
y = Φα* + ∈, E(∈) = 0, E(∈∈T) = Σ2. (1)

Here, y is an m-vector of measurements, α* is an n-vector
of unknown parameters (with n ≤ m), Φ is the m × n least-
squares matrix (with linearly independent columns that
do not depend on α*), and ∈ is an m-vector of random er-
rors with expected value 0 and m × m positive definite
variance matrix Σ2. When Σ2 is not known, we usually as-
sume that

Σ2 = σ2Im, (2)

where Im is the mth-order identity matrix, and σ2 is an un-
known constant variance. In this case, the best linear unbi-
ased estimate (BLUE) for α* is 

(3)

which we can compute without knowing σ2.
The development in Part I was motivated by global an-

nual average temperature data (see http://cdiac.esd.ornl.gov/
trends/temp/jonescru),3 which Figure 1 plots as discrete cir-
cles. The two curves are the best-fitting first- and fifth-
degree polynomials,

n = 2, 6, (4)

where t0 = 1856.0. The fifth-degree polynomial tracks the
data better, but we need more statistical analysis to deter-
mine whether the improvement obtained justifies the addi-
tion of four new free parameters. This is one of the ques-
tions that we address in this installment. Several texts cover
all the statistical material here, including the two classics1,2

cited in Part I (see last issue).

Simple diagnostics for the fit
The (minimal) sum of squared residuals for the BLUE, 

(5)

is the most fundamental diagnostic. For the two fits in Fig-
ure 1, (SSR)2 = 2.783993 and (SSR)6 = 1.678972. The latter
is smaller than the former, but this does not necessarily
mean that the fifth-degree polynomial is a better model than
the straight line. It explains more of the total variance in the
record, but some of that total properly belongs to the errors
∈, and a model with too many free parameters might cap-
ture variance that should be relegated to the residuals. 

A measure of the variance assigned to the model is the co-
efficient of determination, 

(6)

where

with (7)

CTSS measures the total variation of the measurements
about their mean. Because SSR measures their variation
around the fit, it follows that R2 is the fraction of the total
variance explained by the model. For the fits in Figure 1, 
R2

2 = 0.6179 and R6
2 = 0.7696, so the straight line and the

fifth-degree polynomial respectively explain 61.79 percent
and 76.96 percent of the total variance.

Uncertainties in the estimates
The uncertainties in the  α̂j depend on the distribution of

the random errors ∈i. Given Σ2 = σ2Im, we must estimate a
variance matrix for  α̂ . From Equations 1 and 3, we see that
E(α̂ ) = α∗, so the matrix we want is
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LINEAR STATISTICAL MODEL 
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(8)

It is straightforward to substitute Equation 3 into Equation
8 and use the assumptions in Equations 1 and 2 to show that 

(9)

In Part I, we noted that the old method of computing  α̂
produced this inverse matrix as a byproduct. Newer sub-
routines, based on the QR factorization, often do not return
this important result, even though doing so would require
little extra effort. Because Q is an orthogonal matrix,

(10)

and inverting the upper triangular matrix R is easy. Unfor-
tunately, none of the least-squares subroutines in Linpack,
Lapack, or Matlab takes this extra step.

Equation 9 depends also on σ2. When that value is not
known, the expression

(11)

gives an unbiased estimate for it. Using that estimate in
Equation 9 gives the estimated variance matrix

(12)

The diagonal elements V̂j,j are variances for the corre-
sponding  α̂j, so ±1σ intervals are defined by

i = 1, 2, ..., n. (13)

I used this formula to compute the uncertainties given in
Equations 12 and 29 in Part I.

For the straight-line fit, the ratios

and (14)

indicate a high improbability that α̂ 1
∗ = 0 or that α̂ 2

∗ = 0.
Most scientists would agree that you should regard with sus-

picion any measurement whose magnitude is not more than
three standard deviations greater than zero. For the fifth-
degree polynomial fit, the ratios

(15)

suggest that all the coefficients are statistically significant, a
fact that we will confirm later.

Estimate correlations
The off-diagonal elements of also contain impor-

tant information. Specifically, V̂i,j = V̂j,i estimates the co-
variance betweenα̂i andα̂j. Covariance relationships are clar-
ified by computing the correlation matrix

i,j = 1, 2, ..., n. (16)

Each α̂i is perfectly correlated with itself, so Ĉi,i = 1.0, and
for the off-diagonal elements, –1.0 ≤ Ĉi, j ≤ 1.0, with Ĉi, j =
0.0 representing complete absence of correlation. Cross-cor-
relations with |Ĉi,j | →1.0 indicate that the columns of Φ are
almost linearly dependent, which suggests that the model
has more parameters than the data can support. It could
mean that the model is wrong, or it could mean only that we
need more data to reliably determine the parameters. And
sometimes we can reduce high correlations by transforming
the independent variable.

For the straight-line fit,  ̂C1,2 = –0.866, which is totally un-
remarkable. The largest |Ĉi, j | for the fifth-degree polyno-
mial was at  Ĉ5,6 = –0.995, which is remarkable, but the ra-
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Figure 1. The straight line and fifth-degree polynomial fits to
global yearly average temperature data. The plotted circles
are temperature anomalies obtained by subtracting the mean
temperature (14ο C) for the years 1961 to 1990 from the 
actual measured averages.
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tios given in Equation 15 for  α̂5 and α̂6 indicate that the high
correlation is not a problem. In fact, for these data, the cross-
correlations are sensitive to the choice of t0. Choosing t0 =
1928.0 rather than t0 = 1856.0 gives   Ĉ5,6 = 1.97 × 10–16.
Choosing t0 = 0000.0 gives  Ĉ5,6 = –0.999993. All three val-
ues give fitted curves and residuals that are graphically in-
distinguishable.

Assigning confidence levels
So far we have made no assumptions about the probabil-

ity distribution for ∈. Henceforth, we will use the most com-
mon assumption, which is that the errors are independently,
identically normal: ∈ ~ N(0,σ2Im). Therefore, it is easy to
show that 

(17)

where Vj,j is the jth diagonal element of V(α̂ ). If we know σ2,
we can use the second expression in Equation 17 with a table
of the standard normal distribution to construct confidence
intervals for the αj

*.
Let (1 – p) be the desired confidence level (p = 0.05 for 95

percent confidence), and let fn(u) be the n(0, 1) probability
density function, which is symmetric about u = 0. Then, for
any positive κ,

(18)

Standard normal tables usually tabulate the quantity

(19)
as a function of κ, so

(20)

We want to choose κ so that

2F(κ) – 1 = 1 – p ⇒ F(κ) = 1 – p/2. (21)

If κp is the corresponding number from the table, then

(22)

from which it follows that

(23)

The most commonly used values for p and κp are

(24)

When σ2 is not known, we must estimate the Vj,j  by us-
ing Equation 12 and replace the normal distribution with
the student’s t-distribution with m – n degrees of freedom.
These probability density functions are also symmetric
about the origin, so the construction of confidence intervals
is almost the same as with the normal distribution. The only
difference is the table from which we get the value of κ. For
small values of m – n, the t-distributions are flatter than the
normal, so the confidence intervals will be wider. As m – n
→ ∞, the t-distributions approach the normal distribution,
and the widening becomes insignificant for m – n ≥ 120. The
temperature record has m = 144, so we can use the normal
distribution to construct confidence intervals. In fact, the 
± 1σ intervals in Equations 12 and 29 of Part I are 68.3 per-
cent confidence intervals.

For the fifth-degree polynomial, the estimate with the
greatest relative uncertainty was  α̂2 = 0.0336 ± .0078. Let’s
construct a 99 percent confidence interval for this esti-
mate. Taking p = 0.01, we have κp = 2.576, so Equation 23
gives

Pr{0.0135 < α2
* < 0.0537} = 0.99, (25)

so, it is highly unlikely that α2
* = 0.

Testing hypotheses
Formally testing a hypothesis to see if we should omit

some terms in a linear model requires a comparison of the
sums of squared residuals obtained by fitting both the full
and reduced models. Write the full model in the partitioned
form

∈ ~ N(0, σ2Im), (26)

where α2 is a k-vector of parameters to be omitted, and Φ2
is the m × k submatrix of corresponding columns. We can al-
ways write the full model in this form by interchanging the
matrix columns and the corresponding parameters. We want
to test the null hypothesis

H0 :  α2
* = 0, (27)
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so we fit the full model to get (SSR)F and the reduced model,

y = Φ1α1 + ∈, ∈ ~ N(0, σ2Im) (28)

to get (SSR)H, which will be larger than (SSR)F. The F-test
is based on the ratio

(29)

which is compared with a percentage point from a table of the
F(k, m – n) distribution—the F-distribution with k and m – n
degrees of freedom. The tables usually give the percentage
points for a given probability level on a single page. So the
page for probability p will tabulate the percentile Fp as a func-
tion of k and m – n. The values of p and Fp are related by

(30)

where fk,m–n(ξ) is the probability density function for the F(k,
m – n) distribution. If the computed u exceeds the value Fp
from the table, then the probability of obtaining the reduc-
tion (SSR)H – (SSR)F by chance is less than 1 – p, so we must
reject the null hypothesis. Put another way, the SSR reduc-
tion obtained by including the α2 terms is statistically sig-
nificant at the 100p percent level. Conversely, if u < Fp, then
we should accept null hypothesis.

For the fifth-order polynomial, m – n = 138 and (SSR)F =
1.678972. The null hypothesis is

H0 : α3
* = α4

* = α5
* = α6

* = 0, (31)

so k = 4, and (SSR)H = 2.783993, which gives u = 22.70629.
To test at the 95 percent level, we get the percentile
F0.95(4,138) = 2.4373, which is much smaller than u, so we
reject the null hypothesis.

A time series diagnostic
We selected the fifth-order polynomial because it had just

enough “wiggle” to accommodate the quasicycle in the
straight-line residuals. Figure 2 is an unwindowed peri-
odogram estimate of the power (variance) spectrum for
those residuals. The dominant peak is at a frequency of
0.0163  yr–1, which corresponds to a period of 61.4 years.
The unanticipated secondary peak is at frequency 0.007 yr–1,
which corresponds to a period of 143 years. Because m =
144, this peak does not represent a real cycle but rather in-
dicates a nonlinear baseline.

Figure 3 shows a quadratic polynomial fit to the data as a
solid curve. The estimated coefficients were

(32)

with SSR3 = 2.173416. Clearly, α̂ 1 and α̂ 3 are beyond suspi-
cion, but what about α̂ 2? Fitting the reduced quadratic
model

φ(t,α) = α1 + α3(t – t0)2 (33)

gave

(34)

with SSR2 = 2.224553, which is almost as small as SSR3. Figure
3 shows the fit as a dashed curve. I will leave it as an exercise for
you to show that the F-test accepts the null hypothesis

H0 :  α2
* = 0 (35)

at the 95 percent level of significance.
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Figure 2. The truncated Fourier power spectrum of the
straight-line residuals. We discarded frequencies between 
0.15 and 0.5 yr–1 to expand the low frequencies.
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Figure 3. Quadratic and reduced quadratic fits to the global
yearly average temperature anomalies. The solid curve is the
full quadratic, and the dashed curve is the reduced quadratic
(Equation 33).
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Figure 4 shows the periodogram for the reduced quadratic
residuals. The single dominant peak is still at frequency
0.0163 yr–1. Remarkably, the fit gave R2 = 0.6947 with the
same number of free parameters as the straight-line fit,
which gave R2 = 0.6179. The full quadratic fit, with one ad-
ditional free parameter, gave R2 = 0.7017, which is not a sta-
tistically significant improvement. Significantly, the reduced
quadratic mode is monotonically increasing. All this suggests
a model of the form

(36)

with a period of α4 ≈ 61.4 years. We will use nonlinear least
squares to fit this model in the next installment.
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Figure 4. The truncated Fourier power spectrum of the 
reduced quadratic residuals.
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