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ABSTRACT: Hylleraas–configuration interaction (Hy–CI) method variational
calculations with up to 4648 expansion terms are reported for the ground 1S state of
neutral helium. Convergence arguments are presented to obtain estimates for the exact
nonrelativistic energy of this state. The nonrelativistic energy is calculated to be
�2.9037 2437 7034 1195 9829 99 a.u. Comparisons with other calculations and an energy
extrapolation give an estimated nonrelativistic energy of �2.9037 2437 7034 1195 9830(2)
a.u., which agrees well with the best previous variational energy,
�2.9037 2437 7034 1195 9829 55 a.u., of Korobov (Phys Rev A 2000, 61, 64503), obtained
using the universal (exponential) variational expansion method with complex exponents
(Frolov, A. M.; Smith, V. H. Jr. J Phys B Atom Mol Opt Phys 1995, 28, L449). In addition
to He, results are also included for the ground 1S states of H�, Li�, Be��, and B�3.
© 2002 Wiley Periodicals, Inc. Int J Quantum Chem 90: 1600–1609, 2002
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Introduction

I n a review article on computational chemistry
in 1996, Clementi and Corongiu [1] stated that

using an Hylleraas–configuration interaction (Hy–
CI) [2, 3] expansion to solve the dynamic correlation
is nearly impossible for more than three or four
electrons. While that may have been true in 1996, its

validity today is being challenged by the availibility
of cheap CPUs that can be connected in parallel to
significantly (orders of magnitude) enhance both
the CPU power and the memory that can be
brought to bear on the computational task. In this
article, we address some of the issues arising from
an attempt to come up with a good technique for
obtaining precise energies for few-electron atomic
systems using the Hy–CI formalism. Not only do
we address the issue of choice of terms in the wave
function, but we also address another fundamentalCorrespondence to: J. S. Sims; e-mail: jim.sims@nist.gov
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mathematical issue arising in these types of calcu-
lations. In any attempt to get precise energies, large
basis sets have to be employed, which means that
linear dependence in the basis set is never far away.
To proceed to several thousand terms in a wave
function, extended precision arithmetic is needed to
obviate the linear dependence problem, which in
turn leads to high CPU costs. This work employs a
novel wave function, namely, a wave function con-
sisting of at most a single r12 raised to the first
power combined with a conventional nonorthogo-
nal CI basis. This technique can be extended to
multielectron systems [4], where the use of at most
a single rij (to the first power) retains the power of
rij factors in the wave function without making the
integral evaluation overly complicated. We use this
technique to determine the nonrelativistic ground-
state energy of neutral helium more precisely than
the best previous calculation [5],1 discuss how we
solved the extended precision problem, and discuss
the implications of this for three- and four-electron
systems.

Method of Calculation

Variational methods based on explicitly corre-
lated wave functions (wave functions including rij

terms) are known to give the most accurate upper
bounds to energy states, and the inclusion of rij

terms in the wave function has become increasingly
common, at least for few-electron atomic systems
(N � 4). For example, standard Hy technique [8]
calculations are perhaps best exemplified by the
work of Drake and collaborators [9–11] and employ
factors of powers of rij in the wave function. How-
ever, for four-electron atomic systems there are al-
ready significant unresolved integration problems
when Hy basis sets are employed conventionally
[12], in what may be referred to as an Hy–rij tech-
nique. In contrast, the Hy–CI method developed by
us [2] and also independently by Woźnicki [13]
does not suffer from this restriction. Woźnicki and
coworkers refer to the method as superposition of
correlated configurations (SCC) and have em-
ployed it for an accurate Li ground state [14], and
the approach has also been used to obtain accurate

excited S states of Li [15]. For our part, we have
used this method to calculate energies, oscillator
strengths, and polarizabilities of two-, three-, and
four-electron systems (see [16] and references
therein). In these approaches, which we refer to as
Hy–CI, the wave function is expanded as a linear
combination of configurations, each of which con-
tains at most one rij to some power. Using this type
of wave function, the most cumbersome integrals
that are needed for atoms with an arbitrary number
of electrons are dealt with already in the four-elec-
tron problem. This point was noted by Clary and
Handy [17], who demonstrated the utility of the
Hy–CI method for N-electron atomic systems up to
and including N � 10 by carrying out a calculation
on atomic Ne. Clary [18, 19] and Clary and Handy
[20] also demonstrated the utility of the technique
for systems other than atoms by performing Hy–CI
calculations on one-positron atomic systems and on
many-electron diatomic molecules. Nevertheless,
despite all of the progress that has been made with
Hy–rij and Hy–CI calculations in recent years, there
still are practical issues to be resolved. Conven-
tional Hy–rij calculations have proven to lead to
better convergence estimates than Hy–CI calcula-
tions, which for three and especially four or more
electrons can best be described as requiring edu-
cated guesswork to select the terms in the wave
function, making it hard to obtain good estimates of
upper bounds to the exact nonrelativistic energies.
In this work, we show how an Hy–CI calculation
can do as well as an Hy–rij calculation (indeed, we
improve the Hy–rij energy estimate by two decimal
places), while retaining the ability to give good
convergence estimates for the upper bound to the
exact nonrelativistic energy. In a future work, we
hope to make similar progress for three- and four-
electron systems [4].

We also note that the best previous calculation to
date on the He ground state is neither Hy–rij nor
Hy–CI but one that employs a variational expan-
sion in products of exponentials in the problem
interparticle distances [5–7]. We made no real at-
tempt in this work to minimize the number of ex-
pansion terms (one would certainly not have this
luxury when dealing with larger atoms), resulting
in an expansion that is approximately twice as long
as Korobov’s [5]. While the exponential products
approach provides almost as good an energy and a
more compact wave function for the He ground
state and is straightforward to implement, it is not
clear how useful it will be for atoms with more than
two electrons.

1Korobov [5] has done the best calculation to date on the
ground state of neutral helium by considering variational basis
functions of the type exp(��nr1 � �nr2 � �nr12) with complex
exponents. See Thakkar and Smith [6] and Frolov and Smith [7]
for a general discussion of this method.
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Wave Functions

The Schrödinger equation for a three-body sys-
tem consisting of a nucleus of Ze, mass M, and two
electrons of charge �e and mass me has been treated
thoroughly by Drake [21]. In this work, we focus on
the nonrelativistic energy, using a Hamiltonian
that, for N electrons, is (in atomic units2)

HNR � �
i�1

N ��
1
2 �i

2 �
Z
ri
� � �

i�j

1
rij

. (1)

Note that this Hamiltonian does not include mass
polarization, which is commonly treated using first-
order perturbation theory [22].

For two electrons, the time-independent, non-
relativistic Schrödinger equation becomes

HNR��r1, r2� � E��r1, r2�. (2)

Because the Schrödinger equation is not separable
in the electron coordinates, basis sets that incorpo-
rate the r12 interelectronic coordinate are most effi-
cient. The method we use to incorporate interelec-
tronic coordinates in the calculations is our
combined Hy–CI method [2]. The Hy–CI method
wave functions can be written in a form that is
slightly different from conventional two-electron
Hy–rij calculations [23–26]:

��r1, r2� � �
K�1

N

CK	K�r1, r2�, (3)

where the terms 	K are specifically of the form

	K�r1, r2� � O�L2��1 � P12�r1
i r2

j r12
k Yl

m�1�Yl

m
�2�e�	r1�
r2.

(4)

P12 is the operator that permutes electrons 1 and 2
and the plus sign is for singlet levels and the minus
sign for triplet levels. In this work, the r12 power k
is restricted to be either 0 or 1, i.e., in contrast to
conventional Hy–CI calculations the r12 power is
limited to the first power (a novel feature). Yl

m is a
normalized spherical harmonic in the Condon and
Shortley phase condition [27].

Note that this form of the wave function differs
from conventional two-electron Hy–rij calculations
in that k is �1 and instead of higher powers of rij

there are higher spherical harmonics in the basis
set, with the O(L2) idempotent orbital angular mo-
mentum projection operator [28] projecting out the
proper symmetry. For two electrons, and 1S,3S(L �
0) symmetry, l
 � l. Further, to within some con-
stant factor,

O�L2�Yl
0�1�Yl

0�2� � Pl�cos �12�, (5)

where Pl(cos �12) is a Legendre polynomial [3].
Therefore, the wave function we actually used has

	K�r1, r2� � �1 � P12�r1
i r2

j r12
k Pl�cos �12�e�	r1�
r2. (6)

Note that the Legendre polynomials in Eq. (6) can
be expressed in terms of spherical harmonics of (�1,
�1) and (�2, �2) by the spherical harmonic addition
theorem [27]:

Pl�cos �12� �
4


�2n � 1� �
m��l

l

Yl
�m�1�Yl

m�2�. (7)

Substituting this expression in Eq. (6) and taking
k � 0 gives a conventional CI configuration for S
states. There is also a close relationship between our
(Hy–CI) wave function and Hy–rij wave functions.
Because

r12
2 � r1

2 � r2
2 � 2r1r2P1�cos �12�, (8)

r12
k for k � 1, when expanded out, gives a polyno-

mial in powers of Pl(cos �12) times 1 or r12 depend-
ing on whether k is even or odd. The powers of
Pl(cos �12) can in turn be expressed in terms of the
Pl(cos �12) polynomials, thus making explicit the
connection between Hy–rij and Hy–CI. Although
other (radial) factors will be different in the two
methods, they are essentially equivalent methods, a
fact we used in coming up with our final wave
function.

Drake [29] pointed out the need for “doubling”
basis sets so there is a natural partition of the basis
set into two distinct distance scales—one appropri-
ate to the complex correlated motion near the nu-
cleus and the other appropriate further out. Drake
uses just two sets of orbitals to accelerate conver-
gence; we use two sets of basis functions for each l,
differing in the nonlinear parameters 	 and 
. The

2The atomic unit of energy is chosen as �e4/�2 � 1 a.u. (of
energy), where � � memN/(me � mN).

SIMS AND HAGSTROM

1602 VOL. 90, NO. 6



first set has an orbital with an orbital exponent 	 �

 that makes it essentially a valence shell orbital.
For the second set, 	 � 
 again and the orbital has
a large exponent. Valence (outer) orbitals are opti-
mized whereas the inner orbital set is optimized for
s� and p� but not beyond because the contribu-
tions for l � 1 are not large and the energy is a
slowly varying function of the orbital exponents
anyway.

To clarify this further, consider Table I, where we
list the basis set for our final 4648-term wave func-
tion. Each line in the table specifies both the {inner,
inner} and {outer,outer} set for each l quantum
number (� Lmax). In the table, only the minimum
information needed to specify the basis set is listed,
namely, an exponent � (	 � 
 � �), the l quantum
number for orbitals with that exponent, and the
number of orbitals with that exponent [i and j in Eq.
(4) range from l to norbs � l � 1]. This gives rise to
norbs (norbs � 1)/2 terms without r12, and the same
number with r12. There are 380 terms for l � 0 and
� � 2.2, an {s2}r12 set. There are also 380 terms for
l � 0 and � � 25.0, an {s
2}r12 set. Because the orbital
exponent is the same for all terms in a set, we refer
to terms of the second one as {inner,inner} (large
orbital exponent brings it in) and those of the first
set as {outer,outer}.

Table I also lists our final energy value for the He
ground state. In the table, we give the energy as we
progressively add in higher angular momentum
basis sets. These are what might be referred to as
s-wave, p-wave, . . . , out to and including j-wave
sets times both 1 and r12. In the table, Lmax � 0 refers
to the l � 0 {inner,inner} set plus the l � 0 {outer,
outer} set for a total of 380 � 380 � 760 terms.
Succeeding rows in the table are denoted in a sim-
ilar fashion (Lmax � 1 includes l � 0 and l � 1, etc).
In all of the tables, we use N to refer to the number
of terms in the wave function [see Eq. (3)].

In our final wave function, only {inner,inner} and
{outer,outer} configurations were included. {inner,
outer} were tried but were found to be unimportant
in addition to greatly increasing the expansion size
and degree of linear dependence in the configura-
tion basis.

We found the surprising result that one simply
cannot get to our answer without the {inner,inner}
terms without a really massive increase in the ex-
pansion length. Many authors, starting perhaps
with Roothaan and Weiss [30], have emphasized
that the wave function should have a cusp-like
behavior at r12 � 0 such that

� 1
�

��

�r12
�

r12�0

�
1
2 (9)

and attributed the slow CI convergence to the ne-
cessity of piling up higher s, p, d, . . . angular terms
in attempting to represent the details of this behav-
ior. No one has emphasized the need for {inner,in-
ner} terms at higher l values. Apparently, the need
for these {inner,inner} terms at higher angular
terms has not been evident in conventional CI up to
now because conventional CI does not describe the
valence shell electron cusp properly either and any-
thing put in near the nucleus will try to contribute
to the valence shell cusp description (even an or-
bital with a large exponent will penetrate the va-
lence region with a large enough power of r). In any
event, including both {inner,inner} and {outer,
outer} terms are key to the success of the current
Hy–CI formalism. For example, if one just drops the
{inner,inner} terms from the expansion in the last
line of Table I and keeps all orbital exponents fixed,
the result is E(2324 terms) � �2.9037 2437 7026 a.u.,
which is not as good as the Frankowski and Pekeris
[31, 32] results obtained in 1966.

TABLE I ______________________________________________________________________________________________
Hy–CI results for 11S He.

Lmax norbs � n
orbs �
 N Energy (E) in a.u.

0 19 2.20 19 25.0 760 �2.9034 9832 0585 8801 1976 93
1 19 3.05 19 40.5 1520 �2.9037 2426 8354 6045 9864 64
2 19 3.50 19 40.5 2280 �2.9037 2437 6954 6918 8919 88
3 18 3.90 18 40.5 2964 �2.9037 2437 7034 0541 4170 45
4 15 4.50 15 40.5 3444 �2.9037 2437 7034 1195 3899 21
5 14 5.20 14 40.5 3864 �2.9037 2437 7034 1195 9822 02
6 14 6.00 14 40.5 4284 �2.9037 2437 7034 1195 9829 62
7 13 6.50 13 40.5 4648 �2.9037 2437 7034 1195 9829 99
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Nonrelativistic Energies: Results and
Discussion

The wave function given by Eq. (3), �(r1, r2), is a
linear combination of configurations 	K, where the
coefficients CK are those that minimize the total
energy, E, given by

E �
���H ��


����

�

¥KL CKCLHKL

¥KL CKCLSKL
, (10)

where

HKL � ��K�H ��L
; SKL � ��K��L
. (11)

The condition for the energy to be an extremum,
�E � 0, is the well-known matrix eigenvalue (sec-
ular) equation:

�
L

HKLCL � �
L

SKLCL. (12)

Solving this equation is equivalent to solving the
N-dimensional generalized eigenvalue problem

HC � �SC, (13)

where H and S have matrix elements HKL and SKL

given by Eq. (11). We solve this secular equation
using both sequential and parallel inverse iteration
algorithms, and using real*16 and real*24 arith-
metic, as discussed below.

We started out writing our own Microsoft3 ASM
(MASM) quadruple precision (real*16, �32 digits)
package simply because no Fortran 90 package for
the PC had real*16 as a native data type. So much of
our early experience was with real*16 arithmetic.
Then, because of linear dependence problems (even
at 32 decimal places), we extended the real*16 pack-
age to real*24 extended precision (�48 digits). For-
tran 90, of course, has user-defined datatypes and
operator extensions that make implementation of
real*16 and real*24 floating point operations essen-
tially automatic once the appropriate interface
MODULEs are constructed (i.e., no need to explic-
itly call subroutines to carry out the floating point
operations). This is an important, practical feature
of the calculations.

Except for some of the shorter expansions re-
ported in Table II, all results reported in this article
were obtained using real*24 extended precision

3The identification of any commercial product or trade name
does not imply endorsement or recommendation by either the
National Institute of Standards and Technology or Indiana Uni-
versity.

TABLE II ______________________________________________________________________________________________
Hy–rij results for 11S He (including orbital basis).

n1
max n2

max {outer,outer} {inner,inner} n12
max N Energy (a.u.)

4 4 {2.0,2.2} {6.0,6.2} 4 100 �2.9037 2280 7177 558
6 6 {2.0,2.2} {6.0,6.5} 4 210 �2.9037 2437 3077 229
6 6 {2.0,2.2} {6.0,6.5} 6 294 �2.9037 2437 6814 373
6 6 {2.0,2.2} {6.0,6.5} 7 336 �2.9037 2437 6900 260
6 6 {2.0,2.2} {6.0,6.5} 8 378 �2.9037 2437 6947 786
7 7 {2.0,2.2} {6.0,6.5} 8 504 �2.9037 2437 7033 120
8 8 {2.0,2.2} {6.0,6.5} 8 648 �2.9037 2437 7033 898
8 8 {1.85,2.05} {8.6,8.8} 9 720 �2.9037 2437 7034 0967 2287
9 9 {1.95,2.15} {9.8,10.0} 9 900 �2.9037 2437 7034 1150 3
10 10 {1.95,2.15} {11.0,11.2} 9 1100 �2.9037 2437 7034 1184 93
10 10 {1.95,2.15} {11.0,11.2} 10 1210 �2.9037 2437 7034 1189 65
11 11 {2.10,2.30} {12.4,12.6} 10 1452 �2.9037 2437 7034 1194 42
11 11 {2.10,2.30} {12.4,12.6} 11 1584 �2.9037 2437 7034 1194 90
12 12 {2.20,2.40} {16.0,16.2} 11 1872 �2.9037 2437 7034 1195 8414
13 13 {2.20,2.40} {16.0,16.2} 11 2184 �2.9037 2437 7034 1195 9090
13 13 {2.20,2.40} {19.5,19.7} 12 2366 �2.9037 2437 7034 1195 9567
14 14 {2.20,2.40} {21.5,21.7} 12 2730 �2.9037 2437 7034 1195 9725 15
15 15 {2.20,2.40} {22.0,22.2} 12 3120 �2.9037 2437 7034 1195 9793 92
16 16 {2.20,2.40} {23.5,23.7} 12 3536 �2.9037 2437 7034 1195 9815 09
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(�48 digits) floating point subroutines written in
MASM including add, sub, mpy, div, exp, and log.
There is a full set of conversion routines between
integers and single, double, and quad reals and our
extended precision format, as well as output rou-
tines in the extended precision format.

The parallel calculations reported here were car-
ried out at the National Institute of Standards and
Technology on the instaNT.nist.gov NT Cluster, a
16-node cluster of Pentium II systems running Mi-
crosoft Windows NT (Server 4.0) with 100-Mb Fast
Ethernet for interconnection. The front-end ma-
chine is a 400-MHz Pentium II with 780 Mb of RAM
and 19 Gb of disk storage. The back-end nodes are
single-CPU 400-MHz Pentium IIs with 512 Mb of
RAM and 8.4 Gb of local disk storage.

In the subsections that follow, we endeavored to
include all the data needed to reproduce the results
reported in Tables I, II, and V, should future work-
ers want to do so.

Hy–rij RESULTS AND COMPARISON WITH
EARLIER RESULTS

For a more detailed comparison with conven-
tional Hy–rij methodology, we also undertook our
own study of the Hy–rij method as applied to he-
lium. Our results are summarized in Table II.

n1
max, n2

max, and n12
max are the maximum powers of

r1, r2, and r12, respectively. N, the number of terms,
can best be explained with an example. For row 1 in
Table II, what we did was to form all configurations

from four outer s-orbitals with orbital exponent 2.0
and then split the orbital exponent to 2.0, 2.2. Oth-
erwise, one gets linear dependence quickly because
1s(2.0)1s(2.0), 1s(2.0)1s(2.2), and 1s(2.2)1s(2.2) are all
similar. The way we did it, only 1s(2.0)1s(2.2) arises.
And, this was done similarly for the {inner,inner}
terms. Hence, one does not have 4 � 4 � 5 � 80
{outer, outer} terms but only [4(4 � 1)/2] � 5 � 50
terms, with a similar number of {inner, inner}
terms, giving 100 terms in all.

These are real*16 (128-bit) calculations except for
the last 5, which are real*24 (192-bit) calculations
(and they are only a partial listing of our results).
Our 2184-term result agrees well with the 2114 term
result of Drake [29] in Table III, the best previous
Hy–rij calculation. As problem size increased, run
times became a problem, especially for the gener-
alized eigenvalue problem step, so we decided to
develop a portable parallel inverse iteration solver.
Because the inverse iteration solver matrix repre-
sentation is a blocked one, we modified the secular
equation step to generate H and S in the appropri-
ate block order. Then MPI [33] was used to run the
same program on multiple processors (on the same
or different hosts) and give each host a block of the
H (and S) matrix, with no need to redistribute
the matrices for the inverse iteration step. The
MPI code uses blocking sends and receives to do
the equivalent of an MPI_reduce and then an
MPI_gather (on to the root process) in real*24 arith-
metic. We have this parallel inverse iteration

TABLE III _____________________________________________________________________________________________
Comparison with previous explicitly correlated calculations for 11S He and He-like ions.

Author N Energy (a.u.)

Frankowski and Pekeris [31, 32] 246 �2.9037 2437 7032 6
Freund [34] 230 �2.9037 2437 7034 0
Thakkar and Koga [35] 308 �2.9037 2437 7034 1144
Baker [36] 476 �2.9037 2437 7034 1184
Goldman [37] 8066 �2.9037 2437 7034 1195 9382
Bürgers [38] 24497 �2.9037 2437 7034 1195 89
Drake [29] 2114 �2.9037 2437 7034 1195 9582
Korobov [5] 2200 �2.9037 2437 7034 1195 9829 55
Korobov [5] extrapolated �2.9037 2437 7034 1195 9830 6(10)
This work 4648 �2.9037 2437 7034 1195 9829 99
Extrapolated � �2.9037 2437 7034 1195 9830 01
Estimated �2.9037 2437 7034 1195 9830(2)
This work, H� 4640 �0.5277 5101 6544 3771 2249
This work, Li� 4284 �7.2799 1341 2669 3059 6489
This work, Be�� 4648 �13.6555 6623 8423 5867 0206
This work, B�3 4648 �22.0309 7158 0242 7815 4163
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solver running on the NIST NT cluster instaNT.
nist.gov.

On a 3052-term calculation, run times were 41.51
seconds to construct the secular equation and
6425.73 seconds to solve for one root using inverse
interation. On 16 processors, solving the secular
equation took only 555.66 seconds, i.e., a 2-hour run
on one processor became 10 minutes running on the
cluster. We found that the processing speed could
be predicted, as a function of cluster size, by the
simple scaling law T � constant [s � (1 � s)/Nproc],
where T is the runtime in seconds, constant � 6419
in this case, and s is the inherently sequential part of
the calculation. This function is plotted in Figure 1.
We find that the sequential fraction s � 0.022, indi-
cating that the scaling is excellent and we could go
to a larger number of processors (if we had them).
Finally, one last reason for going parallel is to cir-
cumvent the executable image size limitation for
sequential programs under both Windows and NT
DOS modes. To go beyond about 3300 terms in our
calculations involves either writing intermediate re-
sults out to disk or spreading the calculation (and
memory requirements) across a number of proces-
sors.

EXTRAPOLATION OF Hy–CI RESULTS

The Hy–rij results gave us the insight we needed
to do the actual Hy–CI runs discussed previously.
Table III compares our final energy value for the He
ground state with previous results. The calculated
value is a rigorous upper bound to the exact non-

relativistic energy of this state. In Table III, we also
included our extrapolation of the energies given in
Table I, obtained using a formula from Schiff and
coworkers [24]

Eextrapolated � E1 �
�E1 � E0��E2 � E1�

2E1 � E0 � E2
, (14)

where E0, E1, and E2 are the values at Lmax � 5, 6,
and 7, respectively. This formula gives
�2.9037 2437 7034 1195 9830 01 a.u. for the extrap-
olated energy. Based on the fact that extrapolations
tend to undershoot the exact result, the sensitivity
of E to the nonlinear parameters and the conver-
gence in L, we estimate the exact nonrelativistic
energy to be 2.9037 2437 7034 1195 9830 a.u. with an
uncertainty of 1 or 2 in the last digit. This result is
in complete agreement with the landmark calcula-
tions of Korobov [5]. In addition to values for He,
we also included results for other members of the
He isoelectronic sequence, namely, H�, Li�, Be��,
and B�3. For these results, no exponent minimiza-
tion was done, just a simple nuclear charge-based
scaling of the wave function of Table I. For exam-
ple, the results for Li� were obtained by scaling the
orbital exponents by a factor of 3.0/2.0 and for
Be�� the orbital exponents were scaled by a factor
of 4.0/2.0. For Li�, we varied the orbital exponents
extensively using shorter expansions and the result
was that orbital exponent variations are important
in the 20th decimal place. Our results for H�, Li�,
and Be�� agree with the results of Drake [21]4 to
the 16 decimal places he reports (he does not have
a value for B�3) and, except for H�,5 are more
precise by at least three decimal places. These re-
sults were easy to obtain, which points out how
flexible our expansion is.

We would like to point out again the close rela-
tionship between Hy–rij and Hy–CI. In Table IV we
show this by tabulating El results for l � 0, 1, 2, . . .
levels of truncation of the wave function expansion
used in Table I vs the equivalent Hy–rij truncation
results for the best wave function in Table II.6 The
two energy columns are clearly related, the minor
differences being easily explained by the different
functional forms, methods of optimization of non-

4Drake’s value for Be�� contains a misprint: �13.1 . . . should
be �13.6 . . . .

5Convergence is slow for H�.
6There is no entry on the Hy–rij side corresponding to l � 6

because 12 is the upper limit to n12
max in our code.

FIGURE 1. He Hy–CI scaling with cluster size.
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linear parameters, and the fact that these limits are
not rigorously defined (except for the first one).

CONFIGURATION INTERACTION

As a test of our integral and eigenvalue routines
and also to investigate the basis set linear depen-
dence problem, we carried out a number of conven-
tional configuration interaction calculations on He.
In this connection, in Table V we report the results

of a 4699-term expansion carried out using real*24
arithmetic. A typical symmetry-adapted configura-
tion has the form

�1 � P12�r1
i e�	r1r2

j e�
r2Pl�cos �12�, (15)

where 	 � 
 for all configurations except the 49 ss
terms in the third row. Nonlinear parameters were
carefully chosen for terms up through ff. For this

TABLE IV _____________________________________________________________________________________________
Comparison of Hy–rij and Hy–CI results for 11S He.

l El(Hy–CI) in a.u. n12
max E(Hy–rij) in a.u.

0 �2.9034 9832 0585 1 �2.9034 9825 7090
1 �2.9037 2426 8354 3 �2.9037 2426 8491
2 �2.9037 2437 6954 6918 5 �2.9037 2437 6955 3843
3 �2.9037 2437 7034 0541 7 �2.9037 2437 7034 0553
4 �2.9037 2437 7034 1195 3899 9 �2.9037 2437 7034 1195 4000
5 �2.9037 2437 7034 1195 9822 11 �2.9037 2437 7034 1195 9796
6 �2.9037 2437 7034 1195 9830 13

TABLE V ______________________________________________________________________________________________
CI results for the 1S ground state of neutral He (a.u.).

l n � N El (a.u.) Previous work [39]

ss 0 19 4.1 190
ss 0 21 20.3 421
ss 0 7 4.1, 20.3 470 �2.8790 2875 65 2.8790 2862 7
pp 1 17 4.7
pp 1 21 20.9 854 �2.9005 1621 99 �2.9005 1577 4
dd 2 16 6.1
dd 2 21 22.5 1221 �2.9027 6680 53 �2.9027 6612 6
ff 3 16 7.0
ff 3 21 24.0 1588 �2.9033 2101 62 �2.9033 2011 0
gg 4 21 14.0 1819 �2.9035 1846 49 �2.9035 1734 1
hh 5 21 16.0 2050 �2.9036 0551 51 �2.9036 0419 6
ii 6 21 18.0 2281 �2.9036 4964 42 �2.9036 4818
jj 7 21 19.0 2512 �2.9036 7432 76 �2.9036 7269
kk 8 21 21.0 2743 �2.9036 8919 34 �2.9036 8741
ll 9 21 22.0 2974 �2.9036 9865 63 �2.9036 9675
mm 10 21 23.0 3184 �2.9037 0497 38 �2.9037 0296
nn 11 20 24.0 3415 �2.9037 0932 48 �2.9037 0720
oo 12 20 25.0 3625 �2.9037 1243 32 �2.9037 1019
pp 13 20 27.0 3835 �2.9037 1470 34 �2.9037 1237
qq 14 20 28.0 4045 �2.9037 1640 56 �2.9037 1396
rr 15 20 29.0 4255 �2.9037 1769 92 �2.9037 1515
ss 16 18 30.0 4426 �2.9037 1869 56
tt 17 17 31.0 4579 �2.9037 1948 04
uu 18 15 32.0 4699 �2.9037 2009 19
“Exact” �2.9037 2437
Error �0.0000 0428

GROUND STATE OF He AND He-LIKE IONS

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 1607



part of the calculation, there were considerable
problems with linear dependence in real*16 mode,
forcing us to move to real*24 arithmetic. For higher
l values, we used an approximate linear relation-
ship between orbital exponent and l-value, with
occasional checks on the accuracy of the approxi-
mation. In any case, the energy contributions for the
higher l-values are insensitive to the orbital expo-
nents and depend much more on the number of
basis orbitals (powers of r) for a given l-value, even
as the contribution for an l-value decreases to less
than microhartree values (e.g., l � 16–18). The up-
per limit on l of 18 was set by program and oper-
ating system limitations of the PC used to do these
particular calculations.

Also included in Table V for comparison pur-
poses are the excellent recent results of Jitrik and
Bunge [39] for the He ground state. These results
were obtained with much smaller basis sets for each
l-value but with essentially a separately optimized
exponent for each basis orbital. Our approach, how-
ever, has been to use a basis with as few nonlinear
parameters as possible, that is, a basis like that used
in our Hy–rij and Hy–CI calculations. Note that,
although one can get spectroscopic accuracy (1
cm�1 is approximately 5 microhartrees) for He us-
ing CI, microhartree accuracy is still not available.
We estimate that to get microhartree accuracy
would require terms up to l � 30 and maybe up to
1200 more terms, although with a more efficient
basis (more nonlinear parameters) the overall ex-
pansion length could be shortened considerably.
This and other options are currently being investi-
gated [40]. Nevertheless, after some 70 years of
trying, the best CI treatment for He is still accurate
to only 5 decimal places!

Conclusions

The renewed interest in rijs is coming from the
incredible accuracy of experiments these days. To
do as well theoretically requires explicitly corre-
lated wave functions, in general. Goldman’s [37]
work is the exception for He, as he gets an energy of
�2.9037 2437 7034 1195 938(50) a.u. (8066-term ex-
pansion). His estimate is in agreement with our
calculated result, �2.9037 2437 7034 1195 9292 99
a.u. However, Goldman’s CI is not the conventional
kind of CI. Instead of powers of r1 and r2, he uses
powers of r� and r�, which is fine for He but leads
to three- and four-electron integrals for Li and Be
(unlike conventional CI). Only Li has been done

essentially as accurately as He, and that only with a
6000-fold increase in CPU requirements.7 And, the
integrals get messier with conventional rij tech-
niques. We have always thought that the idea be-
hind the Hy–CI technique was to marry the relative
ease of doing CI with the better convergence ob-
tained when rij factors are used. We pointed out, for
He, the close connection between Hy–rij. The Hy–CI
method selects the important term types in a more
natural manner. Also, the calculation, at least for
He, is easier. If one restricts the wave function to a
single rij in each term (n � 1), then the most difficult
integrals are already dealt with at the N � 4 level
and the calculation is greatly simplified. The only
problem has been figuring out a systematic tech-
nique for choosing basis orbitals and configurations
that leads to good energy estimates with a reason-
able number of expansion terms.

One of the results of this study has been a de-
tailed comparison of Hy–rij and Hy–CI techniques
so that we are able to move on to calculations of Li
and possibly Be atom states to good accuracy. As
we move on to larger systems, computational times
will increase greatly, as well as memory require-
ments, so it is imperative to program these routines
using parallel programming techniques and MPI
(for portability).
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Note Added in Proof

July 24, 2002—After submission of this paper for
publication, we learned of new calculations [41, 42]
which have improved on our results for the ground
1S state of neutral helium. It is gratifying that such
different methods of calculation are all in agree-
ment, yielding essentially the same result. The best
result is now that of Korobov [41], who calculates
the energy of 24 significant digits as �2.9037 2437
7034 1195 9831 1159 a.u. Drake and coworkers [42]
have also improved on our H� results, obtaining
�0.5277 5101 6544 3771 9661 3(22) a.u.
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