lowk behavior is no
%onger a power law with an exponent @f=2, so we can no
onger extracts,, or sq,. It is possible that this is because
the statistics are poor at high velocities. This speculation is

low k disappears at even higher shear rates for shorter runs or
smaller systems. Although we cannot extragf, we can
extrapolate the power-law behavior shown in Fig. 16 to shear

rates below %10°% Then, if we define Q,u(k)
EQup(k)/sﬁp at all shear rates, we see that the lkwehav-
ior is independent of the shear rate, as shown in Fig. 17. This

plot suggests that ag decreases below=0.01, the highk

behavior ofQ, (k) crosses over to a smaller power law. The
plot also suggests that férless than some value, s&y,,, ,
Qup Scales ak® (Gaussian behaviprbut that the value of
kow decreases with decreasing shear rate.

Figure 18a) shows Q, (k) together with speculative
asymptotic fits to the highk- and the lowk behavior. The
‘highk asymptotic curve corresponds to a power law with
Cauchy distributiopand the lowk asymptotic curve
corresponds to a power law witthi=2 (Gaussian distribu-
tion), obtained by extrapolating the power-law fit 8,
shown in Fig. 16. The same Cauchy and Gaussian distribu-
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10* nent (we find that 1.1 provides a better)fitA distribution
1000 1 with Q(K) given by a pure power law with an exponemt
<2 is known as a Levy distributiofthe Cauchy distribution
100 - is a special case of the Levy distribution, with=1) [41].
Q 10t Despite our results, which are consistent with a Levy distri-
up 1L bution, we suspect that this is not the final limiting behavior
at vanishing shear rate. A Levy distribution has diverging
0.1+ moments. We speculate that there is an intrinsic cutoff to the
0.01 1 divergence set by a typical maximum velocity of a bubble
0.001 | during a rearrangement event, Wﬂch is roughly the correla-
0.0001 tion length for velocity fluctuations$, divided by the corre-
0001 0.1 1 10 100 1000 lation time 7. Physically, this velocity scale is roughly a

k bubble diameter divided by the duration of a rearrangement
event. In our units, the system sizelis= 1, the time scale set
by the spring constant and the friction coefficientris 1,

and the characteristic velocity/ 7 iS v n4=0.01. This is the
upper end of the velocity fluctuations that we can observe at
low shear rategsee Fig. 1], given our computational re-
sources.

In general, one would expect higher velocities during re-
arrangement events when the elastic energy is decreasing.
Therefore, one would expect the distributiBg,(Av,) to be
broader tharP,(Av,). This is indeed the case at low shear
rates, as shown by Fig. (& for y=10"°. The arrows mark

he values ofs,, and sy, obtained from the lovk behavior
of Qup and Qq,. These parameters are also plotted in Fig.

FIG. 17. Fourier transform of the velocity distributio,,,(k),
scaled to collapse at low, where Q,(k) is proportional tok?
(Gaussian behavipr

tions are shown in redlelocity) space in Fig. 1&) together
with the distributionP,(Av,). The distribution follows a
Cauchy distribution fairly well at small velocities, but is cut
off at high velocities. It is possible that the system crosse

over to a pure Cauchy distribution in the limjt—0, and
that the cutoff at lovk gets squeezed down ka=0. Another
possibility is that the Fourier transform of the distribution
approaches a pure power law with a somewhat higher exp

1000 : : 16, which shows thas,, decreases relative &, with de-
. creasing shear rate. The statistics are not as goos,foas
o9, Rt ] for s, at low shear rates, but the discrepancy betwegn
10 || 7o Gaussian -7 _ ands,, cannot be accounted for by the difference in statis-
tics. We believe that the difference reflects the true dynamics
Q 1 7 of the systems,,, contains large velocities that occur during
wa1l i rearrangement events, whidg, does not. We have not char-
acterized the distributiof®y,, further; its Fourier transform
0.01 1 1 Qun does not appear to obey a power law at Highs shown
0.001 |- 1 in Fig. 15b), although it may approach a power law-e0.5
0.0001 , ‘ , at highk and low y.
0.01 0.1 1 10 100 Note thats,,= sy, for shear rateé/>0.01. We also find
10° . . k . . thatP,=Pyn in this regime, as shown in Fig. 8. This is
] not surprising; at high shear rates, all the bubbles keep rear-
1000F——-—-— — P av) || ranging all the time, so there is no distinction between the
i h - —-Gaussian| | bubble motion when the energy is decreasing and increasing.
~ 10l N | It is only at lower shear rates when the bubble motion is
3 L =10 5 i punctuated by well-separated, intermittent rearrangements
e N that there is a significant difference between the two distri-
o o1 i butions.
i \ i We note that during a large rearrangement event, it is
0.001 | \ . : : : .
| (b) \ | possible for the energy to increase sl!ghtly for a short time
o . . L even though there is an overall drop in the energy over the

period of the entire event. The motion during the energy
increase would be captured B,,. The original purpose of
sorting the velocity fluctuations into two distributions, de-
FIG. 18. (a) Fourier transform of velocity distributio,,, ata ~ pending on whether the total energy was increasing or de-
shear rate ofy=10"5, along with fits to the limiting lowk behav- ~ Creasing, was to isolate rearrangement events Ryg.
ior (Gaussiaj obtained by extrapolating the curve in Fig. 16, and However, this picture is a simplistic one because the total
to the highk limiting behavior (Cauchy distribution The corre- ~ energy might be increasing even during a rearrangement
sponding velocity distribution is shown itb), together with the —event. Thus,P,, must still contain some rearrangement
same Gaussian and Cauchy fits in velocity space. events. Even though the original motivation for breaking the

10°° 0.0001 0.001 0.01 0.1
AV
y
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10 | i FIG. 20. Velocity distributiond®(Av,) andP(Av,) of fluctua-
tions in thex andy directions, respectively. At high shear rates,
~ 1r B these are not quite the same; the distribution is broader irxthe
up . .
i 01l — — -down i direction.
a
0.01 ¢ 1 V. DISCUSSION
0.001 ) We have shown that the character of velocity fluctuations
0.0001 |- . changes markedly at a crossover shear mge We have
10°° ‘ ‘ ‘ argued that these changes arise from the crossover from
10°  10° 0.0001 0.001 0.01 0.1 1 smooth flow to intermittent rearrangement events, and that

AVY rearrangement events completely control the behavior in the
zero shear rate limit. Based on this argument, one would
expect'yx=yy/rd, where y,~0.01 is the yield strain and
79=1 is the duration of a rearrangement eygnour units.
Above vy, /74, the duration of a rearrangement event exceeds
the time between rearrangements, so the flow should be
smooth. Belowy, /74, the rearrangement events are sepa-
rated in time. This prediction agrees well with our observa-

tions. Abovey,, the velocity fluctuations are exponentially

o . . correlated in space and time, and follow a Gaussian distribu-
distribution into two parts appears to be naive, there is an-,

other reason to studf,,. Recall from Fig. 1b) that the tion. Below y,, the velocity fluctuations decay more slowly

: n exponentially in space and time, and follow a distribu-
average duration of energy drops decreases as a power | ) .
g gy P b Ion that is broader than Gaussian.

With shegr_ “"‘t‘? relative to the average duration of €NeT9Y " n addition to qualitative observations of the shapes of
rises. This implies that the energy is decreasing only during Qistributions and correlation functions, we have gathered

vanishing fraction of the time ag—0. As a result, the full - considerable quantitative information on how various quan-
distribution approacheB,, in the limit of vanishing shear tities depend on the shear rate. These quantities inchyde

FIG. 19. The velocity distributions collected when the total en-
ergy is increasing R,,) and decreasingRyn), respectively. The
arrows mark the coefficients,, and sy, of k? obtained by fitting
Qup andQq,, respectively, at lovk. These coefficients provide a
measure of the width of the distribution®) The distributions at a
low shear rate ofy=10"°. (b) The distributions at a high shear rate

of y=1072.

rate[ P(Av,)—P,,(Avy) as y—0]. and &, the time and length scales over which the velocity
We have also collected the velocity fluctuation distribu-correlations decay to &7 of their original value at=0 and
tion in thex direction(the shear velocity directionP(Av,). =0 [Figs. 4c) and gc)], as well as the diffusion coefficient

The behavior ofP(Av,) is qualitatively the same as the D (Fig. 9 and the standard deviation of velocity fluctuations,

behavior ofP(Av,) described above. At low shear rates 5tv (Fig. 2)'”']” plrevtlpus studies, <\theh ha\t/e (()jbt?jw:jed .tht'.a shefar
=<0.01, the two distribution®(Av,) andP(Avy) are iden- Swessoyy, the eastic e'nergE, and the standard deviation o

) . ) ) ) elastic energy fluctuationgE, as a function of shear rate.
tical. Fory=0.01, P(Av,) is Gaussian, but with a standard e first note that the behavior @ is trivial, in which & is
deviationo that is slightly greater tham, , as shown inFig.  g\ways approximately the bubble diameter, and increases by
20. This could be due to the tendency of the bubbles tgnly a factor of 2 or so over the entire ran(feur decades
organize into strings at high shear rates, as evidenced kyf shear rate. We will therefore consider the bubble diameter
movies of the simulations. Once the particles organize intqj to be the only important length scale. We will now show
strings moving in the shear direction, one would expect flucthat the measured quantities are tied together over the entire
tuations in they direction to be suppressed relative to fluc- range of shear rates through a few simple relationships that
tuations in thex direction. yield insight into the nature of foam dynamics under shear.
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FIG. 21. The Stokes-Einstein relation. The open circles repre-
sent the diffusion coefficient calculated from tlgedisplacement
distribution. The triangles represent the standard deviation of th
elastic energy,6E, divided by the viscosity and average bubble
diameter, up to a constant coefficient of 0.053. The excellent agree- B. Power balance

ment between the circles and triangles shows that the Stokes- | teadv-state sh d t Il th lied t
Einstein relation is obeyed with an effective temperature propor- n a steady-state s _ea_re oA e”." a .e power supp 1ed to
tional to SE. the system must be dissipated. This provides a scaling rela-

tion between the shear stress and the velocity fluctuations.
The power supplied by the external driving force is given by
0%y YA, Wherea,,y is the power supplied per unit area and
The behavior of the self-diffusion coefficient of a bubble A is the area of the system. The power dissipated by the flow
in the transverse directidd, is shown as a function of shear arises from the velocity difference between the bubble veloc-
rate in Fig. 9. Note thaD, increases withy. This is in [ty and the average velocity due to the shear flow at the
accord with our expectations: the diffusion coefficient arise?0Sition of the bubble. The typical force between neighbor-

from the jostling of bubbles under shear flow, so it shouldiNd Pubbles ishév, whereb=1 is the friction coefficient in
. L . N . the model anddv is the characteristic velocity fluctuation
increase withy and vanish in the limity—0. Figure 9

. . : ~ (the standard deviation of velocity fluctuation distribujion
shows that the behavior @), is not a simple power law in - the hower dissipated is the dot product of the force and the
. To gain insight into the dependencedj on shear rate, velocity, so it isbév? for each bubble, oNbsv? altogether.

we have measured the viscosity of the shear-thinning foanThus, we have the relation

7;('7/), and the fluctuations in the elastic energy of the ) 5

bubbles,SE?=((AE)?). The latter quantity increases with oxyYA=NDSv". (10

shear rate because there are more overlaps between bUblee have verified that this relation does indeed hold for our

FIG. 22. The magnitude of velocity fluctuations is set by the
ower supplied to the system. The power supplied by the shear
triangles is dissipated by velocity fluctuatior(sircles.

A. Stokes-Einstein relation

We find that system by plotting the left and right hand sides of Bd) as
SE a function of shear rate in Fig. 22. The agreement is excel-
D=C % 9) lent.

C. Final remarks

whered is the average bubble radius a@d=0.0215. Both This St%‘dy highlights the importance of the crossover
sides of the above equation are plotted as a function of she&P€ar ratey,=yy /7y, the yield strain divided by the dura-
rate in Fig. 21. The expression in E@) has the same form tion of a rearrangement event. A number of quantities have
as the Stokes-Einstein equation for thermal particles, witheen shown previously to exhibit a crossoveyatvithin the

SE instead of the thermal energyl. This suggests that fluc- model. We have compiled all the quantities into Table I. In
tuations in the elastic energy give the bubbles random kick§ach case, deviations from the high shear rate behavior ap-
that cause them to diffuse. In other words, diffusion in ourP€ar at shear rates of 0.01 or Q.OZ, and the limiting low shear
driven athermal system resembles diffusion in a thermal sys-ate behavior is reached aroune=10"3. It is important to

tem with an effective temperature given by the scale of po+eécognize that although there appears to be a change of be-
tential energy fluctuations. In another paper, we have mediavior aty,, the crossover shear rate is not necessarily well
sured effective temperatures based on various lineadefined. The value of the yield straip, depends on the time
response relations, and have shown atC' T4/ nd [12].  scale on which the stress is measured. Thus, there is some
Thus, the scale of energy fluctuations sets the scale of thembiguity iny,, similar to the ambiguity that arises in stud-
effective temperature. ies of the glass transition.

061503-14



VELOCITY FLUCTUATIONS IN A STEADILY SHEARED.. .. PHYSICAL REVIEW E67, 061503 (2003

TABLE I. Quantities that exhibit a change of behavior arougdaccording to simulations on the Durian
model. The numbers following each quantity indicate the reference in which the behavior was discussed.

Quantity Behavior abovey, Behavior belowy,
Energy(8,9] Increases withy Approximately independent of
Shear stresgs,9] Increases withy Approximately independent of
Ter [11,12 Increases withy Approximately independent of
Avalanche distribution$10] Depend ony Approximately independent of
Rearrangement event ratgid] Depend ony Approximately independent of
Viscosity [11] Arrhenius inTg¢; Super-Arrhenius i g¢;
Velocity distribution Gaussian Broader than Gaussian
C(t) [see Eq(1)] Exponential decay Slower-than-exponential decay
F(r) [see Eq(1)] Exponential decay Slower-than-exponential decay

Experiments on both foamg21,33 and emulsiond 6] tum terms in the Hamiltonian. In our system, the velocity
show a crossover in the behavior of the shear stress, similalistribution is definitely not Gaussian at shear rates below
to that seen in simulation,9], where the shear stress de- - in 4 thermal system, the distribution is always Gaussian
creases with decreasing down to y, and then levels off. because the Hamiltonian is always quadratic in momentum.
Measurements on a commercial shaving cr¢&yh6,2] and  Nonetheless, there are some important and striking ways in
on bubble raft$33] show that the stress exhibits a crossoverwhich the behavior of our system is similar to that of a ther-
in shear rate dependence from one power law to another neafal system. The self-diffusion coefficient in the direction
a characteristic shear rate ¢;=O.1 s 1. Below this shear transverse to shedd, satisfies a Stokes-Einstein relation
rate, rearrangement events in a three-dimensional foam camth the thermal energkT replaced by the characteristic

be resolved using diffusing-wave spectroscopy; abgye potential energy fluctuatiodE. Moreover, we have found
the flow appears to be affi®,16]. The response to a step that the idea of an effective temperature is useful; definitions
strain imposed on top of the steady shear also changes wifff temperature calculated from different linear-response rela-
shear rate[21]: the instantaneous shear modulus is zerdions yield the same resulL2]. _

above 'yx and nonzero below. Finally, there is a qualitative When might the idea of an effective temperature be use-

" o
change in the nature of fingering patterns observed when g 12 We have proposed a criteriofl2] based on the

. : . uctuation-dissipation relation. In an equilibrium system, the
is pumped into a foanj34]. For shear rates abovg,, the  amount of dissipation in the system is controlled by the am-

fingering pattern is smooth and viscous in character, whilgjitde of fluctuations. In a driven dissipative system, we can
for shear rates belowy,, it is jagged and elastic. turn this around and ask whether the amount of dissipation

In simulations of model glassforming liquids such ascontrols the amplitude of fluctuations. We can answer this by
Lennard-Jones mixtures, a similar crossover is observed assaudying the power dissipated by the system. In steady state,
function oftemperature dynamical correlation functions are the power supplied to the system must be balanced, on an
exponential above a characteristic temperatdie and  average, by the power dissipated. The power can be dissi-
stretched exponential beloW,, the viscosity is Arrhenius pated in two ways—Dby the average flow and by fluctuations
aboveT, and super-Arrhenius beloW, [37,38, the poten- around the average flow. If nearly all the power supplied by
tial energy of inherent structures is constant ab®yeand the driving force is dissipated by fluctuations, then the am-
decreases witll below T, [35,36], kinetic heterogeneities plitude of fluctuations is controlled by the amount of dissi-
appear belowT, [38,39, and translational diffusion, relax- pation, and there is a fluctuation-dissipation relation. On the
ation, and rotational diffusion become decoupled below other hand, if not all the power is dissipated by fluctuations,
[38,39. then the fluctuations are smaller than that allowed by the

The resemblance of behavior near the crossover strain rammount of dissipation and the relation breaks down. Thus,
¥, to behavior near the crossover temperature in supercooletie speculated12] that the concept of effective temperature
liquids, T, raises the question of whether sheared systemis useful only if nearly all the power supplied by the driving
can be described as thermal ones. A number of driven paforce is dissipated by fluctuations. In this paper, we have
ticulate Systems’ such as shaken granu|ar matdﬁa'g_q, shown that the width of the VeIOCity diStI’ibUtiOIZﬁ,v, in-
sedimenting colloid{42], and gas-fluidized particleg43] ~ creases less rapidly than the shear (atee Fig. 2 In par-
show surprisingly a thermal behavior. In some ways, velocityticular, we findév ~ (yd)?, whereB~0.6. A similar sublin-
fluctuations in the system studied here are profoundly differear scaling occurs in systems other than foams. In granular
ent from velocity fluctuations in an equilibrium, thermal, materials, a similar sublinear scaling of the velocity fluctua-
Hamiltonian system. In our system, there are nontrivial spations (the granular temperaturavith respect to the average
tial correlations of the velocity; in an equilibrium system, flow was observed in hopper floyj&3], surface flowq24],
these would vanish due to separation of position and momerand shear flow$30,26] with similar
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exponentgranging from 0.5 to 0. jammed systems. Thus, our arguments suggest that the con-
The sublinear scaling is important because it suggests thaept of effective temperature should be most useful for sys-

at high flow rates, fluctuations become negligible relative tatems near the onset of jamming.

the average flow and the idea of an effective temperature

should fail. This may seem surprising, given our results for
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