
y(t) = φ(t, α), (1)

which depends on an n-vector

α = (α1, α2, ..., αn)T (2)

of unknown parameters, to a measured data set

{(ti, yi), i = 1, 2, ..., m} (3)

is ubiquitous in science and engineering. This column is the
first installment of a series that will demonstrate modern
techniques for fitting combinations of basic mathematical
functions to measured real-world data.

When φ(t, α) depends nonlinearly on one or more of the
αj, the problem is considerably more difficult than the case
where it depends linearly on all of them. In both cases, the
underlying statistical model has the form

yi = φ(ti, α*) + ∈i , i = 1, 2, ..., m, (4)

where α* is the true, but unknown, parameter vector, and
the ∈i are unknown random errors that we usually assume
to be normally distributed. We attribute all these errors to
the yi, with the ti being known either exactly or at least more
precisely than the yi. The dominant source of the ∈i can be
either measurement errors or an inherent component of
random variation in the process generating the yi.

For both linear and nonlinear fits, we find the “best” es-
timate α̂ by minimizing the objective function

(5)

which is readily recognized to be the sum of squared
residuals formed by subtracting the model prediction at t

= ti from the corresponding measured yi. It is not obvious
that minimizing the sum of squared residuals gives the
best fit, but this principle of least squares has been widely
accepted since Gauss first enunciated it. For fitting linear
models, we will rigorously demonstrate that the least-
squares estimate is the unbiased estimate with minimum
variance.

Two competing criteria govern the choice of the model
φ(t, α). The first is to make the distribution of the residuals
as random as possible. The second is to keep the number of
unknown parameters as low as possible. We can always fit
any set of m points (ti, yi) exactly if we choose the model to
be a polynomial of degree m – 1. However, such a choice
would not satisfy either of the two criteria, and, in most
cases, it would produce unrealistic wiggles in the spaces be-
tween the data points. Modeling’s basic goal is to find a par-
simonious, physically plausible representation of the data
that produces residuals with a distribution similar to the one
assumed for the ∈i. 

Fitting a straight line
Finding the straight line 

φ(t, α) = α1 + α2t (6)

that best represents a measured data set is the prototypical
fitting problem. The objective function is just

(7)

and setting

, (8)

gives the system of linear equations

(9)
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, (10)

which we can easily solve to give the optimal estimates α̂1
and α̂2.

As an example, let’s consider the record of yearly average
global temperature anomalies plotted as circles in Figure 1.
We obtain these anomalies from the actual average temper-
atures by subtracting the global average (14.0° C) for the
years 1961 to 1990, a procedure that shifts the zero point but
does not affect temperature scaling. You can obtain these
data, which Phil Jones and his colleagues at the University of
East Anglia compiled, from http://cdiac.esd.ornl.gov/trends/
temp/jonescru/data.html.1

The straight line in Figure 1 is the least-squares fit of the
model 

φ(t, α) = α1 + α2(t – t0), (11)

where t0 = 1856.0. This shift of the zero point for the time
scale makes the estimate for α1 the model prediction for the
temperature anomaly at the beginning of the measured
record. The least-squares estimates for the parameters are

(12)

where we calculated the indicated one-standard-deviation
uncertainties from the assumption that the unknown errors
∈i were independently, identically distributed with a normal
distribution having zero mean and unknown variance σ2. I’ll
give more details on how we estimate σ2 and the uncertain-
ties in α̂1 and α̂2 in the next installment of this series.

The global warming indicated by α̂2, although statisti-
cally significant, is not alarming. If correct, it would raise

temperatures by only 0.085 °C in the next 20 years. But Fig-
ure 1 indicates that the straight-line model inadequately rep-
resents the data. The plot of the residuals in Figure 2
strengthens this impression, since the undulations around
the zero line are clearly not random variations. 

Linear least squares
If the straight line model is inadequate, then what model

should we choose? The residual plot suggests the possibil-
ity of a cycle with a period somewhere in the range of 50 to
75 years. Adding a sinusoidal term to the model could ac-
commodate such a variation. This would give three new un-
known parameters corresponding to the sinusoid’s ampli-
tude, period, and phase, but the model would then depend
nonlinearly on some of the parameters. So, let’s defer this
option until the third installment, where we will discuss non-
linear least squares. 

Another possibility, which can be treated with linear least
squares, is to try a higher order polynomial. The residuals
in Figure 2 exhibit an apparent local maximum somewhere
in the interval [1860, 1880], followed by a local minimum
somewhere in [1900, 1920], followed by another local max-
imum somewhere in [1930, 1950], and finally another local
minimum somewhere in [1960, 1980]. These local optima
appear also in the data in Figure 1, although perhaps not as
clearly as in the residual plot. The lowest degree polynomial
that can accommodate such a pattern of variation is one of
order 5, so let’s try a model of the form

, (13)

where, again, t0 = 1856.0. Even though the model is a fifth
degree polynomial, it is linear in the unknown parameters
αν, which can therefore be estimated by linear least squares.

To simplify the notation in explaining how to formulate
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Figure 1. A straight-line fit to yearly average global tempera-
ture data.
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and solve the fitting problem, let’s make the formal change
of variables

τ = t – t0, t0 = 1856.0. (14)

Writing the model at the points t1, t2, ..., tm in vector–matrix
form gives

(15)

or in shorter form, 

y(t) = Φ(t)α, (16)

where Φ(t) is the m × 6 matrix, which depends only on the
vector 

t = (t1, t2, ..., tm)T, (17)

and y(t) is the m-vector of model predictions. Defining a
measurement vector 

y = (y1, y2, ..., ym)T (18)

and a residual vector

r(α) = y – Φ(t)α (19)

with elements
ri = [y – Φ(t)α]i, i = 1, 2, ..., m, (20)

let us write the objective function in Equation 5 as

(21)

, (22)

which we can expand to give

L(α) = yTy – 2αTΦT(t)y + αTΦT(t)Φ(t)α. (23)

This function is not restricted to the present example, which

has n = 6, but it is valid for any linear least-squares problem.
To assure a unique minimum, however, we must require that
n ≤ m and that the columns of Φ(t) comprise a linearly in-
dependent set of m-vectors.

Geometrically, the objective function defines an (n + 1)-
dimensional, quadratic hypersurface, sometimes called the
response surface, whose level curves correspond to concentric
n-dimensional ellipsoids in the α-space. It has a unique
global minimum that we can find by differentiating L(α)
with respect to α and equating the result to the zero vector,

(24)

Thus, the minimizing α must satisfy the n × n system of lin-
ear equations

ΦT(t)Φ(t)α = ΦT(t)y, (25)

which are often called the normal equations. Because the
columns of Φ(t) are linearly independent, the matrix prod-
uct on the left is nonsingular, so the unique solution is 

(26)

Until the early 1960s, linear least-squares estimates were
usually calculated by forming the matrix product ΦT(t)Φ(t)
and inverting it. But if the problem is ill-conditioned (if rel-
atively small perturbations in the data produce relatively
large perturbations in the solution), then we can get more
numerically stable algorithms by computing an orthogonal
factorization of the form

, (27)

where Q is an m × m orthogonal matrix (QTQ = I = QQT), R
is an n × n upper triangular matrix, and O is an (m – n) × n ma-
trix of zeroes. By substituting this factorization into Equation
25, we can easily verify that  α̂ satisfies the n × n upper- trian-
gular system

Rα = Q1y, (28)

where Q1 is the m × n matrix formed by the first n columns of Q.
This is the basis for the least-squares programs in the Lapack,
Linpack, and Matlab collections, which, in the numerical analy-
sis community, are considered to be the gold standards.2–4 (More
details on the QR factorization and its advantages for linear least
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squares appear in Stewart’s classic text.5) These advantages be-
come crucial only for problems in which the columns of Φ(t) are
almost linearly dependent. If the calculations are done in double
precision, then the older method will usually work quite well. It
has the advantage of producing the matrix [ΦT(t)Φ(t)]–1, which
we need to calculate the uncertainties in the estimates α̂j.

No matter which algorithm we use to compute the linear
least-squares estimate, two points about it are important. The
first is that we can compute the α̂j, with the maximum accu-
racy the data allow, in a finite sequence of calculations. The
second is that no prior knowledge or estimates of the values
of the αj are required in making those calculations. Nonlin-
ear least-squares problems do not share these advantages.

The linear least-squares estimates for the fifth order poly-
nomial fit to the global annual temperature record are

. (29)

The most uncertain parameter is α̂2, for which

. (30)

So, if the random errors in the data are independently nor-
mally distributed as assumed, then all the parameters are sta-
tistically significant.

The fit is plotted as the solid curve in Figure 3. It obvi-
ously tracks the data better than the straight line in Figure
1, and the corresponding residuals, given in Figure 4, are
both smaller and more random looking than those in Fig-

ure 2. The improvement in the tracking is especially evident
in the last 20 years of the record, where 17 of the data points
fall above the straight-line fit. In 1983, the old record high
anomaly of 0.19° C, set in 1944, was exceeded. In the fol-
lowing 16 years, this new high of 0.25° C was matched or
exceeded nine times. New record highs were established in
four of those years. The current record is 0.59° C, set in
1998. If the temperatures in the next 20 years should follow
this same fifth-order polynomial, the results would be cata-
strophic. The model predicts a temperature anomaly of
0.63° C for 2001 and 3.19° C for 2021. But we shouldn’t take
this prediction too seriously because it is well known that
polynomial fits almost always give unrealistic extrapolations,
even when they fit the data quite well. Indeed, the fit in Fig-
ure 3 illustrates this point if we consider extrapolating the
fit backward to 1836. 

The question remains of just how well the fit in Figure 3
actually represents the data. The residuals in Figure 4, al-
though more random than those in Figure 2, still display
systematic, nonrandom variations, including a weak indi-
cation of the 50- to 80-year quasicycle that the fifth-degree
polynomial was invoked to explain. So the order 5 polyno-
mial might not be a totally adequate representation of the
data, but this does not mean that we should try even higher-
order polynomials. In fact, we have not yet established that
the improvement in fit obtained thus far is sufficient to jus-
tify the addition of the four additional parameters to the
model. Let’s consider that matter in the next installment of
this series.

The best linear unbiased estimate
This section gives a statistical justification for the princi-

ple of least squares and, in the process, emphasizes the role
the random errors ∈i play in the fitting procedure. To sim-
plify the notation, let Φ ≡ Φ(t). Then the most general sta-
tistical assumptions for a linear model are that
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Figure 3. The fifth-degree polynomial fit to yearly average
global temperature data.
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y = Φα* + ∈, E(∈) = 0, E(∈∈T) = Σ2, (31)

where α* is the “true” parameter vector, ∈ is the m-vector
of unknown random errors, E is the expectation operator,
and Σ2 is the symmetric, positive definite variance matrix. If
we consider y as a random vector, then we can also write the
statistical assumptions as

, (32)

. (33)

Until now, we have assumed that

Σ2
= σ2Im, (34)

where σ2 is an unknown variance common to all of the er-
rors, which we also assume to be uncorrelated with one an-
other. For many problems the errors are uncorrelated, but
the variances do not all have the same value. In such cases,

, (35)

where we might or might not know the values of the σ2
i .

The assumptions about ∈ in Equation 31 are all that we
need to guarantee that the least-squares estimate is the best
linear unbiased estimate of α*. To see what this means, write
the separate elements of α* as

i = 1, 2, ..., m, (36)

where ei is the unit vector whose ith element is 1, meaning
the ith column of  Im. A linear estimate for α ∗

i is a linear
combination ui

T y of the elements of y, where ui is a vector
chosen to give the estimate the desired properties. The first
desired property is that the estimate be unbiased. This
means that ui must satisfy

, (37)

which, by Equation 32, will be satisfied if

. (38)

Many vectors ui might satisfy this condition, and all of them
give unbiased estimates . The best linear unbiased esti-
mate is the one with minimum variance. The variance of the
estimate is

, (39)

which, by Equations 38 and 33, becomes

. (40)

We can thus write the problem to be solved as

. (41)

Applying the method of Lagrange multipliers to this con-
strained minimization problem gives

, (42)

so the minimum variance unbiased estimate is

. (43)

Stacking all n of these estimates into a single n-vector gives

, (44)

which is analogous to the least-squares estimate in Equation
26. For the latter estimate, we implicitly assumed that the
error variance matrix was given by Equation 34. When this
matrix is substituted into Equation 44, the σ2 factors cancel
out, so we can compute the least-squares estimate even when
we don’t know the value of σ2. 

In the more general case, the estimate in Equation 44  is the
solution to a weighted least-squares problem where the weights
are obtained from the matrix ∑2. If the errors are uncorrelated,
as in Equation 35, then it is easy to compute the matrix

(45)

and use it to rescale the statistical model in Equation 31:

Σ–1y = Σ–1Φα + Σ–1∈,

E(Σ–1∈) = 0, (46)

E(Σ–1∈∈T Σ–1) = Im.

This scaled model corresponds to a least-squares problem
with a weighted objective function
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L(α) = [y – Φα]T Σ–2[y – Φα] (47)

= , (48)

whose minimum value occurs at the estimate in Equation
44. If Σ2 is not diagonal, it is still positive definite, so it has a
computable Cholesky factorization

Σ2 = LLT, (49)

where L is a lower triangular matrix that we can easily in-
vert. Scaling Equation 31 with L–1 produces an analogous
weighted least-squares problem.

This section concludes the first installment in this series of
articles. I’ve given only the briefest review of linear esti-

mation theory. You can find more details on this important sub-
ject in Alexander Mood and Franklin Graybill’s classic book and
Graybill’s more recent encyclopedic text on the subject.6,7

These books are also good sources on the statistical analysis and
interpretation of  least-squares estimates, a subject I will discuss
in more detail in the second installment in this series.
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