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Analysis of Switching in Uniformly
Magnetized Bodies

Michael J. Donahue and Donald G. Porter, Member, IEEE

Abstract—A full analysis of magnetization reversal of a uni-
formly magnetized body by coherent rotation is presented. The
magnetic energy of the body in the presence of an applied fieldH
is modeled as = ( 0 2)M M 0H M, where de-
notes a matrix transpose. This model includes shape anisotropy,
any number of uniaxial anisotropies, and any energy that can be
represented by an effective field that is a linear function of the
uniform magnetization M. The model is a generalization to three
dimensions of the Stoner–Wohlfarth model. Lagrange multiplier
analysis leads to quadratically convergent iterative algorithms for
computation of switching field, coercive field, and the stable mag-
netization(s) of the body in the presence of any applied field. Mag-
netization dynamics are examined as the applied field magnitude

approaches the switching field , and it is found that the
precession frequency ( )(1 4) and the susceptibility

( ) (1 2).

Index Terms—Coherent rotation, micromagnetic simulation,
single-domain particles, standard problems, Stoner–Wohlfarth
model, uniform rotation.

I. INTRODUCTION

STANDARD problems have proven useful for verifying the
calculations of micromagnetic simulations [1], [2]. Partic-

ularly useful are simple problems with solutions that can be de-
termined analytically. For example, it was determined in [1] that
an average field method is superior to a sampled field method for
calculating self-demagnetizing fields due to its agreement with
analysis of an ideal uniformly magnetized body. An assumption
of uniform magnetization is one way to bring examination of
magnetization switching within the reach of analysis.

The study of magnetization switching in a uniformly magne-
tized body by uniform rotation has been a topic of interest in its
own right as well. Most widely known is the Stoner–Wohlfarth
model [3] that predicts the switching field for a body with
anisotropy completely characterized by a single axis. This
simple model has been extended in many ways. Most relevant
to our work is the extension to an arbitrary shape anisotropy
[4] and an additional uniaxial anisotropy [5]. Solutions of
these extended models have been determined by tabulation
of energies sampled over a two-dimensional (2-D) space of
magnetization directions, and interpolation between tabulated
values to find energy minima.

In this paper, we consider and analyze a more general class of
uniformly magnetized bodies, any body for which the magnetic
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energy in the presence of an applied magnetic fieldmay be
expressed by

(1)

where denotes matrix transpose. Here,is any (3 3) ma-
trix, so this model may include shape anisotropy, any number
of uniaxial anisotropies, and indeed any form of magnetic en-
ergy that can be represented by an effective field that is a linear
function of magnetization. Without loss of generality,is sym-
metric, because any asymmetric part contributes nothing to the
energy. Exchange energy does not appear due to the assumption
of uniform magnetization. This formulation is a three-dimen-
sional (3-D) form of the Stoner–Wohlfarth model. In this paper,
we present an analysis that classifies all stationary points of (1)
and computes them with a quadratically convergent iterative al-
gorithm over a single parameter.

An even more general 3-D model is considered in [6]. Tech-
niques for finding stationary points by geometric construction
are described. However, for actual calculation of numerical
values, searches over a 2-D space are prescribed. For the special
case covered by (1)—described in [6] as “biaxial anisotropy of
second degree”—we offer a more direct calculation algorithm.

When uniform magnetization is assumed, and the geometric
boundaries of the body include sharp corners, the demagnetizing
field at the corners diverges. It has been shown that micromag-
netic calculations remain valid in that situation [7], [8].

II. L AGRANGE ANALYSIS

To analyze the switching properties of the model described by
(1), we seek the values of that minimize for fixed

. This is a constrained optimization problem. Let
and , where , so we may consider the
magnitudes and directions of and separately. and are
fixed quantities. The applied field sweeps over a fixed axis by
variation of . The magnetization is free to rotate by variation
of . By choice of coordinate system,
is a diagonal matrix. Assume . Introduce the
Lagrange multiplier on the constraint, and solve for the
condition

(2)

to be met by stationary values of . Solving for yields

(3)
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Fig. 1. Plot ofg(�). D < D < D . h 6= 0, � = x; y; z.

and substitution back into the constraint yields

(4)
Fig. 1 contains a plot of as a function of . Each value of

determines a horizontal line in Fig. 1. Solutions of (4) for a
given are the intersection of that line with , indicated by
the arrows. The number of solutions varies between two and six,
depending on the value of .

III. CLASSIFICATION OF STATIONARY POINTS

Given , let be a particular solution to (4), and
bethecorrespondingstationarypointof (1). If,

is a small perturbation from , then the difference in energy is

(5)

where

For , all diagonal values of are positive,
so for all and is a global minimum.
Likewise, for , is a global maximum. To classify

as a local minimum, we need to show that
for all in a sufficiently small neighborhood of . Let be
the projection of onto the orthogonal complement of

. Then if is small, the difference between
and is . For our purposes we only

need expansions of to second order, so it suffices to consider
restricted to the 2-D subspace .
Moreover, since , it suffices to direct our

attention to finding extremal values ofon the closed, bounded
set , . Let and be respectively the
minimum and maximum values of on this set. Solving the
constrained optimization problem leads to the relations

(6)

and

(7)

Combining these two relations leads to a quadratic equation in
either or . There are two real roots; the smaller is, and
the larger is .

However, explicit formulas for and are not needed to
classify the stationary points of (1). These values are also the
eigenvalues associated with restriction of the bilinear formto

. Using the “interlacing property” [9], [10] (also known as
the Sturmian separation theorem), it follows that

(8)

Now consider the case . Here , so it
follows from (6) that has the sign opposite that of .
Therefore, if , then and thus is a local
minimum. If , then and is a saddle point.
A similar analysis for confirms the remaining
classifications indicated in Fig. 1.

IV. CALCULATION OF SWITCHING FIELD AND MINIMA

A sketch of a hysteresis loop is depicted in the inset of Fig. 1.
The points on the hysteresis loop are minima of (1). Satura-
tion corresponds to . Remanence corresponds to

, where magnetization is aligned with the easy axis. The
switching event is the irreversible transition from a to b that oc-
curs when the applied field magnitude reaches the switching
field , where the local minimum ceases to exist. The switch
from a to b is also illustrated on the plot of , where the
point a is located at the coordinates , defined by

and . Numeric determination of
is straightforward because is known to be in an interval

on which is strictly increasing. From an initial estimate of
, the quadratically convergent iteration de-

rived from Newton’s method is

(9)

Any iteration that produces a outside the bracketing in-
terval can be detected and replaced by a bisection step. Once
is sufficiently close to , one can calculate with (4) to
find . The error in is proportional to . Two itera-
tions of this algorithm are sufficient to determine the switching
field in the small particle limit for MAG Standard Problem
No. 2 to 16 digit precision [1].

Once we know and , we can use a similar iterative tech-
nique to find the local minimum for any given applied field,

. In this case, we want to find satisfying
on the interval .TheNewton iterate is

(10)

Again, the known interval containing the solution can be used
to assure proper convergence. Oncehas converged, use (3)
to determine the corresponding . This method can also be
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used to find the global minimum, where the relevant interval
is .

V. COERCIVE FIELD

Typically during the switching event, the magnetization in
the direction of the applied field passes through zero,
i.e., the coercive field is equal to the switching field .
However, if the field is applied at an angle sufficiently removed
from the easy axis, then there can exist a local minimum such
that with . In this circumstance, it is
possible to solve for in closed form. From (3)

(11)

One can obtain a quadratic equation inby multiplying (11)
by . There are
two roots, , , satisfying .
The coercive field corresponds to the smaller root, .
Substitution into (4) and (3) yields computed values forand

, respectively.

VI. PRECESSIONFREQUENCY

Away from equilibrium, the magnetization evolves under
Landau–Lifshitz dynamics

(12)

where and are the Landau–Lifshitz gyromagnetic ratio and
damping coefficients, respectively. If is a small perturbation
from equilibrium position , then the magnetization precesses
around and gradually decays toward . The precession fre-
quency depends upon the curvature of the energy surface in
the neighborhood of the equilibrium [2], [11]

(13)

The product is a function (6) of the applied field magnitude
and . If corresponds to a local minimum, it is natural

to ask how varies as increases toward the switching field
.
Expanding (4) in about , one finds

(14)

which combines with (6) and (13) to yield

(15)

as . This expression reveals the dependence of the
ring-down precession frequencyon the applied field magni-
tude is immediately preceding the
switching event. Similar analysis establishes that the suscepti-
bility just prior to switching as well [2],
[12].

VII. SPECIAL CASES

In all the preceding analysis, it has been assumed that
and , , . If any of these

assumptions fail, then one or more terms of (4) is removed and
analysis of a simpler problem is possible. If either or

, or if any two of are equal, then the model
defined by (1) simplifies to the Stoner–Wohlfarth model with its
known solutions. In terms of the plot in Fig. 1, one of the poles
is removed, and the saddle points disappear from the analysis.

In the case that , the problem further simpli-
fies to be equivalent to magnetization reversal in a sphere, with
no anisotropy at all.

VIII. SUMMARY

A 3-D generalization of the Stoner–Wohlfarth model has been
defined for the purpose of analyzing magnetization reversal of
a uniformly magnetized body by coherent rotation. Analysis
takes the form of solving a constrained optimization problem
by use of Lagrange multiplier techniques. For any body repre-
sented by the model and any applied field axis, algorithms for
computing the switching and coercive fields have been derived.
The stable magnetization direction(s) for any applied field may
also be calculated using the techniques presented here. The iter-
ative algorithms are simple and converge quickly and reliably.
The behavior of precession frequency and susceptibility as the
switching field is approached have also been determined.

REFERENCES

[1] M. J. Donahue, D. G. Porter, R. D. McMichael, and J. Eicke,J. Appl.
Phys., vol. 87, pp. 5520–5522, Apr. 2000.

[2] R. D. McMichael, M. J. Donahue, D. G. Porter, and J. Eicke,J. Appl.
Phys., vol. 89, pp. 7603–7605, June 2001.

[3] E. C. Stoner and E. P. Wohlfarth,Phil. Trans. R. Soc. Lond., vol. A240,
pp. 599–642, 1948.

[4] C. E. Johnson,J. Appl. Phys., vol. 33, pp. 2515–2517, Aug. 1962.
[5] R. W. Cross, J. O. Oti, S. E. Russek, and T. Silva,IEEE Trans. Magn.,

vol. 31, pp. 3358–3360, Nov. 1995.
[6] A. Thiaville, Phys. Rev. B, vol. 61, pp. 12 221–12 232, May 2000.
[7] W. Rave, K. Ramstöck, and A. Hubert,J. Magn. Magn. Mater., vol. 183,

pp. 329–333, 1998.
[8] A. Thiaville, D. Tomá̌s, and J. Miltat,Phys. Stat. Sol. (A), vol. 170, pp.

125–135, 1998.
[9] J. H. Wilkinson,The Algebraic Eigenvalue Problem. Oxford, U.K.:

Clarendon, 1965, pp. 101–102.
[10] G. H. Golub and C. F. Van Loan,Matrix Computations. Baltimore,

MD: The Johns Hopkins Univ. Press, 1983, p. 269.
[11] J. Smit and H. G. Beljers, “Philips Research Reports,”, Tech. Rep., 1955.
[12] A. Hubert and W. Rave,Phys. Stat. Sol. (B), vol. 211, pp. 815–829, 1999.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


