New Series! Rethinking Software Security

#357 FEBRUARY 2004

~ S Jsormmke
r O S T00LS FOR THE
0. PROFESSIONAL

J 0O U R N A L |l

http://www.ddj.com

e WS-l & Interoperahle Web Servlces

¢ [ntegrating XML Web Services
With VBG Apps

e UDDI & Dynamic Web Service Ilisenvery

1/0 Multiplexing & Scalable Socket Servers
Regular Expression Mining

Applying the Overtake & Feedback Algorithm
Parallel Programming & Interoperable MPI

Communicating with
Your Manager

ASP.NET Forms Authentication
sssssssssssss Eudora Maillbox Classes -
“ “ Multitasking on the Cheap

|

mzili mmmmar:&

w,' o Bl g i - I ' F e X el
P iy iy i i a8 i

| PrOgra
Interop

Building portable
applications for
diverse systems

William L. George, John 6.
Hagedorn, and Judith E. Devaney

odern computing centers typical-
ly provide users with a variety of
computing resources, ranging from
single-processor workstations to
high-performance parallel computers. In-
creasingly, this mix also includes Beowulf
class machines— clusters of commodity

. PCs configured to operate as parallel com-
. puters. The Message Passing Interface

(MPD) library, which provides C and For-
tran interfaces to routines for sending data
(messages) between processors, was de-
signed to implement portable applications
for diverse systems such as these.
Although parallel computations are nor-
mally run on single parallel computers,
there is often a need to harness the re-

William and Jobn are computer scientists
and Judith is group leader in the Scien-
tific Applications and Visualization Group
at the National Institute of Standards and
Technology. They can be contacted at
william.george@nist.gov, jobn.hagedorn@
nist.gov, and judith.devaney@nist.gov, re-
spectively.

bitp.//www.ddj.com

sources of multiple clusters and parallel
computers, forming what we call “multi-
clusters” to perform a single computation.
(For information on related technologies,
see the accompanying text box entitled
“‘Multicluster Environments.”) This might
be required, for example, for simulations
that are too large to be performed on any
available individual parallel machine. In-
teroperable MPI (IMPI) provides a means
of accomplishing this with minimal effort
on the part of application programmers.
IMPI is a set of protocols— implemented
within an MPI library— that let multiple
MPI libraries cooperate, acting like a sin-
gle MPI library for programs running on
a multicluster. The IMPI protocol specifi-
cation is available at http://impi.nist.gov/
impi-report/index.html. In this article, we'll
examine IMPI and provide examples of
how it can be used. For background on
parallel architectures and programming,
see the accompanying text box entitled
“Basic Parallel Architectures and Pro-
gramming.”

A Crash Course in MPI

For readers unfamiliar with message pass-
ing, we'll briefly describe some basics of
this programming style using C and MPI.
Assuming you are running a program us-
ing P processes, each process will be iden-
tified in calls to MPI by an integer rank
from 0 to (P-1). Listing One, for instance,
sends an integer from the lowest rank pro-
cess to the highest rank process.

Once this program is compiled and
linked to the MPI library (-Impi), it can
be executed by a command-line utility
program provided with the MPI library.

Dr: Dobb’s Journal, February 2004

Often this utility is named “mpirun.” As-
suming our executable is named “pro-
graml” and -np is the command-line
switch for specifying the number of MPI
processes (this syntax varies between MPI
implementations), the command line to
run our program with eight MPI processes
could look like: mpirun -np 8 program1.

In Listing One, the MPI_Init and MPI_Fi-
nalize calls are required in all MPI programs.
No calls to MPI routines can be made be-
fore the call to MPI_Init or after the call to
MPI_Finalize. To get the rank of the lo-
cal process, you call MPI_Comm_rank. To
get the total number of processes, call
MPI_Comm_size.

In most MPI routines, an MPI com-
municator is a required parameter. A
communicator describes a set of pro-
cesses (including the assignment of ranks
to those processes) and defines a sepa-
rate communications context. A message
sent using one communicator can only
be received by a call using the same com-
municator. The predefined communicator
MPI_COMM_WORLD simply includes all
of the processes; however, subsets of
MPI_COMM_WORLD are possible.

In Listing One, the communication is per-
formed with the most basic MPI communi-
cations routines MPI_Send and MPL_Recu.
The parameters to these routines describe
the message to be sent/received (message,
count, and MPL_INT), the rank of the des-
tination process (dst for MPI_Send) or source
process (src for MPI_Recv), an arbitrary tag
value, and an MPI communicator for mes-
sage matching. The status parameter to the
MPI_Recv routine holds details of the mes-
sage once it has been received.

49

PROTECTION?

| DON'T TAKE RISKS.
| DOTFUSCATE MY .NET CODE;
| DASHO MY JAVA CODE.

PreEmptive's Dotfuscator® for WET and
Dash0” for Java help protect your programs
against reverse engineering while making
them smailer and more efficient. Both have
aneasy to use GUI and command line inter-
face for seamiess integration with your bufld
process. The benefits are superior intellectual
property protection, decreased application
size; and better-program performance.

It's your code. Protect it:

det/uscator
dash{)

www.preemptive.com
B00.996.4556

50

——I—'

PreEmptive EHM
Sy where does IMPI fit inta: all of this?

At the sourcescode level, an IMPI program
is simply an MP] program. Adding IMP1
support to an MPI library does not add,
remove, or change any user-level MPI rou-
Hnes. However, there can be some addi-
tional considerations to ke oo account
when writing an MP1 program that is
specifically designed to run on a hetero-
geneous collection of parallel machines.

Starting an IMP| Program
When running an MP1 program on a mul-
ticluster with TMPL each cluster or pec-
allel machine in the mulicluster is re-
fermed 1o as an IMPI client. Before running
the program, users must decide on an or-
der for these clients. This ordering de-
termines the ranking of the processes in
MPI_COMM_WORLD such that the ranks
af the processes in client 0 are the lowest
runks, followed by the ranks of the po-
cesses in client 1, and s0 on. This client
panle must be 2 number from (010 1 less
than the number of clients.

Normally, an MPI program is started
with a cammeand such as: mpiror -2 <N=

[FPOETA- e GUs, where <N> is the
number of processes to use. To run an
MPI! program using IMPL on a multiclus-
ter, an IMPI server process must first be
started using the commuand mpiran -sen-
ot =eopenr>, where <connf> is the num-
ber of IMPI clients that will be stared. The
IMPI server is the rendezvous point for
the IMPI clients and acts as a relay be-
rween the clients during the startup of
the IMPI program. The IMPI server will
print 1o the terminal a string such as
192.168.0,1:12345, which gives the P ad-
dress and the port number of the IMPI
sepver. This information, in this exact form,
is needed to start the clients, Onee the
IMP] server % nunning, each of the clients
can be started with o command of the
form: miptrin -client <G> <host:port>
<pest>, where <€ is the client number,
<hastport=> is the rendezvous information
lrom the IMPI server, and <rest> s the rest
of the standard mpimn command line
Once an MPL program has starred, all
af the processes from all of the IMP1 chents
are included in the MPI communicator
MPL COMM_WORLD, and they are ranked

bt dhessine (o run MPL progaaims across
heterngeneous sets of clusters has

been around since the introduction

of MPI1, and other projects have pro-
vided this capability in different ways.
For éxample, two portable and freely
available implementations of MFPT,
MPICH (see “A High-Performance,
Portable implementation of the MPI
Message Passing Interface Standard,” by
William Gropp, Ewing Lusk, N. Doss,
and Anthony Skjellum, Pareailel Com-
puting, September 1996, hitp://www-unix
mes anl.gov/mpi/mpich), and LAM

(hitpy// weww lam-mpi.org/) are capable
of running programs across heteroge-
neous clusters of machines, so long as
you use the same library (MPICH or
LAM) on each of the clusters. Another
MP1 libriry, MagPle (sce ‘MagPle: MP1's
Collective Communication Operations
for Clustered Wide Area Systems.” by
Thilo Kielmann, Rutger EH. Hofman,
Henri E. Bal, Aske Flaat, and Rapul AE
Bhoedjang, Setenth ACM SIGPLAN Symi-
pastum on Principles and Practice of
Parailel Programming [PPOPP99], May
19997, is based on the MPICH source
code and contains updated implemen-
ttions of the MPI collective commuri-
cations routines that are optimized for
operation over WANs. All of these solu-
tions, however, preclude you from us-
ing the vendor-tuned MPI libraries, thus

Multicluster Environments

sactificing performance within each par-
allel machine or cluster.

The MPI-Connect priject (see “MPL
Inter-connection and Control,” by GE.
Fagge amel K.S. London, Technical Report
Tiech Rep, 98-42, Corps of Enginecrs Wa-
terways Experment Station Major Shared
Resource Center, 1998) used another
message passing brary—PVM, shor for
“partable virual machine” (PVM: Par-
ailel Virtual Machine, A User's Guide
aniel Tratorial for Networked Parallel Com-
pittingg, by Al Geist, Adam Beguelin, Jack
Dongarra, Weicheng Jiang, Robert

B

= T A 1

Manchek, and Vaidy Sunderam, MIT
Press, 1994) o cONNECt Processes un-
der the control of different MP1 librares.
While this lets you use the vendor MP]
libraries on each of the machines, MPI-
Connect does not allow the use of any
of the MPI collective operations, such
a5 broadeast o reduce. Onoa larger
scale, the Global Grid Forum Chttp://
woww. gridfanmm.ong’) is coordinating a
set of projects that will make comput-
ers, and other resources such as large
databases, telescopes, wind tunnels, par-
tlele avceleratars, and the like, available
for use remotely and in concert Many
issues such as user authentication, re-
source scheduling, and security are be-
ing investigated by this forum.

—WLG, J.GH, JED,

P Dobb's fourned, February 20004

bt/ unenddf.com

according to the ranks given to the IMPI
clients.

Some IMPI Usage Patterns
Now that we have described the basics
of parallel message-passing programming

with MPI and how to start an IMPI pro-
gram, we now turn to how IMPI can be
used to expand the power of MPI pro-
grams. There are several types of appli-
cations that we anticipate will use IMPT
to great advantage, but most likely there

entific programs can be character-

ized as either task parallel or data
parallel. These terms describe how the
program obtains parallelism.

A task-parallel program consists of
multiple independent tasks that can be
completed with little or no communica-
tion between the tasks. Typically, one
process is in charge of assigning the
tasks to the available processors and col-
lecting the results. The SETI@home pro-
ject is one example of this model of par-
allel processing (http://setiathome.ssl
berkeley.edu/). The amount of paral-
lelism available in a task-parallel pro-
gram increases as the number of inde-
pendent tasks increases.

A data-parallel program typically op-
erates on large multidimensional arrays
with a main loop that updates these ar-
rays once per iteration while converg-
ing toward a solution. Each iteration of
the main loop completes identical, or
nearly identical, calculations to update
each of the elements in one or more of
the large arrays. The amount of paral-
lelism available in a data-parallel pro-
gram increases with the size of the ar-
rays. Data-parallel programs often
require communication between the pro-
cessing nodes during the update calcu-
lations. Therefore, the distribution of the
data among the processing nodes is an
important consideration when design-
ing these programs.

A classification scheme also exists for
describing hardware that supports par-
allel programs. This classification scheme
focuses on one of the most important
considerations in parallel program-
ming— access to main memory by the
processors. At the top level, a parallel
machine can be described as either a
distributed-memory machine or a
shared-memory machine.

In a distributed-memory machine each
processor has its own local main mem-
ory that is not directly accessible by oth-
er processors. Sharing data between pro-
cessors is accomplished via message
passing; that is, explicitly sending data

At the highest level, most parallel sci-

Basic Parallel Architectures and
Programming

from one processing node to another.
These messages are sent over a network
that connects the processors.

In a shared-memory machine, all pro-
cessors have equal access to all avail-
able memory. Like distributed-memory
machines, shared-memory machines also
need an interconnection network; how-

ever, in this case the network connects
the processors to the main memory. For
best performance, applications must
avoid contention on this network by
avoiding multiple simultaneous requests
for data stored in the same area of mem-
ory. Even on a shared-memory machine,
message-passing style programs, using
MPI, perform well. In this case, each pro-
cess only directly accesses portions of the
memory that hold its data. Message pass-
ing is implemented (within MPI) using
standard memory-to-memory moves. Un-
like most multithreaded shared-memory
applications, this results in very scalable
parallel applications due to the low con-
tention on the processor-to-memory in-
terconnection network.

Of course in the real world, these clas-
sification schemes are blurred. Current-
ly, many high-performance parallel ma-
chines available from manufacturers such
as IBM, Sun, Hewlett-Packard, and SGI
are distributed-memory machines with
high-speed interconnection networks,
in which each processing node in the
network is a 2- to 16-processor shared-
memory multiprocessor. Additional hard-
ware and software is sometimes avail-
able for these machines that provide you
with a shared-memory API on top of the
basic distributed-memory architecture.
Luckily, with vendor-tuned MPI libraries,
all of these machines can still run your
C/Fortran MPI programs without change
and with good communications perfor-
mance.

For an introduction to parallel pro-
gramming with MPI, including books and
online tutorials, see http://www.lam-mpi
.org/tutorials/ and http://www.ERC
‘MsState Edu/labs/hpcl/projects/mpi/.

LwWiG, JGH., JED.

SL2EarLER
Instantly Search
Gigabytes of Text
Across a PC, Network,
Intranet or Internet Site

" Ppublish Large Document Collections
 to the Web or to CD/DVD

« over two dozen indexed, unindexed, fielded &
full-text search options

« highlights hits in HTML, XML, & PDF while
displaying embedded links, formatting & images ¥

« converts other file types (word processor,
database, spreadsheet, email, ZIP, Unicode, efc.)
1o HTML for display with highlighted hits

& for Win & .NET
@ for Linux
' & call'forpricing

“The most powerful document search tool
on the market” —Wired Magazine J

“Intuitive and austere ... a superb search |
tool” -PC World J

“Blindingly fast” ~Computer Forensics:
Incident Response Essentials

“A powerful arsenal of search tools”
—The New York Times J

dtSearch “covers all data sources ...
powerful Web-based engines” —eWEEK J

«gearches at blazing speeds”
—Computer Reseller News Test Center

In the past two years, over half of the Fortune 15

purchased dtSearch developer or nefwork licenses.
See www.dtsearch.com for:

« hundreds of developer case studies & reviews

« fully-functional evaluations g

| 1-800-IT-FINDS © sales@itsearch.com

bttp.//www.ddj.com

3

Dr: Dobb’s Journal, February 2004

The Smart Choice for ‘Text RetrievalP since 1991

| gt 734 B |
| et |
s a1

are many others we have not yet con-
sidered.

These are not new classes of parallel
programs we are describing, but types of
paraflel programs that are easily support-
ed by IMPI and likely to successfully n
in a multicluster envisonment.

Case 1: Legacy data-paralle]l programs,
Oine immediate wse we anticipate for IMP
is 1o simply allow legacy MPD programs to
mun in o muldcuster environment. The mo-
tivation for doing so would be 1o either
decrease the ol exeoution tme of the
program o, more fikely, 1© enable the mun-
ning of Lirger problems than would be
passihle on any one of the clusters alone,

There are aspects of this use of TMIPT tht
could require some modifications 1o your
application m order to- obtain reasonable
performance. Unless the processing nodes
in the dusters of this environment ane dose-
ly matched in speed, available memory,
and 1O capabilities, you may need 1o per-
form some load balancing that was not
needed when you ran only on 2 homoge-
neous set of processing nodes,

One other considerartion that needs to
be addressed in running vour legaicy data-
parallel application in a multicluster envi-
ronment i the handling of file T/0. De-
pending on the configuration of the
networks connecting the clusters, and

whether disk vedumes are éross-mounted
with some form of networked filesystem,
you may need to add some preprocess-
ing and pastprocessing o move input and
output files where they are needed,
Case 2: Pipelined . Another
anticipated use of IMPI is in suppont of
applications designed as large- grain data-
flow algorithms, A simple case of this is g
pipelined computation comprised of sev-
eral large-grain stages. Each stage of the
compugation can be executed on 4 sepad-
rite parallel machine. One example of this
type of application is 4 ghobal climate sim-
ulator, This simulator coulkd include sep-
arate models for the ocean, the lower at-
mosphere, and the upper amosphere with
defined physical boundanies between each
of these modeled environments. Each of
these models could be run on separate
parallel machines with the coupling be-
tween the models enabled by communi-
cation over the IMPI channels; that is, the
network. connections berween the 1M
clients (see Figure 1)

In this type of application; eacl MPI
process needs to know not only its rank
within the MPI_COMM_WORLD com-
municator, but also 1o which stage of the
computation it belongs and possibly
which stage each of the processes in
MPI_COMM_WORLD belongs to. IMP]

Client 0 Gliert 1 Client 2

Stage 0 Stage 1 Stage 2
Local MPI Local MPI Local MPI

:_ ol) i = A MIF

F

+—= IMPI Channels

Figwre I: Using IMF! in a three-stage, layge-grained parallel application.

Simulator
Client 3
Ciient 2 ecooe® Client 4
*eee eo99® cooo
====“ D90 . ggg
1 L B N ¥ B
Monitor |, ,| Controlier
@ (=3
Client o Cllent 1
*——— |MPI Channals DMPIPFM’:BI_

Figure 2 Lsing IMP] for compuidational steering.

52

e Dobly's fournal, Febrivary 2004

provides this information to the applica-
tion at runtime through the use of an e
isting MPI facility called “atribute caching?
This allows for arbitrary information to be
nssociated with an MPL communicator fur
each process. For IMPI support, each pros
cess can determine which IMPI client it be
longs to by retrieving a cached attribute
cilled the IMPL_CLIENT_COLOR, which is
simply an infeger. For the communicitos
MPI_COMM_WORLD, this integer will he
identical to the client rank given 1o
mipirun commyand,

The term COLOR is used 1o match the
terminology used in the MP1 routing
MPI_Comm_splitt MPI_Comnn comm, il
cofor; .., a routine that creates a et of
new communicators; each of which cons
sists of all of the MPI processes thart shiane
the same color. For our pipelined appli-
cation, each MPI process would pass in
its IMPI client color. This is likely 1o be
one of the first operations complesed in
a pipelined IMP1 application so that the
processes in each stage of the pipelin
obtain their own private communicator o
use within its stage of the computations,
Listing Two presents the MPI calls needs
ed 1o create the communicatars for each
stage of the computation,

Crnce these calls are completsd, each
MFI process knows 10 which stage it e
longs (stage), has an MPL communici-
tor for communications within the set of
processes that comprise that stage
Cstage_comm), and knows its rank within
that set vf processes (stage_rank)

The third parameter in the call (o
MPY_Comm_split can be used 10 allow the
reordering (reranking) of the processes in
stage_comm if the MPI implementation
wonld like to do so (presumably for per
formance reasons); 0 here means do not
reorder the processes,

Thus, using the IMPl-supplied atribule
IMPI_CLIENT_COLOR in addition w0 the'
standied MPI routines for creating new |
communicators, you can implement 2
pipetined application that adapts o what=
ever size clusters (IMPI clients) vou have:
available, More work would be needed i
you wanted to elther assign more than one
chient to one of the computational stages®
or more than one stage to a single client,

Example code for enabling communic
cation between the three pipeline stiges,
usings the MPL routine MPF datercomm_cre
étte 10 create speciil MPI communicators,
is provided in the MPT 1.1 document, Sec-
tion 5.6.3 Intercommunication Examples
(hitp//www . mpi-forum.org/docs/mpi-11-
himnl/mpi-report heml), This s 2 stancand |
MPI progriomming technigque not affected
by the use of IMPL '
Case 3: Computational st and
interactive applications. The abiliry 10
monitor the progress of lange simulations,

bittp A wneddf.com

especially during initial development, can
be of great help in debugging the code
and in experimentally determining a set
of reasonable simulation parameters. In
this case, we can use IMPI to run two or
three subprograms, all aware of each oth-
er and connected via MPI. These extra
programs are used for monitoring and
controlling the main simulation. This is
akin to the model-view-controller (MVC)
style of program, except that the coupling
between the model/view/controller is
much looser. With the size and compu-
tational complexity of the models (simu-
lations), the time between view updates
may be from minutes to hours or even
longer. Figure 2 shows a configuration of
IMPI clients for this type of parallel ap-

~ plication. In Figure 2, MPI processes are
colored to indicate the various values of
the IMPI_CLIENT_COLOR attribute. Code
similar to that shown for pipelined pro-
grams could be used to create MPI com-
municators for each of the distinct parts
of the program (simulator, monitor, and
controller), and then, assuming the simu-
lator is a pipelined program, create the
communicators for each of the stages of
the pipeline. The outline for this type of
IMPI application is as follows:

One client is assigned to the monitor,
one to the controller, and three to the sim-
ulator. Each MPI process, represented in
Figure 2 by a circle, has a value for the
IMPI_CLIENT_COLOR attribute that is
cached onto MPI_COMM_WORLD. These
attribute values, which match the associ-
ated client numbers in Figure 2, are em-
phasized here by mapping each value to
a separate color; see Listing Three.

As with the pipelined program case,
communication between the viewer, the
controller, and the simulator is enabled by
creating special MPI communicators using
the MPI routine MPI_Intercomm_credlte.

So, the model part of Listing Three con-

scribed, or any other type of MPI program.
It is also possible for this simulator to be
a multithreaded program that runs on a
large shared-memory machine that uses
MPI only to communicate with the view
and controller parts of the IMPI program.

The second program referenced in List-
ing Three is a monitor program (the view

There are
several types of
applications that

will use IMPI to
great advantage

portion of MVC) that performs the fol-
lowing steps in a loop: accept image data
from the simulation, possibly once every
iteration of its main loop; render this data
into a form suitable for the target display;
and display the image, either on your
workstation or other suitable device. If the
simulation is not working as expected,
you will know this as early as possible.
To minimize the effect of this monitoring
on the performance of the simulator, the
communication between the simulation
and the monitor can be reduced by dec-
imating the image data or reducing the
frequency of image updates.

The third program, if needed, allows for
some amount of interactivity with the sim-

main simulation. This control could also
let you turn on/off the monitoring of the
simulation as needed.

Conclusion

IMPI lets legacy MPI programs run unal-
tered on multiclusters consisting of two
or more computing resources such as par-
allel machines, clusters, workstations, and
PCs. Also, applications can be written
specifically to run in such a multicluster,
allowing greater control over various as-
pects of the application such as large-grain
pipelining, load balancing, and file 1/O.
One major design advantage of IMPI over
other available techniques to the problem
of running on a multicluster is that IMPI
uses the vendor-tuned MPI libraries for
optimum communication within each par-
allel machine, while still allowing the un-
restrained use of all of MPL

The freely available MPI library LAM/
MPI (http://www.lam-mpi.org/) supports
IMPL Full implementations of IMPI are
available from Hewlett-Packard, MPI Soft-
ware Technology, and Pallas GmbH (for
Fujitsu). Other implementations of IMPI
are anticipated in the future. Furthermore,
the National Institute of Standards and
Technology (NIST) IMPI test tool (http://
impi.nist .gov/ImpiTT.html) lets you test
IMPI implementations for conformance to
the IMPI protocol standard. For a detailed
background on MPI, see Using MPI:
Portable Parallel Programming with the
Message Passing Interface, by William
Gropp, Ewing Lusk, and Anthony Skjel-
lum (MIT Press, 1999).

Note: Certain commercial equipment,
instruments, or materials are identified in
this paper to foster understanding. Such
identification does not imply recommen-
dation or endorsement by the National In-
stitute of Standards and Technology, nor
does it imply that the materials or equip-
ment identified are necessarily the best

tains the simulation that is to be run on ulation, perhaps letting you modify the available for the purpose.
one or more clusters. This part of the pro- controlling parameters of the simulation
gram can be a data-parallel or large-grain or, more drastically, allowing you to kill
pipelined program, as previously de- or restart the simulation from within the DDJ
Listing One Listing Two
#include <mpi.h> int *stage, stat, stage_rank;
int main(int arge, char *argv[]) MPI_Comm stage_comm;
int my_rank, src, dst, tag, message, nprocs, count; MPI_Attr_get (MPI_COMM WORLD, IMPI_CLIENT_COLOR, &stage, &stat);
MPI_Status status; MPI_Comm_split (MPI_COMM_WORLD, *stage, 0, &stage_comm) ;
count=1; MPI_Comm_rank(stage_comm, &stage_rank);
tag=100;

MPI_Init(&arge, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank (MPT_COMM_WORLD, &my_rank);

src=0;
dst=nprocs-1;

if (my_rank == src) {
message=42;

MPI_Send (message, count, MPI_INT, dst, tag, MPI_COMM_WORLD);

)} else if (my_rank == dst) {

)
MPI_Finalize();
return @;

MPI_Recv (&message, count, MPI_INT, src, tag, MPI_COMM_WORLD, &status):

bitp://www.ddj.com

Listing Three

int *color, stat, rank;
MPI_Comm comm;

switch (color) (

Dr. Dobb’s Journal, February 2004

MPI_Attr_get (MPI_COMM_WORLD, IMPI_CLIENT_COLOR, &color, &stat);
if (color > 1) color=2; /% Simulator gets all clients > 1 #/
MPI_Comm_split (MPT_COMM_WORLD, *color, @, &comm):

case @: /* Call the Controller */ break;
case 1: /* Call the Monitor
case 2: /* Call the Simulator */ break:
)

#/ break;

DDJ

53

