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This paper summarizes the basic properties of the Euler dilogarithm function, often
referred to as the Spence function. These include integral representations, series
expansions, linear and quadratic transformations, functional relations, numerical val-
ues for special arguments and relations to the hypergeometric and generalized hyper-
geometric function. The basic properties of the two functions closely related to the
dilogarithm (the inverse tangent integral and Clausen’s integral) are also included. A
brief summary of the defining equations and properties for the frequently used gen-
eralizations of the dilogarithm (polylogarithm, Nielsen’s generalized polylogarithm,
Jonquière’s function, Lerch’s function) is also given. A résumé of the earliest articles
that consider the integral defining this function, from the late seventeenth century
to the early nineteenth century, is presented. Critical references to details concerning
these functions and their applications in physics and mathematics are listed.
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1. Introduction

The dilogarithm function, also referred to as the Spence function, has a long history
connected with some of the great names in the history of mathematics. The integral
that defines it first appears in one of the letters from Leibniz to Johann Bernoulli
in 1696, part of an extensive correspondence between Leibniz and the Bernoullis.
However, the properties of this integral as a distinct function were first studied
by Landen in 1760. Since then it has, along with its generalization, the polyloga-
rithm, been studied by some of the great mathematicians of the past—Euler, Abel,
Lobachevsky, Kummer and Ramanujan among others. It appears in a very wide
range of fields—number theory, algebraic geometry, electric network and radiation
problems, the statistical mechanics of ideal gases, and, in quantum electrodynamics,
in any calculation of higher-order processes such as vacuum polarization and radia-
tive corrections. Nonetheless, there does not seem to be a concise reference work
summarizing the essential properties of the dilogarithm as a function of complex
argument. With this paper we hope to provide such a reference.

2. Definition and notation

The Euler dilogarithm is defined for complex argument z by

L2(z) = −
∫ z

0

ln(1 − t)
t

dt. (2.1)
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It is also useful to write this integral in the equivalent form

L2(z) = −
∫ 1

0

ln(1 − zt)
t

dt. (2.2)

We consider here the principal branch of the dilogarithm, defined by taking the
principal branch of the logarithm, for which ln z has a cut along the negative real
axis, with |arg z| < π. This defines the principal branch of the dilogarithm as a
single-valued function in the complex plane cut along the real axis from 1 to +∞
(0 < arg(z −1) < 2π). A survey of the notations and definitions adopted by different
authors may be found in Lewin (1981, § 1.10, pp. 27–29). In particular, the function
L2(z) is denoted by L2(z) in Gröbner & Hofreiter (1975), by S2(z) in Kölbig et al .
(1970) and Kölbig (1986), by Li2(z) in Lewin (1981) and Roskies et al . (1990) and
by Sp(z) in ’t Hooft & Veltman (1979).

3. Analytic continuation for dilogarithms

Using either of the representations (2.1) and (2.2), one may expand the logarithm
in powers of z, obtaining the Taylor series expansion for the dilogarithm, valid for
|z| � 1,

L2(z) =
∞∑

k=1

zk

k2 . (3.1)

However, the principal branch of the dilogarithm is defined by the integrals in (2.1)
and (2.2) as a single-valued analytic function in the entire z-plane, with the exception
of the points on the cut along the real axis from 1 to +∞. The integrals (2.1)
and (2.2) may therefore be used to obtain analytic continuations of the dilogarithm
for arguments outside the unit circle. These transformations are given below.

(a) Transformation formulae

(i) Linear transformations

The linear transformations of the dilogarithm are

L2

(
1
z

)
= − L2(z) − 1

6π2 − 1
2 ln2(−z), z /∈ [0, ∞), (3.2)

L2(1 − z) = − L2(z) + 1
6π2 − ln(1 − z) ln z, z /∈ (−∞, 0] ∪ [1, ∞), (3.3)

L2

(
z

z − 1

)
= − L2(z) − 1

2 ln2(1 − z), z /∈ [1, ∞), (3.4)

L2

(
z − 1

z

)
= L2(z) − 1

6π2 − 1
2 ln2 z + ln(1 − z) ln z, z /∈ (−∞, 0] ∪ [1, ∞), (3.5)

L2

(
1

1 − z

)
= L2(z) + 1

6π2

+ ln(−z) ln(1 − z) − 1
2 ln2(1 − z), z /∈ [0, ∞). (3.6)
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The transformation (3.3) provides directly the expansion of the dilogarithm about
the point z = 1, namely,

L2(z) = −
∞∑

k=1

(1 − z)k

k2 + ln(1 − z)
∞∑

k=1

zk

k
+ 1

6π2. (3.7)

As noted in equations (3.2)–(3.6) and (3.11), each of these transformations is valid
for z in the entire cut plane apart from real numbers that lie on the cut of either of
the dilogarithm functions. (Note that this restriction also precludes the argument of
any of the logarithms from being on the cut of the logarithm.) These transformations
may be obtained as follows. Making the substitution of variables t = 1 − s in (2.1)
and then integrating by parts gives

L2(z) = − ln(1 − z) ln z −
∫ 1

1−z

ln(1 − s)
s

ds. (3.8)

Equation (3.3) then follows using (6.2). Next, using (2.1) to write L2(z/(z − 1)) and
making the substitution of variables t = s/(s − 1), we have

L2

(
z

z − 1

)
=

∫ z

0

ln(1 − s)
s(1 − s)

ds. (3.9)

Splitting the denominator in partial fractions and integrating then gives (3.4). Mak-
ing the substitution z → 1 − z in (3.4), we have z/(z − 1) → (z − 1)/z, giving

L2

(
z − 1

z

)
= − L2(1 − z) − 1

2 ln2 z. (3.10)

This equation, together with (3.3), then gives (3.5). Next, adding the left- and right-
hand sides of (3.4) and (3.5) and making the substitution w = z/(z − 1) then
gives (3.2). Finally, setting z = 1 − u in (3.2), together with (3.3), then gives (3.6).

(ii) Quadratic transformations

The quadratic transformation of the dilogarithm follows directly from (2.2),

L2(z) + L2(−z) = 1
2 L2(z2), z /∈ (−∞, −1] ∪ [1, ∞). (3.11)

More generally,

m−1∑
k=0

L2(ωkz) =
1
m

L2(zm), where ω = e2πi/m, m = 1, 2, 3, . . . . (3.12)

A simple proof of this generalization is given in Andrews et al . (1999).

(b) Analytic continuation around the branch points

We have thus far considered only the principal branch of the dilogarithm, which
is a single-valued analytic function in the cut plane. If, however, we permit the
variable of integration t to wander around the complex plane without restriction, we
then create the general branch of the function L2(z), and, in the integrand of (2.1),
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ln(1 − t) may no longer have its principal value at t = 0, but instead equals 2kπi
with a non-zero value of the integer k. The dilogarithm defined by (2.1) is then
a multivalued analytic function in the complex plane. Thus, if we begin with the
principal branch of L2(z) at any point z in the plane and integrate along a closed
contour that goes in a continuous manner once around the branch point at z = 1
in the positive rotational sense, then the value of the function on returning to z is
L2(z) − 2πi ln z. For this branch and, more generally, for all of the branches of the
dilogarithm other than the principal branch, the point z = 0 is a ‘hidden’ branch
point, again of the logarithmic type. Thus, at a point z, the value of the dilogarithm
on a general branch of the function is given in terms of its value on the principal
branch, L∗

2(z), by
L2(z) = L∗

2(z) + 2mπi ln z + 4kπ2, (3.13)

in which m = 0, ±1, ±2, . . . , k = 0, ±1, ±2, . . . . It is to be noted here that the
values of m and k depend critically on the path of integration. Specifically, they
depend not only on how many times and in which direction each of the two branch
points is encircled, which is usual, but also on the order in which the branch points
are encircled, which is unusual. For further references, see Erdélyi (1953, § 1.11.1,
pp. 31, 32) and Hölder (1928).

4. Series expansions for the dilogarithm

The Taylor series (3.1) converges for |z| � 1. Although this condition can always be
obtained using the transformation (3.2) if |z| > 1, this series is clearly very slowly
convergent for |z| near unity. A more satisfactory series has been given in ’t Hooft &
Veltman (1979), in which the dilogarithm is written in terms of the Debye function,
D(z) (see Abramowitz & Stegun 1972, § 27.1.1, p. 998), defined by

D(z) =
∫ z

0

u

eu − 1
du. (4.1)

Substituting t = 1 − e−u in the integrand in (2.1), we have

L2(z) = D(− ln(1 − z)). (4.2)

Here, the integrand of the Debye function can be expanded in terms of the Bernoulli
numbers, Bn (see Erdélyi 1953, § 1.13, pp. 35, 36), giving

L2(z) =
∞∑

n=0

Bn
(− ln(1 − z))n+1

(n + 1)!
. (4.3)

Since, for n = 1, 2, 3, . . . ,

B2n = 2(−1)n+1(2n)!(2π)−2n
∞∑

k=1

1
k2n

, (4.4)

B2n+1 = 0, (4.5)

it follows that the series in (4.3) converges for |− ln(1 − z)| < 2π.
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5. Functional relations involving two variables

A number of relations between dilogarithms involving two variables have been studied
extensively. One, given by Abel (1881), is

L2

(
x

1 − x

y

1 − y

)
= L2

(
x

1 − y

)
+ L2

(
y

1 − x

)

− L2(x) − L2(y) − ln(1 − x) ln(1 − y), x, y, x + y < 1. (5.1)

Making the substitutions x/(1 − y) → x, y/(1 − x) → y in (5.1) and using (3.4)
to transform the last two dilogarithms on the right-hand side, one obtains a similar
five-term relation, due to Hill (1830, p. 9, eqn X),

L2(xy) = L2(x)+L2(y)+L2

(
xy − x

1 − x

)
+L2

(
xy − y

1 − y

)
+ 1

2 ln2
(

1 − x

1 − y

)
, x, y, xy < 1.

(5.2)
A number of other functional relations involving five dilogarithm functions are

given in Lewin (1981, § 1.5, pp. 7–11) and Kirillov (1995, § 1.6, pp. 88, 89). As shown
in Lewin (1981), any one of these five-term relations may be derived from any of the
others by use of the transformations given above as well as redefining the variables
in the arguments of the functions. Moreover, any number of single-variable relations
may be obtained by taking y as some suitable function of x (satisfying the conditions
given above in (5.1) and (5.2)). A number of such relations are given in Lewin (1981,
§ 1.5.4, pp. 10, 11), in Nielsen (1909) and in Kirillov (1995, § 1.2, pp. 70–74). Func-
tional relations involving six dilogarithm functions are given in Lewin (1981, § 1.6,
pp. 11–16) and relations involving nine dilogarithm functions are given in Kirillov
(1995, § 1.3, p. 84, § 1.6, p. 89).

6. Numerical values for special arguments

For special arguments, the numerical value of the dilogarithm function may be
expressed directly in terms of simpler functions, in closed form. The only known
results (see Lewin 1991, ch. 1, 13) are

L2(0) = 0, (6.1)

L2(1) = 1
6π2, (6.2)

L2(−1) = − 1
12π2, (6.3)

L2(1
2) = 1

12π2 − 1
2 ln2 2, (6.4)

L2(1
2(3 −

√
5)) = 1

15π2 − 1
4 ln2(1

2(3 −
√

5)), (6.5)

L2(1
2(

√
5 − 1)) = 1

10π2 − ln2(1
2(

√
5 − 1)), (6.6)

L2(1
2(1 −

√
5)) = − 1

15π2 + 1
2 ln2(1

2(
√

5 − 1)), (6.7)

L2(−1
2(1 +

√
5)) = − 1

10π2 + 1
2 ln2(1

2(
√

5 + 1)). (6.8)

For similar equations containing the sum of dilogarithms of different arguments, see
Lewin (1991, ch. 1, 2) and Kirillov (1995, § 1.2, pp. 69, 70, 74).
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7. Relation to hypergeometric and generalized
hypergeometric functions

From (2.1) and the integral representation of the hypergeometric function, it fol-
lows that the dilogarithm may be expressed as the derivative of the hypergeometric
function with respect to one of the parameters,

L2(z) = lim
b→0, a→0

(
1
b

∂2F1(a, b; b + 1; z)
∂a

)
. (7.1)

An alternative expression for the dilogarithm in terms of the hypergeometric func-
tion is

L2(z) = lim
ε→0

1
ε2

{2F1(ε, ε; 1 + ε; z) − 1}. (7.2)

This expression has been used in Andrews et al . (1999) to derive the transformation
of the dilogarithm (equation (3.3)) using the transformation of the hypergeometric
function. From (2.1), it follows that the dilogarithm satisfies a second-order linear
inhomogeneous differential equation

z(1 − z) L′′
2(z) + (1 − z) L′

2(z) = 1. (7.3)

From (3.1), the dilogarithm may be written as a generalized hypergeometric func-
tion 3F2,

L2(z) = z 3F2(1, 1, 1; 2, 2; z). (7.4)

For further relations between the dilogarithm and hypergeometric functions, see
Andrews et al . (1999, § 2.6, pp. 102–107 and ex. 38, 39, p. 131). The relation between
the dilogarithm and Appell’s function F3 is examined in Sanchis-Lozano (1997). The
main result given in that reference is

1
2uvF3(1, 1, 1, 1, 3; u, v) = L2(u) + L2(v) − L2(u + v − uv), (7.5)

in which |arg(1 − u)| < π, |arg(1 − v)| < π and |arg(1 − u)(1 − v)| < π.

8. Functions closely related to the dilogarithm

There are two functions that are directly related to the dilogarithm: the inverse tan-
gent integral and Clausen’s integral. We give here only the relation of these functions
to the dilogarithm; for additional details, we give references below.

(a) Inverse tangent integral

The inverse tangent integral is the imaginary part of the dilogarithm of purely
imaginary argument. For −1 � y � 1, we have, from (3.1),

L2(iy) =
(

−y2

22 +
y4

42 − y6

62 + · · ·
)

+ i
(

y

12 − y3

32 +
y5

52 − · · ·
)

. (8.1)

The real part of L2(iy) is, from (3.11),

Re(L2(iy)) = 1
2(L2(iy) + L2(−iy)) = 1

4 L2(−y2). (8.2)
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The imaginary part of L2(iy) is called the inverse tangent integral,

Ti2(y) =
y

12 − y3

32 +
y5

52 − · · · . (8.3)

Since, for |y| � 1,

arctan(y) =
y

1
− y3

3
+

y5

5
− · · · , (8.4)

we can define the inverse tangent integral by

Ti2(y) =
∫ y

0

arctan(u)
u

du. (8.5)

The integral (8.5) then defines Ti2(y) for all real y; the arctangent function is taken
to lie in the range −1

2π < arctan(y) < 1
2π. For Ti2(y), the relation similar to that

given for the dilogarithm in (3.2), valid for all real values of y, is

Ti2

(
1
y

)
= Ti2(y) − sgn(y)

π

2
ln |y|. (8.6)

For more complicated relations and generalizations of the inverse tangent integral,
see Lewin (1981, ch. 2, 3).

(b) Clausen’s integral

Clausen’s integral, Cl2(θ), is the imaginary part of the dilogarithm with argument
on the unit circle,

L2(eiθ) =
∞∑
1

cos nθ

n2 + i
∞∑
1

sin nθ

n2

= 1
6π2 − 1

4 |θ|(2π − |θ|) + i Cl2(θ), |θ| � 2π. (8.7)

From (2.1), with the change of integration variable t = eiφ, the integral for Cl2(θ)
is obtained (for details, see Lewin 1981, ch. 4),

Cl2(θ) = −
∫ θ

0
ln |2 sin 1

2φ| dφ. (8.8)

(i) Periodic properties

Cl2(2nπ ± θ) = Cl2(±θ) = ± Cl2(θ), (8.9)

Cl2(π + θ) = − Cl2(π − θ). (8.10)

(ii) Duplication formula

Cl2(θ) − Cl2(π − θ) = 1
2 Cl2(2θ). (8.11)
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9. Generalizations of the dilogarithm function

(a) Polylogarithm

The polylogarithm function, Ln(z), may be defined by

Ln(z) =
∫ z

0

Ln−1(t)
t

dt, with L0(z) =
z

1 − z
, (9.1)

where n = 1, 2, 3, . . . . In particular, it follows that

L1(z) = − ln(1 − z). (9.2)

Corresponding to (2.1), we have the integral representation for the polylogarithm,
valid for all z not on the cut,

Ln+2(z) = −(−1)n

n!

∫ 1

0

lnn t ln(1 − zt)
t

dt, n = 0, 1, 2, . . . . (9.3)

Corresponding to (3.1), we have, for |z| � 1 and n = 2, 3, . . . (|z| < 1 for n = 0, 1),

Ln(z) =
∞∑

k=1

zk

kn
. (9.4)

We note that the function Ln(z) is denoted by Ln(z) in Gröbner & Hofreiter
(1975), by Sn(z) in Mignaco & Remiddi (1969), Kölbig et al . (1970) and Barbieri et
al . (1971, 1972a, b) and by Lin(z) in Lewin (1981).

(i) Analytic continuation

Corresponding to (3.2) for the dilogarithm, we have

Ln(z) + (−1)n Ln

(
1
z

)
= −(2πi)n

n!
Bn

(
ln z

2πi

)
, n = 0, 1, 2, . . . , (9.5)

where Bn(z) is the Bernoulli polynomial of order n (see Erdélyi 1953, § 1.13, pp. 35–
39).

(ii) Quadratic transformations

Corresponding to (3.11) for the dilogarithm, we have

Ln(z) + Ln(−z) = 21−n Ln(z2), n = 0, 1, 2, . . . (9.6)

(see Gröbner & Hofreiter 1975, p. 73 (5a); Mignaco & Remiddi 1969; Kölbig et al .
1970, p. 46, eqn (3.15); Barbieri et al . 1971, 1972a, b). More generally, corresponding
to (3.12) for the dilogarithm, we have

m−1∑
k=0

Ln(ωkz) =
1

mn−1 Ln(zm), where ω = e2πi/m, m, n = 1, 2, 3, . . . (9.7)

(see Lewin 1981, p. 197, eqn (7.41); Gröbner & Hofreiter 1975, p. 73, eqn (5)).
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(iii) Numerical values

We have

L2n(1) = (−1)n−1 (2π)2nBn

2(2n)!
, n = 1, 2, . . . , (9.8)

L2n(−1) = −
(

1 − 1
22n−1

)
L2n(1). (9.9)

Here, Bn are the Bernoulli numbers (B0 = 1, B1 = −1, B2 = 1
6 , etc. (see Erdélyi

1953, § 1.13, pp. 29, 30)).

(b) Nielsen’s generalized polylogarithms

Nielsen’s generalized polylogarithms, Sn,p(z), are defined by

Sn,p(z) =
(−1)n+p−1

(n − 1)!p!

∫ 1

0

lnn−1 t lnp(1 − zt)
t

dt, n, p = 1, 2, 3, . . . . (9.10)

From (9.10), one may obtain, by differentiation and partial integration, the difference-
differential equation for Sn,p(z),

d
dz

Sn,p(z) =
Sn−1,p(z)

z
, n � 2, (9.11)

which may also be written in the form

Sn,p(z) =
∫ z

0

Sn−1,p(t)
t

dt. (9.12)

If one further defines
S0,p(z) ≡ (−1)p

p!
lnp(1 − z), (9.13)

then (9.11) and (9.12) are valid for n, p � 1. The polylogarithm is a special case of
Nielsen’s generalized polylogarithm,

Ln(z) = Sn−1,1(z), n = 2, 3, . . . . (9.14)

For details on Nielsen’s generalized polylogarithms see Nielsen (1909), Mignaco
& Remiddi (1969), Kölbig et al . (1970), Kölbig (1986) and Barbieri et al . (1971,
1972a, b).

(c) Jonquière’s function

Jonquière’s function, also referred to as a polylogarithm of non-integral order, is
defined for complex s and z, as in (9.4), by

Ls(z) =
∞∑

n=1

zn

ns
, |z| < 1. (9.15)

The function Ls(z) is denoted by ζ(s, z) in the original work of Jonquière (1888,
1889a–c), by F (z.s) in Erdélyi (1953, § 1.11, pp. 30, 31), where many of its properties
are given, and by Lis(z) in Lewin (1981, § 7.12, pp. 236–238) and in Lee (1997). The
function Ls(z) satisfies, in particular, the relations (9.1) and (9.6) for the polyloga-
rithm on replacing n by s.
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(d) Lerch’s function

Lerch’s function is defined for complex z, α and s by

Φ(z, s, α) =
∞∑

m=0

zm

(m + α)s
, |z| < 1, α �= 0, −1, −2, . . . . (9.16)

Jonquière’s function is a particular case of Lerch’s function, obtained when α = 1,

Ls(z) = zΦ(z, s, 1). (9.17)

For details on Lerch’s function, see Erdélyi (1953, § 1.11, pp. 27–32) and Lerch (1887).

10. Historical notes

The integral

−
∫ z

0

ln(1 − t)
t

dt

has an extensive history that long predates it being named and being referred to as
the dilogarithm. We give here some of the outstanding references to its early con-
sideration. A careful examination of the original publications has enabled a critical
appreciation of some of the early work in the literature on this function. The inte-
gral first appears in 1696 in the correspondence of Leibniz in a series of letters that
are part of an extensive correspondence with Jacob and Johann Bernoulli (Leibniz
1855).† Leibniz expresses the integral in the form of a power series and discusses
recursion relations for integrals of the form∫ z

0
tµ lnn(1 + t) dt,

noting that the case µ = −1 must be excluded. The first study of the properties of
the integral appears in an article by Landen (1760). He defines a series of functions
that are identical to the polylogarithms defined here, giving both the recursion rela-
tion (9.1) and the Taylor series expansion (9.4). The transformations (3.2) and (3.3),
as well as the transformation (9.5) for arbitrary n, are derived. In a memoir pub-
lished 20 years later, Landen (1780) derives the values of the dilogarithm given here
in (6.5) and (6.6), as well as the transformation that follows from (3.3) and (3.5) on
elimination of L2(z) between them. All of the published literature credits Euler with
being the first to study the integral, referring to his work published in 1768‡, and
calling the integral the Euler dilogarithm, a name given much later by Hill (1828).
We have found there only the transformation listed here as (3.3), along with the
numerical values given in (6.2) and (6.4), all of which were given in the earlier work
of Landen (1760).

† Letter IX, pp. 56–62, January 1697; Letter XXXVIII, pp. 334–336, November 1696; Letter XXXIX,
pp. 337–338, November 1696; Letter XLI, pp. 347–354, December 1696.

‡ Note that page numbers differ in the various later editions of Euler (1768), though the content is
identical. In the 3rd edn (1824), this material is in vol. 1, pp. 110–112. In vol. 11 of Leonardi Euleri
opera omnia, series I, pub. Lipsiae et Berolini, Typis et in Aedibus B. G. Teuberni (1913), the material
is in Institutiones Calculi Integralis, vol. 1, pp. 113–114.
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However, the first comprehensive detailed study of the function is the essay of
Spence (1809), which was generally not referenced on the continent for several
decades. (This work was, along with other manuscripts left by Spence, re-edited
by John Herschel.) Spence (1820) defines various orders of logarithmic transcendents
with the symbol

n

L(1 ± x),

which are essentially the polylogarithms defined here, i.e.
n

L(1 ± x) = − Ln(±x).

He derives many of the transformations given here, among them (3.2), (3.3)
and (3.11) for the dilogarithm, a number of functional relations involving two vari-
ables for both the dilogarithm and trilogarithm (n = 3), as well as (9.5), (9.6) and
the recursion relation (9.1) for arbitrary n. His work also includes a study of the
properties of the inverse tangent integral given here in § 8 a.

11. Applications in physics and mathematics

Numerous references to the occurrence of dilogarithms and polylogarithms in physical
problems are given in Lewin (1981, § 1.12, pp. 31–35). An extensive list of references
in which dilogarthms and polylogarithms appear in several fields of mathematics,
among them number theory, geometry, representation theory and algebraic K-theory,
are given in Kirillov (1995) and Oesterlé (1993). The paper by Zagier (1989), on the
dilogarithm function in geometry and number theory, is worthy of note in being
accessible to the non-specialist. In the field of statistical mechanics, the chemical
potential of free Fermi and Bose gases is expressed in terms of polylogarithms in
Lee (1995). We note in addition that the appearance of the dilogarithm is inherent
to all higher-order calculations in quantum electrodynamics. This may be seen in
the calculation of electron form factors in Mignaco & Remiddi (1969), Barbieri et
al . (1971, 1972a, b) and Roskies et al . (1990), and in the calculation of radiative
corrections in Mo & Tsai (1969), Maximon & Tjon (2000) and Passarino & Veltman
(1979). The integrals essential to all of these calculations are evaluated in terms of
dilogarithms in ’t Hooft & Veltman (1979) and Passarino & Veltman (1979).

The author thanks Professor Richard Askey for bringing Kirillov (1995) to his attention. It is a
particular pleasure to acknowledge the assistance given by the librarians and staff of a number of
libraries for making original works of the eighteenth and nineteenth century available. Most espe-
cially these include the National Museum of Natural History Branch Library, the Dibner Library
of the History of Science and Technology of the Smithsonian Museum of American History, the
American University Library Special Collections, the library of the US Naval Observatory and
the Lund University Library, Department of Cultural Heritage Collections. Finally, the author
is deeply indebted to Professor Frank W. J. Olver for incisive and helpful comments concerning
many details of this article, in particular his analysis concerning analytic continuation, which
has been integrated into § 3 b.
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Gröbner, W. & Hofreiter, N. 1975 Integraltafel–Zweiter Teil–Bestimmte Integrale, 5th edn.

Springer.
Hill, C. J. 1828 Ueber die Integration logarithmisch-rationaler Differentiale. J. Reine Angew.

Math. 3, 101–159.
Hill, C. J. 1830 Specimen exercitii analytici, functionum integralum

∫ x

0
dx
x
L(1 + 2xCα+ x2) =

Dαx tum quoad amplitudinem, tum quoad modulum comparandi modum exhibentis, p. 9. Lund:
Academia Carolina (Lund University).
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