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Abstract-The problem of multiple sequence alignment is recast ss an optimization problem using 
Markov decision theory. One seeks to minimize the expected or average cost of alignment subject 
to data-derived constraints. In this setting, the problem is equivalent to a linear program which 
can be solved efficiently using modern interior-point methods. We present numerical results from an 
implementation of the algorithm for protein sequence alignment. @ 2003 Elsevier Science Ltd. All 
rights reserved. 
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1. INTRODUCTION 

The advent of large scale sequencing of DNA has triggered a massive accumulation of DNA 
sequence data and data about proteins-the products of the genes encoded by DNA. Methods 
for applying this information to fields such as law enforcement, biotechnology, and medicine or to 
gain crucial understanding of the biological significance and functionality of genes and proteins 
depend on a technique known as sequence alignment. For example, in database searching, a 
match between a query DNA sequence and selected members of the database is accomplished 
this way. This is also true in the case of proteins. Here, the purpose of a search is to gain 
information about the biological function or structure of the protein by identifying members of a 
database of proteins of known functionality and structure that are similar to the query protein. 

Alignment methods are based on the underlying assumption that present day protein sequences 
from different species descended from common ancestor protein sequences. In the course of 
evolution, differences between descendants due to mutation and other genome changes often occur 
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in such a way that biological function is preserved or only slightly modified. Given an underlying 
model of protein sequence evolution, sequences in the database that are related to the query 
in this way have high scores and are consequently identified as database “hits”. Thus, aligning 
protein sequences is a way to infer information about protein function and structure. Given a 
set of sequences of letters, each letter representing an amino acid residue (the building block for 
proteins), an alignment is an array that displays the degree of relatedness of the sequences through 
matching and equivalent substitutions of corresponding amino acid residues and insertions of gap 
characters used to maximize the degree of similarity. The quality of the alignment is evaluated 
by assigning a total “score” or “cost” and the goal is to attain the “best” alignment. We can 
formalize this as follows. 

DEFINITION. (See [I].) G iven a set of k sequences, S = (~1, sk} where each So, i := 1 kz. 
is a string of symbols from a finite alphabet 6, a mult$e sequence alignment is an array A = 
((~1, ... CQ)~ with ui a string from the finite alphabet 6’ = 6 U {-}, and where L = Ioz[, called 
here the length of the alignment, is the length of the string oi, Vi. The sequence obtained from 
gi by removing all “-” gap characters is equal to si. Algorithms for multiple alignment are based 
on the minimization of the total cost over the set of all alignments A, 

mjnCC(aj), (1) 

where aj is the jth column of the array, and c(a), the cost of the aligned column a, is specified in 
advance [2]. 

When each symbol is a letter of the alphabet and stands for one of the 20 amino acids or is a gap, 
a column of an alignment is assigned a cost based on the probability the acids represented by the 
letters in the column are descended from a common ancestor amino acid. The scoring function 
includes the possibility of gaps which correspond to the insertion or deletion of amino acids. 
Several standard scoring tables based on widely accepted models of protein evolution are used--- 
the most common ones being the PAM or BLOSSOM matrices. Clearly, the choice of a score 
or cost function is an essential and perhaps the most important factor in achieving an effective 
and biologically meaningful solution. Nevertheless, in this work, we concentrate on the algorithm 
used to solve (1). Dynamic programming has been the most widely employed method for solving 
this problem [3] particularly for aligning small numbers of sequences. Given the increasing need 
for methods that handle larger numbers of sequences and given the immense computer power 
available in parallel and cluster networks, it is natural to investigate parallel algorithms for the 
solution of (1). Using a stochastic approach similar to hidden Markov models [4,5], aligned 
sequences are modeled as sample paths of a statistical process in an enhanced state space and 
alignment is treated as a stochastic control problem. Rather than calculate the minimum cost of 
a fixed alignment, we seek to minimize the expected or average cost of a family of alignments that 
are related to each other by a model. This can be done within the framework of Markov decision 
theory. One advantage of this is that the problem becomes equivalent to a linear programming 
problem that can be solved with fast numerical methods. Our purpose here is to introduce the 
concepts in Markov decision theory that define the problem and to report on the results of a 
numerical experiment in protein sequence alignment. Markov decision theory has been used to 
solve a variety of optimization problems in fields such as economics, biology, and network control. 
However, its application to multiple sequence alignment problems appears to be new. 

2. MARKOV DECISION PROCESS 
A Markov decision process or controlled Markov chain is a stochastic process (X,, at), t = 

0, 1, , where Xt E X, a finite set of m elements and at E U, with U, is called the set of 
actions. An element of the set X is called a state of the process. For convenience, we will 
identify X with the set {1,2,. . . m}. Define the history of the process as the sequence, ht = 



Optimization Approach 787 

(21,a1,.. . ,~~._l,u~-~,~~). A policy is a sequence z = (zi,?~~,. . .) of probability measures. If 
history ht is observed at time t, then the controller chooses action a with probability nt(u 1 ht). 
In full generality, a policy is a sequence of probability measures indexed by time, but in many 
applications of interest simplifying assumptions are made. This leads to the following set of 
special cases in order of increasing specialization. 

??Markov policies: zt is a function of zt only. 
?? Stationary policies c Markov policies: R does not depend on t, rt(a 1 ht) = p(u 1 xt). 
?? Stationary deterministic policies c Markov policies: each 7rt(] zt) = f(zt) where f is a 

deterministic function defined on X. Thus, a = f (xt). 

Once an action at time t is chosen, the next state is chosen at random with probability P~j(u) 
where Xt = i, Xt+i = j, and at = a where i,j = 1,. . . , m. It can be seen therefore that we 
assume that the probability of transition from state Xt to state Xt+i depends only on the states 
and not on time, i.e., transitions are assumed to be stationary. 

An alignment can be interpreted to be the sample path of a random process where the state 
of the process at time t is the t th column of the alignment. Thus, Xt is a Ic-tuple of symbols 
from the alphabet (5’. At the next time step the process transitions to a new state Xt+i that 
is determined by Xt and the action at taken by a controller at time t. From the point of view 
of stochastic control, an action is a decision at each time t about which positions in the t + 1 
column will contain the gap symbol “-I’. Thus, at can be encoded as a Ic-tuple with elements 0 
or 1 depending on whether or not a gap symbol is used in a given row. To fix ideas suppose 
our task is to find an optimal global alignment for three protein sequences. The MDP (Markov 
decision process) model for our application is based on a set 6 of 20 letters representing the 
amino acids. The alphabet for the states is based on 6 U { -}, and thus, X = (6 U -}3. The 
set of actions is % = (0, 1}3. The protein alignment problem, therefore, has a state space with 
213 elements and eight actions. Each pair (Xt,at) has a cost C(Xt,a,) associated with state Xt 
and action at. We will assume these costs are known. To find a global optimal alignment one 
formulates a (stochastic) control problem. The goal is to find a sequence of actions that results in 
a minimum alignment cost (or maximum alignment score). A variety of expressions for the total 
cost exists but one frequently discussed in the literature is the (finite horizon) expected average 
cost, given an initial state Xc = i 

kE [CWt,4IXo=~l r 
t=1 

L ’ 

where L is the length of the alignment, i.e., the length of an aligned sequence. An expected 
discounted cost for the path (Xs,ac, Xi,ai, . . . ) can also be defined (infinite horizon). For 0 < 
cr < 1, we define 

V,“(i) = E, &%(X,,a,) 1 X0 = i . 
t=o 1 (2) 

We note that although the index t goes to infinity, the range of the sum will be finite if the cost 
function vanishes after the last symbol of a sequence is reached. In the case where there are an 
infinite number of positive costs, the sum in equation (2) could diverge as a: + 1, but it can 
be shown that, as 01 approaches 1, the quantity (1 - a)V$ is nearly the expected average cost 
for large L when K is a stationary policy [6]. Let Vu(i) = inf, V:(i). Then Ifa(i) is the least 
mean discounted cost for every starting state i. The goal is to find an optimal policy A* such 
that V,$(i) = V,(i) f or every state i. It turns out that such an optimal I? exists and is often 
a stationary and/or deterministic policy. The derivation of the linear programming problem we 
sketch here is based on 171 (see also IS]). The transformation of the optimization problem stated 
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above begins with the fact that V, satisfies the Bellman equation 

I/a(i) = rnjn 
[ 

C(i, u) + o 2 P,(a)V,(j) 

I 
(3) 

j=l 

Let B(X) = {u ] u : X -+ JR}, the set of real valued functions defined on X with norm ]]u]/ = 
sublet [u(i)]. Define the operator T, : B(X) + B(X), by 

T,u(i) = min a C(i,a) +a-&(a)u(j) 
{ j=l 1 

When 0 < cr < 1, T, is a contraction mapping with unique fixed point V,. Moreover, for any 
u E B(X), TF)u + V, as n --+ cm. Suppose T,u 1 u. Then by repeated application of T,, we 
have V, 2 u. Thus, V, is the largest function satisfying the condition T,u 2 u. It is natural 
then to use the following method to calculate Va(i): 

maximize u(i), 

subject to T,u(i) > u(i). 

Since the maximization occurs for each i one can replace u by CL”=, u(i) where m is the number 
of states. The optimization problem for the expected discounted cost can then be written as 

maximize 2 u(i), 
i=l 

subject to C(i,Od) +CYgP,j(a)U(j) 2 U(i), 
j=l 

where one maximizes over all bounded nonnegative functions defined on X and where the con- 
straint inequality holds for all a. Once such an optimal u is found, it can be shown to be V, (see 
Section 3.2 in IS]). Note that an important issue in successful implementation of this method is 
the estimation of Ptj(o) from alignment data. If the states defined by the sequences to be aligned 
is a subset S c X, then the problem becomes 

maximize C u(i), 
iES 

subject to C(i, a) + a c &(a)u(j) > u(i), 
jES 

(4 

(5) 

for all a and i E S. 
Now let ai be such that 

C (i, ai) + Q 2 Pij (U+) Va(j) = rnjn C(i, a) + (Y 2 Q(a)V,(j) . 
j=l [ j=l I 

(6) 

Then setting fa(i) = ai one defines an optimizing stationary deterministic policy. This policy 
gives us the sequence of actions that leads to the best alignment of sequences as defined by the 
expected discounted cost for a iixed (Y. 
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3. NUMERICAL RESULTS 

Problems (4),(5) can be rewritten as a linear programming problem (LP) by splitting our u 
variable into two bound-constrained variables, 

u(i) = G(i) + a(i), with G(i) 2 0, c(i) 6 0. 

The LP can then be written 

max C (G(i) + C(i)) , (7) 
ES 

s.t. E(I - crfij(U))G(j) 2 C(i,a) (8) 
jES 

- x(1 - CYP~j(a))fi(j) 5 C(i, 0~) (9) 
jES 

O(i) 2 0, ii(i) IO, (10) 

for all i E 5’. This problem is potentially large scale with a sparse constraint matrix. The 
development of fast and efficient algorithms for the solution of linear programming problems is an 
active and productive research area (see, for example, [8,9]). The family of problems derived here 
presents an interesting challenge for software and computers. The objective function, as stated 
here, is a linear function however, one can foresee the addition of more complicated nonlinear 
penalty terms regularization terms or even more complicated definitions of optimality that give 
rise to truly nonlinear functions. 

Below, we report on a sample test problem of aligning a set of sequences arising from the 
protein family cytochrome-p450. The constraint (or transition) matrices were computed from a 
set of 98 triples; each sequence of the triple having length 775. This specific problem contains 
26,872 primal length 775. This specific problem contains 26,872 primal variables and 107,488 
linear inequality constraints. The constraint matrix contains 132,984 nonzero values and every 
primal variable is bounded above and below. In this sample problem, as with most of our 
numerical experimentation to date, the constraints were degenerate at the solutions. That is, the 
collection of inequality constraints that are binding at solutions form a linearly dependent set. 
The primary intention of presenting this numerical example is to demonstrate the compatibility 
of our mathematical formulation with existing numerical algorithms. 

In order to solve (7)-( lo), we used an implementation of a primal-dual interior-point algorithm 
for linear programming problems [lo] and an implementation of a simplex method [ll]. In Table 1, 
we report the number of iterations and elapsed CPU time required to solve the test problem 
described above. 

Table 1. Iteration count for linear program solvers (CPLEX 3.0 and PCx). 

It is worth noting that both methods appear to be effective at solving the problem. Future 
work includes a more detailed numerical survey of the performance of optimization algorithms 
for the solution of more sophisticated nonlinear programming problem formulations based on 
(7)-(g). Currently, an implementation of computer codes that generate constraint matrices is 
underwav 1121. 
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4. CONCLUSIONS 

A novel optimization approach to multiple sequence alignment has been presented along with 
promising preliminary numerical results. Using modern optimization techniques this approach 
provides a new way of addressing a large class of important bioinformatics problems. The al- 
gorithm presented in this paper successfully locates reasonable solutions to a typical instance of 
the multiple sequence alignment problem in a reasonable amount of (computational) time. The 
algorithm is quite flexible allowing a variety of cost functions to be employed and the addition 
(or relaxing) of constraints. 
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