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Abstract. Bivariate cubic L1 smoothing splines are introduced. The
coefficients of a cubic L1 smoothing spline are calculated by minimizing the
weighted sum of the L1 norms of second derivatives of the spline and the
�1 norm of the residuals of the data-fitting equations. Cubic L1 smoothing
splines are compared with conventional cubic smoothing splines based on
the L2 and �2 norms. Computational results for fitting a challenging data
set consisting of discontinuously connected flat and quadratic areas by C1-
smooth Sibson-element splines on a tensor-product grid are presented. In
these computational results, the cubic L1 smoothing splines preserve the
shape of the data while cubic L2 smoothing splines do not.

§1. Introduction

Among the current options for approximating bivariate data are tensor-
product, polynomial and thin-plate smoothing splines [1,4,7,8,13,16,17,18],
multiquadrics [2] and wavelets [3,5]. Tensor-product, polynomial and thin-
plate smoothing splines often have extraneous, “nonphysical” oscillation, es-
pecially near multiscale phenomena, that is, near regions where the magnitude
of the data or the sizes of the cells in the grid change abruptly. The oscillation
in these smoothing splines can be mitigated or eliminated by shifting the po-
sitions of nodes, adjusting the number of nodes, adding various constraints or
penalties and a posteriori filtering, often with significant amounts of human
interaction. At additional computational expense, multiquadrics and wavelets
can avoid nonphysical oscillation. Development of computationally inexpen-
sive smoothing splines that preserve shape without requiring human interac-
tion would be of great benefit in modeling objects with multiscale phenomena
such as urban and natural terrain, mechanical objects and images.

In [10,11,12], new classes of univariate L1 interpolating splines, univariate
L1 smoothing splines and bi- and multivariate L1 interpolating splines were
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proposed. These splines preserve shape for smooth data as well as for data
with abrupt changes in magnitude and spacing and for smooth sets of spline
nodes as well as for those with abrupt changes in spacing. In the present
paper, we extend the results of [11,12] by creating a new class of bivariate
cubic L1 smoothing splines. Our focus here is mainly on bivariate C1-smooth
cubic L1 smoothing splines on tensor-product grids.

The objective of this paper is to present two case studies of approximation
of simulated urban structures by bivariate L1 smoothing splines. The urban
structures were simulated so that data sets would be devoid of signal noise and
image contamination due to preprocessing. Although it is crucial to be able
to deal with signal noise and image contamination, the primary focus here is
to study the performance of L1 smoothing splines on “clean” data sets.

§2. Bivariate Data, Grids and Sibson Shape Elements

We consider fitting the data (x̂m, ŷm, ẑm), m = 1, 2, . . . , M . The weight of the
mth data point is a positive real number ŵm. We will create bivariate cubic
L1 smoothing splines on tensor-product grids with nodes xi, i = 0, 1, . . . , I
and yj , j = 0, 1, . . . , J that are strictly monotonic partitions of the finite real
intervals [x0, xI ] and [y0, yJ ], respectively. The domain of the spline will be
D = [x0, xI ] × [y0, yJ ].

Sibson elements [6,9,12] will be used for the computational results in the
present paper. To create a Sibson element on a rectangle (xi, xi+1)×(yj , yj+1),
one first divides the rectangle into four triangles by drawing the two diagonals
of the rectangle. The Sibson element is a shape function z(x, y) that is cubic
in each triangle, is C1 at the lines separating the four triangles, is C1 with
the Sibson elements in the adjacent rectangles, has derivative ∂z/∂x that is
linear along the edges x = xi and x = xi+1 of the rectangle and has derivative
∂z/∂y that is linear along the edges y = yj and y = yj+1. The Sibson element
z in a given rectangle depends only on the values of z, ∂z/∂x and ∂z/∂y at
the corners of that rectangle (12 parameters per rectangle) as described in [6]
and in Sec. 2 of [12]. The values of z, ∂z/∂x and ∂z/∂y at node (xi, yj) will
be denoted by zij , zx

ij and zy
ij , respectively. The vectors of the values of the

zij , zx
ij and zy

ij , i = 0, 1, . . . , I, j = 0, 1, . . . , J , will be denoted by z, zx and zy,
respectively.

§3. Minimization Principle for Cubic L1 Smoothing Splines

A cubic L1 smoothing spline is a function that, for a given α, 0 < α < 1,
minimizes

E = α

M∑
m=1

ŵm |z(x̂m, ŷm) − ẑm|

+ (1 − α)
∫∫

D

[∣∣∣∣∂2z

∂x2

∣∣∣∣ + 2
∣∣∣∣ ∂2z

∂x∂y

∣∣∣∣ +
∣∣∣∣∂2z

∂y2

∣∣∣∣
]

dx dy

(1)
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over all surfaces z of a given class. The balance parameter α determines the
trade-off between the closeness with which the data are fitted, represented
by the sum in (1), and the tendency of the spline to be close to a piecewise
planar surface, represented by the double integral in (1). The double integral
in (1) is the functional that defines a cubic L1 interpolating spline [12]. This
double integral could be replaced by a double integral with different weights
on the three terms in the integrand, as in expression (4) of [12], or by a double
integral with different terms, as in expression (6) of [12].

Cubic L1 smoothing splines based on Sibson elements exist because, as a
function of the coefficients z, zx and zy, functional (1) is continuous, bounded
below by 0 and convex and tends to ∞ uniformly as the Euclidean norm of the
coefficients tends to ∞ (cf. Theorem 1 of [12], which states this result for inter-
polating splines). However, cubic L1 smoothing splines under this definition
need not be unique because functional (1) is not necessarily strictly convex.
When there are several candidates for an L1 smoothing spline, the candidate
with (in some metric) the smallest absolute values of the first derivatives, that
is, the flattest surface, is typically the choice of most users. For this reason,
we add to E a “regularization” term:

E +
I∑

i=0

J∑
j=0

[
ε1ij |zx

ij | + ε2ij |zy
ij |

]
(2)

where the regularization parameters ε1ij and ε1ij are small nonnegative num-
bers. Functional (2) is still not necessarily strictly convex and can therefore
achieve its minimum for more than one set of coefficients z, zx, zy. However,
standard interior-point algorithms, including the primal affine method used
for the computational results presented in this paper, yield a unique set of
coefficients that minimize (a discretization of) functional (2).

For comparison with cubic L1 smoothing splines, we will calculate “cubic
L2 smoothing splines” by minimizing the functional

α2
M∑

m=1

[ŵm (z(x̂m, ŷm) − ẑm)]2

+ (1 − α)2
∫∫

D

[(
∂2z

∂x2

)2

+ 4
(

∂2z

∂x∂y

)2

+
(

∂2z

∂y2

)2
]

dx dy

+
I∑

i=0

J∑
j=0

[(
ε1ijz

x
ij

)2 +
(
ε2ijz

y
ij

)2
]

(3)

Functional (3) is the same as the functional (2) except that the squares of
the �2 and L2 norms have replaced the �1 and L1 norms. The integral in the
functional for cubic L2 smoothing splines is not the same as the integral for
thin-plate splines because the coefficient of the middle term in the integrand is
4, not 2. L2 smoothing splines could, of course, be calculated with a thin-plate-
spline functional replacing the double integral in (3). However, L2 smoothing
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splines based on minimization principle (3) were chosen for comparison with
L1 smoothing splines because the main goal of this paper is to demonstrate
that the fundamental solution of the shape-preservation problem is a proper
choice of the function spaces. The most relevant comparisons are therefore
those in which only the function spaces (and not, for example, the coefficients
in the integrals) differ. Comparison of L1 smoothing splines of many different
types (including types A1 and B described in [12]) with L2 smoothing splines
of many different types (including thin-plate smoothing splines and smoothing
splines of types A1 and B) is an important issue for future investigation.

§4. Algorithm and Computational Results

We calculate the coefficients of a Sibson-element L1 smoothing spline by
minimizing the functional (2) in which the integral is discretized by the scheme
used in [12], which can be summarized as follows. Let N be an integer ≥ 2.
Divide each rectangle (xi, xi+1) × (yj, yj+1) into N2 subrectangles. Approxi-
mate the double integral over the rectangle by 1/[2N(N − 1)] times the sum
of the 2N(N − 1) values of the integrand at the midpoints of the sides of the
subrectangles that are in the interior of the rectangle. This discretization was
chosen because it uses values of the integrand only in the interiors (and not
on the boundaries) of the 4 triangles that make up each rectangle.

Minimization of (2) with the integral discretized in this manner was car-
ried out by the primal affine method of Vanderbei, Meketon and Freedman
[12,14,15] coded by the authors of this paper. The primal affine algorithm is
known to converge globally to a unique solution no matter whether functional
(2) is strictly convex or only (non-strictly) convex. Further information on the
convergence of the primal affine method can be found in the second paragraph
of Sec. 3 of [11] and the second-to-last paragraph of Sec. 4 of [12], which cite
the original results in [14,15] and elsewhere.

For comparison with cubic L1 smoothing splines, cubic L2 smoothing
splines with the integral in (3) discretized in the same manner as the inte-
gral in (2) were calculated. For all of the computational results presented
below, N = 5. The authors have computational experience with the data
sets of Figs. 1 and with other data sets not only with N = 5 but also with
N = 3. No significant differences have been noted. Investigation of how L1

and L2 smoothing splines vary with N may be of interest. However, before
commencing such an investigation, it may be useful to determine whether
functional (2) can be minimized without discretizing the integral. Research
by the optimization community may answer this question within the next few
years.

The weights ŵm were chosen to be 1 for all m. The regularization pa-
rameters ε1ij and ε2ij were chosen to be 10−4 for all i and j.

Cubic L1 and L2 smoothing splines were computed for two data sets.
Data set 1, shown on the left in Fig. 1, is a set of discontinuously connected
flat areas that represents a high-rise hotel complex. This data set consists
of 201 × 201 data points at equal, 1-unit spacing. Let ı̂ = 0, 1, . . . , 200 and
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̂ = 0, 1, . . . , 200 be the coordinates of the data locations. The data points ẑ
of data set 1 are given in Table 1.

Tab. 1 Data Set 1 (Simulated High-rise Hotel Complex)

ẑ Begin ı̂ End ı̂ Begin ̂ End ̂

150 71 135 16 35
25 101 125 51 75
10 16 135 100 120
10 16 35 121 155
100 36 115 121 155
10 116 135 121 155
10 16 135 156 175
0 Otherwise Otherwise Otherwise Otherwise

Fig. 1. Simulated high-rise hotel complex (left, data set 1) and sports stadium
(right, data set 2).

Data set 2, shown on the right in Fig. 1, is a simulated sports stadium
consisting of a quadratic surface discontinuously embedded in a flat area. This
data set consists of 128 × 128 data points at equal, 1-unit spacing. Letting
ı̂ = 0, 1, . . . , 128 and ̂ = 0, 1, . . . , 128 be the coordinates of the data locations,
the data points ẑ of data set 2 are given by

ẑ(ı̂, ̂) =

{
20 + 0.024 ∗ (ı̂ − 62)2 + 0.016 ∗ (̂ − 42)2 if

{
ı̂ = 12 : 92
̂ = 22 : 102

0 otherwise
(4)

For data set 1, cubic L1 and L2 smoothing splines were computed on
spline grids consisting of 100× 100 equal cells, each of size 2 units by 2 units,
with α = 0.8. For these smoothing splines, the “raw compression ratio,” that
is, the number of floating-point storage locations for the original data ẑ(ı̂, ̂)
divided by the number of floating-point storage locations for the smoothing
spline parameters zi,j , zx

i,j , zy
i,j , i = 0, 1, . . . , 100, j = 0, 1, . . . , 100 is 2012/(3 ∗
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1012) = 1.32. This case was chosen because it shows the different capabilities
of L1 and L2 splines at a low compression ratio. The L1 and L2 smoothing
spline approximations are shown in Fig. 2. Note the sharp and accurate
approximations of edges and corners in the L1 smoothing spline. In contrast,
the L2 spline has over- and undershoot at the edges of the buildings and has
oscillation near the edges.

Fig. 2. L1 smoothing spline (left) and L2 smoothing spline (right) with α = 0.10
for data set 1.

For data set 2, cubic L1 and L2 smoothing splines were computed on
spline grids consisting of 16×16 equal cells, each of size 8 units by 8 units, with
α = 0.99, 0.9, 0.85, 0.8, 0.75, 0.65, 0.6, 0.5, 0.4 and 0.3. For these smoothing
splines, the raw compression ratio is 1292/(3 ∗ 172) = 19.19. This case was
chosen because it shows the capabilities of L1 and L2 splines at a medium
compression ratio. The L1 and L2 splines with α = 0.8 and 0.75 are shown in
Figs. 3 and 4, resp. In both of these figures, the L1 smoothing splines fit the
data well and have very little over/undershoot and extraneous oscillation. In
contrast, the L2 smoothing splines have considerable “nonphysical” oscillation.

Fig. 3. L1 smoothing spline (left) and L2 smoothing spline (right) with α = 0.8
for data set 2.

In the above paragraph, the measure for the performance of the smooth-
ing splines is visual inspection because it is not yet known how to measure
shape preservation quantitatively. Nevertheless, it is appropriate to give some
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Fig. 4. L1 smoothing spline (left) and L2 smoothing spline (right) with α = 0.75
for data set 2.

quantitative information about the performance of the smoothing splines. To
do so, we will use the following norms: 1) the (normalized) �1 norm || · ||�1
(sum of the absolute values of the 1292 values divided by 1292), 2) the (nor-
malized) �2 norm || · ||�2 , also known as the RMS or root-mean-square norm
(square root of the quotient that consists of the sum of the squares of the 1292

values divided by 1292) and 3) the �∞ norm || · ||�∞ (maximum of the 1292

absolute values). In Table 2, we present the �1, �2 and �∞ norms of the error
between the values z of the L1 and L2 smoothing splines and the ẑ of data set
2. In this table, we denote L1 smoothing splines by z[L1,α] and L2 smoothing
splines by z[L2,α].

Tab. 2 Norms of Errors of Smoothing Splines

and Data Set 2

i = 1 2
weight α = 0.8 0.75 0.8 0.75

||z[Li,α] − ẑ||�1 = 8.373 9.517 8.637 9.729
||z[Li,α] − ẑ||�2 = 22.80 23.81 22.18 23.23
||z[Li,α] − ẑ||�∞ = 137.6 137.6 130.7 132.4

By the information in Table 2, one could not determine whether L1

smoothing splines are better or worse than L2 smoothing splines. Since L1

and L2 smoothing splines fit data in the spaces �1 and �2, respectively, it is
perhaps not surprising that L1 smoothing splines perform better in the �1

norm and that L2 smoothing splines perform better in the �2 (and �∞) norm.
However, most observers interested in geometric modeling agree that the L1

smoothing splines represent the original data better than the L2 smoothing
splines. The error norms in Table 2 confirm what is well known in the image
processing community, namely, that the �1, �2 and �∞ norms are not good
measures of shape preservation.

§5. Convergence Issues

The primal affine method, which has so far been the method of choice for
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calculating L1 smoothing splines, typically performs well for small data sets.
However, for the large data sets of interest in this paper, the primal affine
method converged slowly (100-600 iterations) for some α, converged incom-
pletely (difference between iterations decreased until a certain point and then
increased) for other α and diverged for yet other α. The computational results
shown above were, of course, for cases of complete convergence. Alternative
strategies for calculating L1 smoothing splines are under investigation. One of
these strategies is domain decomposition, in which the global domain is broken
up into many slightly overlapping subdomains and the global L1 smoothing
spline is patched together from the local L1 smoothing splines. Also, linear
and nonlinear programming algorithms to replace the primal affine method
are under investigation. The primal affine method in its current global imple-
mentation has been sufficient to “prove the principle” (in the present paper
and in [10,11,12]) that L1 interpolating and smoothing splines are able to
preserve the shape of data much better than conventional L2 splines. In the
future, it is likely that other algorithms for calculating L1 splines will be of
great interest and use.

§6. Conclusion

In this paper, we have focused on providing evidence that the choice of the
function spaces in smoothing spline minimization principles has far greater in-
fluence than previously expected. The seemingly minor change of the function
spaces from the conventional choices �2 and L2 to the unconventional choices
�1 and L1 results in a vast improvement in the shape-preserving, multiscale
capabilities of cubic smoothing splines. The contribution of this article is not
to prove that L1 smoothing splines preserve shape better than L2 smoothing
splines but merely to observe that that is so for a limited set of test cases. A
full proof that L1 smoothing splines preserve shape better than L2 smoothing
splines requires quantitative understanding of shape preservation, something
that does not yet exist.

The smoothing splines presented here were calculated with Sibson ele-
ments and with no adaptivity in the spline grids. Investigation of bivariate L1

smoothing splines using various Sibson and non-Sibson elements on quadran-
gulations and triangulations in nonadaptive and adaptive settings would be
of large interest. Comparison with other widely used methods for modeling
irregular, multiscale data (TINs, wavelets, JPEG, etc.) needs be carried out.

One could, of course, choose to fit the data of Figs. 1 and 2 by L2 smooth-
ing splines on subdomains that do not cross the lines of discontinuity and
therefore have much less extraneous oscillation. However, if one does so, one
must identify the lines of discontinuity, introduce topology into the fitting
procedure and handle issues of matching of splines at the boundaries of the
subdomains. The cost of doing this has to be balanced against the advantages
of having one “terrain skin,” the L1 smoothing spline, that requires none
of this. Different users will make different choices that fit their needs. L1

smoothing splines do not replace other options but do add a new, attractive
option to the set of options from which the user can choose.
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Cubic L1 smoothing splines are a promising new technique for geometric
modeling, especially modeling of objects with multiscale phenomena such as
urban and natural terrain, mechanical objects and images. The preliminary
results in the present paper indicate that further investigation of L1 smoothing
splines may have high payoff.
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