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Abstract. The APEX method is an FFT-based direct blind deconvolution technique that
can process complex high resolution imagery in seconds or minutes on current desktop platforms.
The method is predicated on a restricted class of shift-invariant blurs that can be expressed as
finite convolution products of two-dimensional radially symmetric Lévy stable probability density
functions. This class generalizes Gaussian and Lorentzian densities but excludes defocus and motion
blurs. Not all images can be enhanced with the APEX method. However, it is shown that the method
can be usefully applied to a wide variety of real blurred images, including astronomical, Landsat,
and aerial images, MRI and PET brain scans, and scanning electron microscope images. APEX
processing of these images enhances contrast and sharpens structural detail, leading to noticeable
improvements in visual quality. The discussion includes a documented example of nonuniqueness, in
which distinct point spread functions produce high-quality restorations of the same blurred image.
Significantly, low exponent Lévy point spread functions were detected and used in all the above
examples. Such low exponents are exceptional in physical applications where symmetric stable laws
appear. In the present case, the physical meaning of these Lévy exponents is uncertain.
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1. Introduction. The APEX method is an FFT-based direct blind deconvolu-
tion technique introduced by the author in [9]. The significance of the present paper
lies in the successful use of that method in sharpening a wide variety of real blurred
images, as opposed to the synthetically blurred images discussed in [9]. The rea-
sons behind these successful applications are not fully understood. Not all images
can be usefully enhanced with the APEX method. The present paper is essentially
self-contained and may be read independently of [9].

Blind deconvolution seeks to deblur an image without knowing the point spread
function (psf) describing the blur. Most approaches to that problem are iterative
in nature. Because nonuniqueness is compounded with discontinuous dependence
on data, such iterative procedures are not always well-behaved. When the iterative
process is stable, several thousand iterations may be necessary to achieve useful recon-
structions. However, as shown in [9], by limiting the class of blurs, noniterative direct
procedures can be devised that accomplish blind deconvolution of 512 × 512 images
in seconds on current desktop platforms.

The APEX method assumes the image g(x, y) to have been blurred by a restricted
type of shift-invariant psf h(x, y), one that can be expressed as a finite convolution
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product of two-dimensional (2-D) radially symmetric Lévy stable probability density
functions. Such so-called class G psfs include Gaussians, Lorentzians, and their convo-
lutions. However, the class G also excludes defocus and motion blurs and convolutions
of such blurs with Gaussians and Lorentzians.

The synthetically blurred images g(x, y) used in [9] were created by numerical
convolution of sharp images f(x, y) with class G psfs h(x, y). Such blurred images
necessarily obey the convolutional model g(x, y) = h(x, y)⊗ f(x, y) + noise, on which
the APEX method is predicated. In a real image, the blur need not be radially sym-
metric nor shift-invariant and may otherwise be poorly approximated by an element
of G. More fundamentally, the blurring operator may not even be linear. Applicabil-
ity of the APEX method to a given real image is far from obvious. Therefore, useful
sharpening of any such image with an APEX-detected psf is always instructive.

Stable distributions are the natural generalization of the Gaussian distribution.
Their theory was developed by Paul Lévy in the 1930s in connection with his work
on the central limit theorem (see [17]). In the simplest radially symmetric case, these
distributions are characterized by an exponent β, 0 < β ≤ 1, with β = 1 corresponding
to the Gaussian distribution, and β = 1/2 corresponding to the Cauchy or Lorentzian
distribution. Because stable distributions have infinite variance when β < 1, their
appearance in physical contexts sometimes poses philosophical difficulties. In the
present case, use of such heavy-tailed psfs as the framework for the APEX method is
motivated by the important role Lévy densities appear to play in numerous imaging
systems. This is documented in section 2. When the APEX method is applied to a
given image in the manner described below, a Lévy psf with a specific value of β is
necessarily detected. That value of β may not be indicative of the actual physical
process that created the image. This is true even if deblurring with the detected
psf significantly improves the image. As shown in section 4, there are in general
infinitely many distinct values of β that can produce useful reconstructions from the
same blurred image. In some cases, the usefully enhanced image may not have been
blurred by a class G psf to begin with. In other cases, APEX processing does not
significantly improve the image.

Below, we exhibit ten images where APEX processing provided noticeable im-
provement. These examples encompass such diverse imaging applications as astro-
nomical, Landsat, and aerial images, MRI and PET brain scans, a scanning electron
microscope image, a face image, and other types of interesting images. In some cases,
the improvement is due primarily to an increase in contrast. In other cases, there is
demonstrable sharpening of structural detail in addition to increased contrast. In all
cases, the change in image quality is more than cosmetic, as APEX processing signif-
icantly alters the image Fourier transform. It is noteworthy that low exponent stable
laws, with β � 1/2, were detected and used to deblur all of the images shown below.
Such β-values are exceptional in physical contexts where radially symmetric Lévy
densities appear. Whether or not these values have a physical origin cannot be ascer-
tained in the present case. Moreover, the APEX detection procedure may not be well
founded. Nevertheless, the fact remains that the use of such psfs produced valuable
restoration of real imagery from important fields of science and technology. To the
author’s knowledge, this application of sub-Cauchy stable laws in image processing is
new and unanticipated.

In recent years, there has been considerable interest in image processing tech-
niques that can be formulated as initial value problems in nonlinear PDEs. An in-
structive survey of these developments may be found in [11]. In particular, novel
approaches to image deblurring have been devised, based on integrating well-posed
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nonlinear anisotropic diffusion equations [33], [38]. In contrast, the APEX method
centers around ill-posed continuation in linear fractional diffusion equations. As noted
in section 7, for the type of finely textured imagery considered in the present paper,
APEX processing compares favorably with what is feasible with nonlinear methods.
This indicates that the APEX method can be a useful addition to PDE-based image
analysis.

2. Imaging systems, Lévy processes, and the class G. The occurrence and
analysis of Lévy processes in the physical sciences are subjects of significant current
interest; see [1], [2], [4], [32], [39], [40], [41], [44], and the references therein. An
important special case involves 2-D radially symmetric Lévy stable densities h(x, y),
implicitly defined in terms of their Fourier transforms by

ĥ(ξ, η) ≡
∫
R2

h(x, y)e−2πi(ξx+ηy)dxdy = e−α(ξ2+η2)β , α > 0, 0 < β ≤ 1.(1)

The cases β = 1 and β = 1/2 correspond to Gaussian and Lorentzian (or Cauchy)
densities, respectively. For other values of β, h(x, y) in (1) is not known in closed
form. When β = 1, h(x, y) has slim tails and finite variance. For 0 < β < 1,
h(x, y) has fat tails and infinite variance. As noted in [44], there are examples in
science where the occurrence of a stable law can be deduced from “first principles”
in terms of physical mechanisms that do not explicitly involve the parameter β. One
such instance is the Holtsmark distribution describing the gravitational field of stars
(see [17]). There, mathematical analysis reveals the value β = 3/4. Such cases must
be distinguished from the many other cases in which empirically obtained data with
fat tails are fitted to a Lévy law, and the exponent β is inferred from these data. Given
the limitations of physical measurements, such empirically established Lévy processes
do not have the degree of scientific legitimacy that attends the Holtsmark distribution.
The considerations of the present paper generally lie in this weaker scientific realm.
Nevertheless, as will be seen below, techniques derived from such considerations turn
out to be effective.

Image intensifiers, charge-coupled devices, and numerous other electronic devices
are used in a wide variety of astronomical, industrial, biomedical, military, and surveil-
lance imaging systems; see [3], [14], [15], [18], [31]. Each such device has a psf h(x, y)
characterizing that device’s imaging properties. The psf is a probability density func-
tion since it is nonnegative and integrates to unity. Use of such a device to image an
object f(x, y) produces a blurred image g(x, y) = h(x, y) ⊗ f(x, y), where ⊗ denotes
convolution. An ideal device would have h(x, y) = δ(x, y). The Fourier transform

ĥ(ξ, η) of the psf is generally complex-valued and is called the optical transfer func-
tion (otf). The absolute value of the otf is the modulation transfer function (mtf).

In [42], it is noted that electron optical mtfs are often nearly Gaussian in shape,
and that this should be expected from the central limit theorem, since the process of
converting incoming signal photons into the final image that is observed on a screen
involves many intermediate stages. However, it is also observed in [42] that when such
mtfs are fitted with Gaussians, the fitted curves often have slimmer tails than is the
case for the true mtfs.

A systematic study of electron optical mtfmeasurements is the subject of [22], [24],
and [27]. There, the author claims the empirical discovery that a wide variety of
electronic imaging devices, including phosphor screens and some types of photographic
film, have otfs ĥ(ξ, η) that are well described by (1) with 1/2 ≤ β ≤ 1. For any given
device, the values of α and β can be determined using specialized graph paper [28].
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Other instances of electron optical stable laws are mentioned in [23], [26], and [30].
Analysis of the physical mechanisms responsible for such non-Gaussian behavior is
not included in these works. An understanding of such mechanisms may lead to the
design of imaging devices with low values of β. The latter parameter affects the
attenuation of high frequency information in the recorded image. Deconvolution of
that image in the presence of noise is generally better behaved at low values of β than
it is at high values of β.

The characterization (1) is useful in other areas of optics. The otf for long-
exposure imaging through atmospheric turbulence [21] is known to be given by (1),
with β = 5/6 and α determined by atmospheric conditions. Also, as shown in [25],
the analytically known diffraction-limited otf for a perfect lens [43, p. 154] can be
approximated over a wide frequency range by (1), with β = 3/4 and α a properly
chosen function of the cutoff frequency.

The range of β values discussed above, namely, 1/2 ≤ β ≤ 1, mirrors that found
in most other physical contexts where symmetric stable laws appear or are surmised.
Values of β � 1/2 seem to be relatively rare in applications. Examples of such β values
occur in [29], where mtf data for 56 different kinds of photographic film are analyzed.
Good agreement is found when these data are fitted with (1) and the pairs (α, β)
characterizing each of these 56 mtfs are identified. It is found that 36 types of film
have mtfs where 1/2 ≤ β ≤ 1. The remaining 20 types have mtfs with values of β in
the range 0.265 ≤ β ≤ 0.475.

We now consider imaging systems composed of various elements satisfying (1).
Such systems might be used to image objects through a turbulent atmosphere or
through other distorting media whose otfs obey (1). The resulting composite otf has
the form

ĥ(ξ, η) = e−
∑J

i=1 αi(ξ
2+η2)βi

, αi ≥ 0, 0 < βi ≤ 1.(2)

Such an object corresponds to a multifractal law in [4]. We define the class G to
be the class of all psfs h(x, y) with Fourier transforms satisfying (2). We shall be
interested in image deblurring problems

Hf ≡
∫
R2

h(x− u, y − v)f(u, v)dudv ≡ h(x, y) ⊗ f(x, y) = g(x, y),(3)

where g(x, y) is the recorded blurred image, f(x, y) is the desired unblurred image,
and h(x, y) is a known psf in class G. The blurred image g(x, y) includes (possibly
multiplicative) noise, which is viewed as a separate additional degradation,

g(x, y) = ge(x, y) + n(x, y).(4)

Here, ge(x, y) is the blurred image that would have been recorded in the absence of
any noise, and n(x, y) represents the cumulative effects of all errors affecting final
acquisition of the digitized array g(x, y). Neither ge(x, y) nor n(x, y) are known, only
their sum g(x, y). The unique solution of (3) when the right-hand side is ge(x, y) is
the exact sharp image denoted by fe(x, y). Thus

h(x, y) ⊗ fe(x, y) = ge(x, y).(5)

3. Deblurring with the SECB method. The SECB method is a direct FFT-
based image deblurring technique designed for equations of the form (3), when h(x, y)
is known and belongs to G. The method is based on inverse diffusion equations, and
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features an important new slow evolution regularizing constraint. Such regularization
leads to smaller error bounds for the reconstructed image f(x, y), as a function of the
noise level ε in the blurred image g(x, y), than is mathematically possible with the ba-
sic Tikhonov–Miller method. Significantly, the method does not impose smoothness
constraints on the unknown image f(x, y), nor does it require knowledge of the noise
statistics other than an L2 upper bound ε. Naturally, the method works best when
ε is small. The above important theoretical advantages, coupled with the practical
advantages of fast computation through FFT algorithms, render the SECB method a
valuable tool in blind deconvolution. Theoretical analysis of the SECB method, along
with error bounds and documented comparisons with the Tikhonov–Miller method,
may be found in [5] and [6]. Comparisons with other widely used nonlinear proba-
bilistic algorithms, including the Lucy–Richardson and maximum entropy methods,
may be found in [7]. Image deblurring with class G psfs is just one example of an
extensive class of ill-posed PDE problems [8]. That class includes problems ranging
from analytic continuation in the unit disc to the time-reversed Navier–Stokes equa-
tions. As shown explicitly in [8], use of the “slow evolution” constraint in that class
of problems leads to stronger stability estimates in terms of ε than previously known
“Hölder-continuity” estimates.

For class G psfs, we may define fractional powers Ht, 0 ≤ t ≤ 1, of the convolution
integral operator H in (3) as follows:

Htf ≡ F−1
{
ĥt(ξ, η)f̂(ξ, η)

}
, 0 ≤ t ≤ 1.(6)

Class G psfs are intimately related to diffusion processes, and solving (3) is mathe-
matically equivalent to finding the initial value u(x, y, 0) = f(x, y) in the backwards-
in-time problem for the generalized diffusion equation

ut = −
J∑

i=1

λi(−∆)βiu, λi = αi(4π
2)−βi , 0 < t ≤ 1,

u(x, y, 1) ≈ g(x, y).

(7)

When f(x, y) is known, u(x, y, t) = Htf is the solution of (7) at time t. The SECB
method is a regularization method for solving the ill-posed problem (7) that takes
into account the presence of noise in the blurred image data g(x, y) at t = 1. With
f , g, and n as in (3) and (4), and u(t) the solution of (7), let ε, M be known positive
constants such that

‖u(0)‖2 = ‖f‖2 ≤ M, ‖u(1) − g‖2 = ‖n‖2 ≤ ε, ε � M,(8)

where ‖ ‖2 denotes the L2 norm. For any constant K > 0 such that K � M/ε, define
s∗ (ε,M,K) by

s∗ =
log {M/(M −Kε)}

log(M/ε)
.(9)

The “slow evolution” constraint applied to the backwards-in-time solution of (7) re-
quires that there exist a known small constant K > 0 and a known fixed small s > 0,
with s/s∗  1, such that

‖u(s) − u(0)‖2 ≤ Kε.(10)
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Knowledge of the regularization parameters K and s represents a priori information
about the solution of (3). As is well known, some form of a priori information is
always necessary in the solution of ill-posed problems. Given K and s, the SECB
solution of the backwards problem for (7) is defined to be that initial value u†(0)
which minimizes

‖u(1) − g‖2
2 + K−2 ‖u(s) − u(0)‖2

2(11)

over all choices of initial values u(0) in L2. The SECB deblurred image f†(x, y) ≡
u†(0) can be obtained in closed form in Fourier space. With z denoting the complex
conjugate of z,

f̂†(ξ, η) =
ĥ(ξ, η)ĝ(ξ, η)

|ĥ(ξ, η)|2 + K−2|1 − ĥs(ξ, η)|2 ,(12)

leading to f†(x, y) upon inverse transformation. In practice, FFT algorithms are used
to obtain f†(x, y). This may result in individual pixel values that are negative or that
exceed 255, the maximum value in an 8-bit image. Accordingly, all negative values
are reset to the value zero, and all values exceeding 255 are reset to the value 255.
One way of obtaining initial estimates for K and s in (12) is as follows. With ε, M ,
and the psf h(x, y) known, fix s > 0 in the range 0.001 ≤ s ≤ 0.01 and construct the
operator Hs as in (6). If fπ(x, y) is a prototype image for the class of images under
consideration, we can estimate K in (10) by evaluating ‖Hsfπ − fπ‖ /ε. We may
then compute s∗ in (9) and verify that s/s∗  1. This is usually the case, as s∗ is
infinitesimally small, provided that Kε � M . This initial choice of K can be refined
interactively when the reconstructed image is a recognizable object. With s fixed as
above, increasing K increases resolution until a threshold value is reached. Further
increases in K bring out noise. Conversely, if the initial choice of K brings out noise,
K must be decreased. Note that for 512 × 512 images, 20 trial SECB restorations,
each with a different value of K, can be obtained simultaneously in about 10 seconds
of cpu time on an MIPS R12000 (400MHz) workstation. A visually optimal value
of K for fixed small s is usually easily found. We may also form and display

u†(x, y, t) = Htf†(x, y)(13)

for selected decreasing values of t lying between 1 and 0. This simulates marching
backwards in time in (7) and allows monitoring the gradual deblurring of the image.
As t ↓ 0, the partial restorations u†(x, y, t) become sharper. However, noise and
other artifacts typically become more noticeable as t ↓ 0. Marching backwards from
t = 0.2 to t = 0, say, may allow detection of features in the image before they become
obscured by noise or ringing artifacts.

The above discussion assumed that the psf h(x, y) was known. As shown in
sections 5 and 6, such marching backwards in time becomes much more vital in the
blind deconvolution problem, where the initial APEX-detected psf may erroneously be
too wide. Theoretically, use of too wide a psf all the way to t = 0 implies sharpening
features that may have already become infinitely sharp at some t0 > 0. In practice,
this leads to severe ringing and other undesirable artifacts at t = 0. Here, it is often
advisable to start marching backwards from t = 1.

It should be noted that the class G is only a small subclass of the class of in-
finitely divisible densities [17]. The latter class includes multimodal nonsymmetric
psfs associated with linear diffusion equations more complex than (7). Detection of
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such psfs from blurred image data would require considerable extension of the APEX
method discussed below.

4. Nonuniqueness in blind deconvolution. Blind deconvolution of images is
a mathematical problem that is not fully understood. Well-documented examples of
the kinds of behavior that may occur are of particular interest. In this section, we
highlight important nonuniqueness aspects of that problem that are helpful in under-
standing the results of the APEX method. Let fe(x, y) be a given exact sharp image,
let h(x, y) be a Lévy point spread function, and let ge(x, y) = h(x, y) ⊗ fe(x, y). We
shall show that, given the blurred image ge(x, y), there are in general many point
spread functions hi(x, y) �= h(x, y) that deblur ge(x, y), producing high quality recon-
structions fi(x, y) �= fe(x, y), with hi(x, y) ⊗ fi(x, y) ≈ ge(x, y).

The sharp 512×512 Sydney image fe(x, y) in Figure 1(a) was synthetically blurred
by convolution with a Cauchy density h(x, y) with α0 = 0.075, β0 = 0.5. This
produced the blurred image ge(x, y) in Figure 1(b). To avoid distractions caused
by noise, the blurred image ge(x, y) in this experiment was computed and stored in
64-bit precision. Deblurring this noiseless image with the correct psf values α = 0.075,
β = 0.5, produces Figure 1(c). This is in excellent visual agreement with fe(x, y) in
Figure 1(a), as expected. However, the visual quality in Figures 1(d)–(f) is generally as
good as that in Figure 1(c); the latter three images were deblurred with Lévy densities
with values (α, β), where α > α0, β < β0, and they differ from Figure 1(a) in contrast
and brightness. All deblurred images were obtained using the SECB method with
s = 0.001 and K = 10000. One-dimensional (1-D) cross sections of the four distinct
psfs used in Figure 1 are displayed in Figure 2. These psfs also exhibit distinct heavy
tail behavior not shown in Figure 2.

One can imagine four photographers, simultaneously photographing the identical
scene depicted in Figure 1(a), yet producing the four distinct images shown in Figures
1(c)–(f) through use of different lenses, film, filters, exposures, printing, and the
like. In practice, given only the blurred image in Figure 1(b), any one of these four
restorations would be considered highly successful. Convolution of each reconstruction
with its corresponding psf in Figure 2 reproduces the blurred image in Figure 1(b).

For any restoration f(x, y) of the exact image fe(x, y) in Figure 1(a) and any
norm ‖ ‖, we can evaluate the relative error ‖f − fe‖ / ‖fe‖. Define the discrete
L1, L2, and Hm norms as follows:

‖f‖1 = N−2
N∑

x,y=1

|f(x, y)|,

‖f‖2 =

{
N−2

N∑
x,y=1

|f(x, y)|2
}1/2

,

‖f‖Hm =

{
N−2

N∑
ξ,η=1

(
1 + ξ2 + η2

)m |f̂(ξ, η)|2
}1/2

.

(14)

The relative errors in the L1, L2, H1, and H5 norms for each of the four restora-
tions in Figure 1 are shown in Table 1. As might be expected, image (c) is the closest
to image (a) in each of these norms, since the correct psf values were used to obtain
image (c) from image (b). It is also evident from Table 1 that the four restorations
are distinct from one another, since they differ from image (a) by different amounts.
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E F

B

D

Fig. 1. Nonuniqueness in blind deconvolution. Distinct psfs exist that produce high quality
reconstructions from the same blurred image. (a) Original sharp 512× 512 Sydney image. (b) Syn-
thetically blurred Sydney image created by convolution with Lorentzian density with α0 = 0.075,
β0 = 0.5. Blurred image computed and stored in 64-bit precision. (c) Deblurring of image (b)
using correct parameters α = 0.075, β = 0.5. (d) Deblurring of image (b) using α = 0.1301264,
β = 0.44298. (e) Deblurring of image (b) using α = 0.1950345, β = 0.403889. (f) Deblurring of
image (b) using α = 0.2360994, β = 0.369666. Notice that images (d), (e), and (f) were found
using specific pairs (α, β), where α > α0 and β < β0. All deblurred images were obtained using the
SECB procedure with s = 0.001 and K = 10000.
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Fig. 2. Four distinct psfs that deblur image (b) in Figure 1. Curves C, D, E, and F are
1-D cross sections of the 512 × 512 psfs that respectively produced images (c), (d), (e), and (f) in
Figure 1. These psfs also exhibit distinct heavy tail behavior.

Table 1
Relative errors in various norms for the four deblurred images in Figure 1.

Restoration Parameters α, β L1 L2 H1 H5

Image (c) α = 0.075, β = 0.500 2.13 % 3.52 % 4.13 % 19.66 %
Image (d) α = 0.130, β = 0.443 6.63 % 8.37 % 8.67 % 21.11 %
Image (e) α = 0.195, β = 0.404 12.64 % 15.53 % 15.75 % 25.52 %
Image (f) α = 0.236, β = 0.370 12.54 % 15.08 % 15.31 % 26.17 %

Most important, the fact that image (e) is a significantly poorer approximation to
image (a) in these norms than is image (c) does not imply that image (e) is an in-
accurate representation of the visual scene depicted in image (a). Notice also that
image (f) is not as sharp as image (e), although it is closer to image (a) in three of
the four norms.

Iterative algorithms are the most common approach to blind deconvolution. Con-
vergence proofs for such iterative procedures are seldom available. The above example
illustrates some of the difficulties underlying any analysis of convergence. Such anal-
ysis should allow for the possibility of infinitely many useful limit points, while the
mathematical characterization of such limit points is not obvious. Moreover, as is
evident from Table 1 and has been known for some time, the use of Lp or Hm norms
in assessing the visual quality of a reconstruction can be misleading.

5. Marching backwards in time and the APEX method. The APEX
method is a blind deconvolution technique based on detecting class G psf signa-
tures by appropriate 1-D Fourier analysis of the blurred image g(x, y). The detected
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psf parameters are then input into the SECB algorithm to deblur the image. Let
fe(x, y) be an exact sharp image as in (5). Since fe(x, y) ≥ 0,

|f̂e(ξ, η)| ≤
∫
R2

fe(x, y)dxdy = f̂e(0, 0) = σ > 0.(15)

Also, since ge(x, y) = h(x, y) ⊗ fe(x, y) and h(x, y) is a probability density,

ĝe(0, 0) =

∫
R2

ge(x, y)dxdy =

∫
R2

fe(x, y)dxdy = f̂e(0, 0) = σ > 0.(16)

Using σ as a normalizing constant, we may normalize Fourier transform quanti-
ties q̂(ξ, η) by dividing by σ. Let

q̂∗(ξ, η) =
q̂(ξ, η)

σ
(17)

denote the normalized quantity. The function |f̂e∗(ξ, η)| is highly oscillatory, and

0 ≤ |f̂e∗| ≤ 1. Since fe(x, y) is real, its Fourier transform is conjugate symmetric.

Therefore, the function |f̂e∗(ξ, η)| is symmetric about the origin on any line through
the origin in the (ξ, η) plane. The same is true for the blurred image data |ĝ∗(ξ, η)|.

All blurred images in this and the next section are of size 512×512 and quantized
at 8 bits per pixel. For any blurred image g(x, y), the discrete Fourier transform is a
512 × 512 array of complex numbers, which we again denote by ĝ(ξ, η) for simplicity.
The “frequencies” ξ, η are now integers lying between −256 and 256, and the zero
frequency is at the center of the transform array. This ordering is achieved by pre-
multiplying g(x, y) by (−1)x+y. We shall be interested in the values of such transforms
along single lines through the origin. The discrete transforms |ĝ∗(ξ, 0)| and |ĝ∗(0, η)|
are immediately available. Image rotation may be used to obtain discrete transforms
along other directions. All 1-D Fourier domain plots shown in this paper are taken
along the axis η = 0 in the (ξ, η) plane. In these plots, the zero frequency is at the
center of the horizontal axis, and the graphs are necessarily symmetric about the
vertical line ξ = 0. Examples of such plots are shown in Figures 3, 5, and 10.

The class of blurred images g(x, y) considered in the present paper can be de-
scribed in terms of the behavior of log |ĝ∗(ξ, η)| along lines through the origin in the
(ξ, η) plane. While local behavior is highly oscillatory, global behavior is generally
monotone decreasing and convex. This is shown in Figure 3 for two typical images
along the line η = 0. In [9], a large class of images with that property was exhibited,
the class W. The blurred images considered here may be loosely characterized as
being in class W. Not all blurred images may be so characterized. For example, if
the Cindy Crawford image g(x, y) in Figure 3(a) were convolved with a wide Gaussian
psf to form a new blurred image g1(x, y), global behavior in log |ĝ1∗(ξ, 0)|, away from
the origin, would be monotone decreasing and concave. Application of the APEX
method to several concave examples is discussed in [9]. Convolution of Figure 3(a)
with a defocus psf produces a different kind of blurred image g2(x, y), and global
behavior in log |ĝ2∗(ξ, 0)| is neither concave nor convex. Instead, there is a regular
pattern of sharp singularities corresponding to successive zeroes of the defocus otf.
Use of the APEX method in the manner to be described below is intended only for
blurred images with Fourier behavior analogous to that shown in Figure 3.

The APEX method is based on the following observations. In the basic relation

g(x, y) = h(x, y) ⊗ fe(x, y) + n(x, y),(18)
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Fig. 3. Behavior of a normalized Fourier transform in types of blurred images g(x, y) con-
sidered in the present paper. (a) log |ĝ∗(ξ, 0)| in an image of Cindy Crawford. (b) log |ĝ∗(ξ, 0)|
in a Washington, DC Landsat image. While local behavior is highly oscillatory, global behavior is
generally monotone decreasing and convex.

we may safely assume that the noise n(x, y) satisfies

∫
R2

|n(x, y)|dxdy �
∫
R2

fe(x, y)dxdy = σ > 0,(19)

so that

|n̂∗(ξ, η)| � 1.(20)

Consider the case in which the otf is a pure Lévy density ĥ(ξ, η) = e−α(ξ2+η2)β . Since
g = ge + n,

log |ĝ∗(ξ, η)| = log |e−α(ξ2+η2)β f̂e
∗
(ξ, η) + n̂∗(ξ, η)|.(21)

Let Ω = {(ξ, η) | ξ2 + η2 ≤ ω2} be a neighborhood of the origin, where

e−α(ξ2+η2)β |f̂e∗(ξ, η)|  |n̂∗(ξ, η)|.(22)

Such an Ω exists since (22) is true for ξ = η = 0, in view of (20). The radius ω > 0
of Ω decreases as α and n increase. For (ξ, η) ∈ Ω we have

log |ĝ∗(ξ, η)| ≈ −α(ξ2 + η2)β + log |f̂e∗(ξ, η)|.(23)

Because of the radial symmetry in the psf, it is sufficient to consider (23) along a
single line through the origin in the (ξ, η) plane. Choosing the line η = 0, we have

log |ĝ∗(ξ, 0)| ≈ −α|ξ|2β + log |f̂e∗(ξ, 0)|, |ξ| ≤ ω.(24)

Some type of a priori information about fe(x, y) is necessary for blind deconvo-

lution. In (24), knowledge of log |f̂e∗(ξ, 0)| on |ξ| ≤ ω would immediately yield α|ξ|2β
on that interval. Moreover, any other line through the origin could have been used
in (23). However, such detailed knowledge is unlikely in practice. The APEX method

seeks to identify a useful psf from (24) without prior knowledge of log |f̂e∗(ξ, 0)|. The
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method assumes instead that fe(x, y) is a recognizable object, and typically requires
several interactive trials before locating a suitable psf. As previously noted, such
trial SECB restorations are easily obtained. Here, prior information about fe(x, y)
is disguised in the form of user recognition or rejection of the restored image, and
that constraint is applied at the end of the reconstruction phase, rather than at the
beginning of the detection phase.

In the absence of information about log |f̂e∗(ξ, 0)|, we replace it by a negative
constant −A in (24). For any A > 0, the approximation

log |ĝ∗(ξ, 0)| ≈ −α|ξ|2β −A(25)

is not valid near ξ = 0, since the curve u(ξ) = −α|ξ|2β − A has −A as its apex.
Choosing a value of A > 0, we best fit log |ĝ∗(ξ, 0)| with u(ξ) = −α|ξ|2β − A on the
interval |ξ| ≤ ω, using nonlinear least squares algorithms. The resulting fit is close
only for ξ away from the origin. The returned values for α and β are then used in
the SECB deblurring algorithm. Different values of A return different pairs (α, β).
Experience indicates that useful values of A generally lie in the interval 2 ≤ A ≤ 6.
Increasing the value of A decreases the curvature of u(ξ) at ξ = 0, resulting in a
larger value of β together with a smaller value of α. A value of A > 0 that returns
β > 1 is clearly too large, as β > 1 is impossible for probability density functions [17].
Decreasing A has the opposite effect, producing lower values of β and higher values
of α. As a rule, deconvolution is better behaved at lower values of β than it is when
β ≈ 1. A significant observation is that an image blurred with a pair (α0, β0) can often
be successfully deblurred with an appropriate pair (α, β), where α > α0 and β < β0.
Examples of this phenomenon were shown in Figure 1 in connection with the blurred
Sydney image. An effective interactive framework for performing the above least
squares fitting is the fit command in DATAPLOT [20]. This is a high-level English-
syntax graphics and analysis software package developed at the National Institute of
Standards and Technology. This software tool was used throughout this paper.

The following version of the APEX method, using the SECB marching backwards
in time option (13), has been found useful in a variety of image enhancement problems
where the image g(x, y) is such that log |ĝ∗(ξ, 0)| is generally globally monotone de-
creasing and convex, as shown in Figure 3. Choose a value of A > 2 in (25) such that
the least squares fit develops a slight cusp at ξ = 0. Using the returned pair (α, β) in
the SECB method, obtain a sequence u†(x, y, t) of partial restorations as t decreases
from t = 1, as illustrated in the Cindy Crawford sequence1 in Figure 4. Often, the
initial choice of A results in a psf that is too wide in physical space, i.e., wider than
the unknown psf that might have blurred the image. Use of that psf all the way to
t = 0 will result in oversharpening. Typically, high quality restorations will be found
at positive values of t, and these will gradually deteriorate as t ↓ 0. At t = 0, the
restoration may exhibit severe ringing and other undesirable artifacts [9, Figure 13],
indicating that continuation backwards in time has proceeded too far in (7). Ter-
minating the continuation at some appropriate t = t1 > 0 is equivalent to rescaling
the value of α without changing the value of β. If the pair (α, β) produces a high
quality restoration at t = t1 > 0, the pair (α1, β), where α1 = (1 − t1)α, will produce
the same quality results at t = 0. Thus, marching backwards in time is equivalent
to simultaneously sampling numerous values of α while keeping β fixed. This process

1Given a 512× 512 blurred image as input, the APEX procedure computes and displays a time
marching sequence of 10 partial restorations in about 10 seconds on an MIPS R12000 (400MHz)
workstation.
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   t=1.0             t=0.8             t=0.7              t=0.6

   t=0.5              t=0.4             t=0.2             t=0.0

Fig. 4. Enhancement of a Cindy Crawford image by marching backwards from t = 1 with an
APEX-detected psf. Image sequence shows a gradual increase in contrast as t decreases. Undesirable
artifacts at t = 0 indicate that continuation backwards in time has proceeded too far. Best results
are highly subjective in this case, but probably occur at some t > 0.5. Note the sharpness of the
earrings near t = 0.5.

can be repeated with a different choice of A, resulting in a different value of β. In
general, there will be many values of A in (25) returning pairs (α, β) that produce
good reconstructions at some tαβ > 0. A large number of distinct pairs (α∗, β∗) can
thus be found that produce useful, but distinct, results at t = 0. Indeed, this is the
process that was used to obtain the four psfs shown in Figure 2.

We have been assuming ĥ(ξ, η) to be a pure Lévy otf in (18). For more general
class G otfs (2), we may still use the approximation log |ĝ∗(ξ, 0)| ≈ −α|ξ|2β − A and
apply the same technique to extract a suitable pair (α, β) from the blurred image.
Here, the returned APEX values may be considered representative values for the αi, βi
in (2), producing a single pure Lévy otf approximating the composite otf.

6. Application to real images. The developments in sections 2 through 5 are
predicated on two assumptions. The first assumption is that the blurred image g(x, y)
obeys the simple convolution equation (3) rather than a more general, possibly non-
linear, integral equation

Hf =

∫
R2

h(x, y, u, v, f(u, v))dudv = g(x, y).(26)

In addition to linearity, (3) implies that the blur is isoplanatic. The second assumption
is that the point spread function h(x, y) belongs to a restricted class of unimodal,
radially symmetric, probability density functions, the class G defined in (2). In [9],
successful blind deconvolution of synthetically blurred images, with added noise, was
demonstrated. Such synthetically blurred images necessarily obey (2) and (3).

The applicability of the preceding theory to real blurred images is by no means
assured. Deviations from linearity, isoplanatism, unimodality, and radial symmetry
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Fig. 5. The APEX method of psf detection. (a) log |ĝ∗(ξ, 0)| on |ξ| ≤ 250 in the 8-bit English
village image. (b) A least squares fit of log |ĝ∗(ξ, 0)|, with u(ξ) = −α |ξ|2β − 3.75 on |ξ| ≤ 200,
develops a cusp at ξ = 0 and returns α = 0.251274, β = 0.242246.

are possible. Moreover, the class G excludes motion and defocus blurs. In addition,
the types and intensities of noise processes in real images may differ fundamentally
from the noise models typically used in numerical experiments. Therefore, only limited
success on a narrow class of images can be expected in real applications.

The examples discussed below involve images obtained from multiple sources using
diverse imaging modalities. Some of these images have been used as test images in
the literature. In this paper, each of these images is assumed to have been blurred by
some unknown process, and we seek to improve visual quality by APEX processing.
All images are of size 512 × 512 and are quantized at 8 bits per pixel.

Our first example is a well-known English village image denoted by g(x, y) and
shown in Figure 5(a) together with log |ĝ∗(ξ, 0)| on |ξ| ≤ 250. The plot displays
globally convex monotone behavior. In Figure 5(b), the APEX fit of log |ĝ∗(ξ, 0)| with
u(ξ) = −α|ξ|2β−A on the interval |ξ| ≤ 200 is shown. With A = 3.75, the fit develops
a cusp at ξ = 0 and returns α = 0.251274, β = 0.242246. With these psf parameters,
SECB deblurring using s = 0.01, K = 1300, and continuation backwards in time
terminated at t = 0.5 produces Figure 6(b). This is compared with the original in
Figure 6(a).

The extent of sharpening in Figure 6(b) becomes evident when zooming in on
selected parts of the image. In Figure 7, roof lines on the first three houses are
compared before and after APEX processing. There is noticeable enhancement of
structural detail in the roof shingles and stone fronts of the three houses in Figure 7(b).
In Figure 8(b), Holstein cows grazing in the meadow, not previously identifiable, are
clearly visible. So are individual chimney bricks. In Figure 9(b), buildings in the
distance, not readily noticed in Figure 9(a), become well defined.

It should be noted that the use of a different value of A, and/or a different
neighborhood of the origin Ω in Figure 5(b), may return a different psf pair (α, β). In
that case, backwards continuation in the SECB method may need to be terminated
at some other value of t to obtain the best image. However, with good choices of
A and Ω, the new image would again be a high quality representation of the visual
scene in Figure 6(b), while differing from Figure 6(b) at individual pixels. This is
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Fig. 6. Enhancement of the English village image. (a) Original 8-bit image. (b) SECB
deblurred image using s = 0.01, K = 1300, with APEX-detected values α = 0.251274, β = 0.242246,
and with continuation backwards in time terminated at t = 0.5.

A B

Fig. 7. Extent of sharpening in the English village scene becomes evident when zooming in on
selected parts of the image. (a) Roof lines in the original image. (b) Roof lines in the enhanced
image.

the nonuniqueness phenomenon previously discussed in connection with the Sydney
image in Figure 1.

Deconvolution of Figure 6(a) with the above APEX-detected psf significantly
alters its Fourier transform. As shown in Figure 10(a), the Fourier transform in
Figure 6(b) (dashed curve) decays less rapidly as |ξ| increases than was the case in
the original Figure 6(a) (solid curve). Evidently, APEX processing amplifies high
frequency image components in a stable coherent fashion, resulting in the overall
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A B

Fig. 8. Extent of sharpening in the English village scene becomes more evident with zooming.
Holstein cows grazing in the meadow in image (b) are not readily identifiable in image (a).

A B

Fig. 9. Extent of sharpening in the English village image becomes more evident with zooming.
The enhanced image (b) shows buildings in the distance not immediately apparent in the original
image (a).

improvements visible in Figures 6 through 9. The “before and after” Fourier transform
pattern shown in Figure 10(a) occurs in every example discussed in this paper, with
the exception of the F15 image in Figure 12; the anomalous behavior in that case is
shown in Figure 10(b).

The next example is the boat image in Figure 11(a). With A = 4.0, the APEX fit
on |ξ| ≤ 250 returned α = 0.518155, β = 0.215083. Using these values in the SECB
method, with s = 0.01, K = 1300, and continuation terminated at t = 0.5, produced
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Fig. 10. APEX processing significantly alters Fourier transform behavior. (a) English village
image before and after processing. (b) F15 terrain image in Figure 12 before and after processing.
The behavior shown in (b) is exceptional; all other examples in the present paper conform with the
behavior shown in (a).

A B

Fig. 11. Enhancement of the boat image. The APEX method with A = 4.0 on |ξ| ≤ 250 yields
α = 0.518155, β = 0.215083. Using these parameters, with s = 0.01, K = 1300, and backwards
continuation terminated at t = 0.5, the SECB method applied to image (a) produces image (b). The
number 7 2 7 on the side of the boat in image (b) was not easily identifiable in image (a).

Figure 11(b). Enhancement has now rendered visible the number 7 2 7 on the left
side of the boat. Other identifiable details include the stripe along the left trouser
leg of the man on the ground, the lettering on the sign hanging from the boat to his
right, and part of the stone work and stairway to the left of the lighthouse.

The F15 plane image in Figure 12(a) is another interesting example. The aim
here is to enhance the background terrain. With A = 3.5, the APEX fit on |ξ| ≤ 250
develops a cusp at ξ = 0 and returns α = 0.856096, β = 0.107289. Using these
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Fig. 12. Striking enhancement of terrain features in an F15 image. The APEX method with
A = 3.5 on |ξ| ≤ 250 yields α = 0.856096, β = 0.107289. Using these parameters, with s =
0.01, K = 1000, and backwards continuation terminated at t = 0.25, the SECB method applied
to image (a) produced image (b). Condensation trails behind the aircraft in image (b) were not
immediately evident in image (a).

values in the SECB method, with s = 0.01, K = 1000, and backwards continuation
terminated at t = 0.25, produces rather striking enhancement of the ground features
in Figure 12(b). This example is noteworthy on two counts: the exceptionally low
value of β detected by the APEX method and the previously mentioned unexpected
Fourier behavior shown in Figure 10(b).

Beginning with Figure 1, all of the examples discussed so far involve images of
familiar objects. This allows for relatively easy evaluation of the results of APEX
processing. The next five examples involve less familiar objects. Moreover, fine de-
tails visible on a modern high resolution computer screen are sometimes lost in the
printing process. Consequently, improvements in image quality in some of the next
examples may seem less obvious than in previous examples. At the same time, the
performance of the APEX method in reconstructing real details of familiar objects
provides a measure of confidence in the results obtained when that method is applied
to unfamiliar objects.

Figure 13(a) is a Landsat image of the Washington, DC area. With A = 4.25, the
APEX fit on |ξ| ≤ 250 returns α = 0.540825, β = 0.182410. Using these parameters in
the SECB method, with s = 0.01, K = 1300, and continuation terminated at t = 0.5,
produces Figure 13(b). There is a significant increase in resolution in Figure 13(b),
which improves definition of several landmarks and thoroughfares. The Washington
Monument, the bridges over the Potomac, Pennsylvania and Maryland Avenues ra-
diating from the Capitol, Massachusetts Avenue to the north, and Virginia Avenue
and the Southeast Freeway to the south are some of the features that are more easily
identified in the enhanced image.

Figure 14(a) is a scanning electron microscope image of a mosquito’s head. A
prominent feature is the insect’s compound eye. With A = 4.0, the APEX fit on |ξ| ≤
250 yields α = 0.734259, β = 0.156963. Using these values in the SECB method, with
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Fig. 13. Enhancement of a Washington, DC Landsat image. The APEX method with A = 4.25
on |ξ| ≤ 250 yields α = 0.540825, β = 0.182410. Using these parameters, with s = 0.01, K =
1300, and backwards continuation terminated at t = 0.5, the SECB method applied to image (a)
produced image (b). Increased resolution in image (b) improves definition of several landmarks and
thoroughfares.

A B

Fig. 14. Enhancement of a scanning electron microscope image of a mosquito’s head showing
the compound eye. The APEX method with A = 4.0 on |ξ| ≤ 250 yields α = 0.734259, β = 0.156963.
Using these parameters, with s = 0.001, K = 10, and backwards continuation terminated at t = 0.4,
the SECB method applied to image (a) produced image (b). APEX processing enhances contrast and
brings the eye into sharper focus. Further applications in electron microscopy are discussed in [10].

s = 0.001, K = 10.0, and backwards continuation terminated at t = 0.4, produces
Figure 14(b). Evidently, APEX processing results in significant overall improvement.
In particular, the eye appears in much sharper focus. Further applications to electron
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Fig. 15. Enhancement of a sagittal MRI brain image. The APEX method with A = 4.0 on
|ξ| ≤ 250 yields α = 0.333267, β = 0.209416. Using these parameters, with s = 0.01, K = 1300, and
backwards continuation terminated at t = 0.35, the SECB procedure applied to image (a) produced
image (b). APEX processing noticeably improves feature definition in areas between two and four
o’clock.

microscopy are discussed in [10].

The sagittal MRI (magnetic resonance imaging) brain image in Figure 15(a) has
been used as a test sharp image in previous publications. In [5] and [7], syntheti-
cally blurred versions of that sharp image were used in a comparative evaluation of
restoration algorithms when the psf is known. Here, we consider further sharpening
the sharp image by blind deconvolution. With A = 4.0, the APEX fit on |ξ| ≤ 250
returns α = 0.333267, β = 0.209416. Using these parameters in the SECB procedure,
with s = 0.01, K = 1300, and continuation terminated at t = 0.35, produced the
image in Figure 15(b). Substantial improvement is apparent over the whole image. In
the sector between two and four o’clock, in particular, sharpening of structural detail
significantly improves feature definition.

In PET (positron emission tomography) imaging, a positron emitting radionuclide
is injected into the patient and used to tag glucose molecules in their course through
the brain. The metabolic rate of glucose is a key parameter that reflects cerebral
function and indicates the extent to which regions of the brain are active. Performing
specific mental tasks activates various parts of the brain, causing increased glucose
uptake and hence increased positron emission. Centers of activity translate into rel-
atively bright spots in the PET image. However, blurring by the scanner psf tends
to average out such relative differences, resulting in loss of contrast. Figure 16(a) is a
PET image of a transverse (horizontal) slice through the brain. Blind deconvolution
is used to enhance that image. With A = 5.0, the APEX fit on |ξ| ≤ 250 returns
α = 0.198931, β = 0.284449. Using these parameters in the SECB method, with
s = 0.001, K = 5.0, and backwards continuation terminated at t = 0.6, produces
Figure 16(b). Note that both images in Figure 16 show identical features, but the
contrast has been increased in the APEX-processed image, with some regions becom-
ing darker while others have become lighter. In particular, several bright spots appear



THE APEX METHOD IN IMAGE SHARPENING 613

A B

Fig. 16. Enhancement of a transverse PET brain image. The APEX method with A = 5.0 on
|ξ| ≤ 250 yields α = 0.198931, β = 0.284449. Using these parameters, with s = 0.001, K = 5.0, and
backwards continuation terminated at t = 0.6, the SECB procedure applied to image (a) produced
image (b). Bright spots in the enhanced image (b), indicating areas of the brain responding to
applied external stimuli, are more clearly defined than in the original image (a).

A B

Fig. 17. Enhancement of the Whirlpool galaxy (M51) image. The APEX method with A = 4.0
on |ξ| ≤ 250 yields α = 0.451615, β = 0.221955. Using these parameters, with s = 0.001, K =
5.0, and backwards continuation terminated at t = 0.5, the SECB applied to image (a) produced
image (b). APEX processing increases resolution and enhances luminosity in the spiral arms and
galactic cores.

in Figure 16(b) that were not as readily apparent in the original image.

Our last example is the Whirlpool galaxy (M51) in Figure 17(a). With A = 4.0,
the APEX fit on |ξ| ≤ 250 yields α = 0.451615, β = 0.221955. Using these values in
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the SECB method, with s = 0.001, K = 5.0, and backwards continuation terminated
at t = 0.5, produced Figure 17(b). In the enhanced image, the spiral arms are more
luminous and better defined, and the luminous cores are larger in both the spiral
galaxy and its companion. The dark connecting arm between the two galaxies is also
more clearly defined. These enhancements are due to a change in Fourier transform
behavior brought about by deconvolution with the APEX-detected psf. This change
in Fourier behavior is similar to that shown in Figure 10(a), although it is more
pronounced. A concomitant effect of deconvolution is amplification of data noise,
which now becomes visible against the dark background in Figure 17(b).

Clearly, in this galaxy image as in the preceding PET image, there is no way
of knowing whether the enhanced image conforms with reality. Conceivably, the
increased luminosity in Figure 17(b) may be exaggerated. However, the bright areas
along the galactic arms in Figure 17(b), as well as the bright spots in Figure 16(b),
did not materialize spontaneously. These areas must have been just below some
brightness threshold in the original image, and APEX processing has served the very
useful purpose of revealing their presence. If such areas appear overenhanced, this
can be corrected by repeating the SECB procedure and terminating continuation at
higher values of t.

7. Anisotropic diffusion, total variation deblurring, and the “staircase
effect.” As is evident from the survey [11], there is considerable interest in the use of
anisotropic diffusion equations to perform various tasks in image processing. In pure
denoising applications, such methods have been found to be effective at removing
high levels of noise while preserving edges in an image. An important related idea
is the use of the total variation norm for regularizing the image restoration problem
[12], [13], [16], [33], [37], [38]. The Euler–Lagrange problem for minimizing the total
variation can be written as a nonlinear anisotropic diffusion equation, with a forcing
term that describes convolution of the unknown image with the known psf. This
is supplemented by homogeneous Neumann boundary conditions together with the
blurred image as initial data; see [33]. Deblurring the image is equivalent to stepwise
numerical computation of this nonlinear initial value problem until a steady state is
reached.

Total variation deblurring is especially useful for recovering “blocky” images, i.e.,
images that are nearly piecewise constant and have many edges [12], [16]. For this
reason, the total variation blind deconvolution approach in [13] aims primarily at
recovering blocky images that had been blurred by psfs with sharp edges. This is
the case with defocus and motion blurs; a defocused satellite image is the example
used in [13]. The authors observe that their algorithm is more effective on defocused
images than it is on Gaussian blurred images. In a complementary role, the APEX
method can also handle blocky images, but it is based on detecting class G blurs, a
class that includes heavy-tailed psfs but excludes defocus and motion blurs.

A major drawback of the total variation approach is the so-called “staircase ef-
fect,” whereby the deblurred image can develop spurious piecewise constant regions.
This often produces an “oil painting” appearance that does not correspond to the
true image and prevents identification of fine detail. For this reason, the authors in
[12] and [16] conclude that total variation deblurring is not useful for images that are
not nearly piecewise constant. In [34], [35], it is proved that total variation restoration
necessarily leads to the staircase effect. In [19], the mathematical premise of minimiz-
ing image total variation is questioned, and the authors prove that because of their
fine texture, most natural images are not of bounded variation. Therefore, in images
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Fig. 18. Staircase effect in total variation deblurring of the Sydney image. (a) Synthetically
blurred 512× 512 Sydney image, previously used in Figure 1(b), was computed in 64-bit precision.
(b) Deblurring of image (a) using the known psf and the total variation scheme in [33], with noise
variance parameter βΣ = 0.001, Lagrange multiplier λ = 50, CFL restriction ∆t = 0.1(∆x)2, and
stepwise integration to time T = 100∆t. The strong “oil painting” effect in image (b) impairs
recognition and occurs with other choices of βΣ ≤ 0.001 and λ ≥ 50. Compare with the SECB
deblurred image in Figure 1(c).

with fine texture, total variation deblurring must inevitably smooth out texture.

The following example illustrates why total variation deblurring is typically not
useful for the type of textured imagery considered in this paper. The blurred noise-
less 512× 512 Sydney image, previously used in Figure 1(b), was deblurred using the
total variation scheme described in [33, section 5]. This is a pure deblurring prob-
lem in which the synthetically blurred input image, Figure 18(a), was computed in
64-bit precision. Moreover, the precisely known psf was used. The aim here is to
evaluate the reconstructive ability of the total variation scheme under the most favor-
able circumstances. As recommended in [33], in this noiseless case the noise variance
parameter βΣ should be chosen small, while the Lagrange multiplier λ should be cho-
sen large. Here, several values of βΣ in the range 0.00001 ≤ βΣ ≤ 0.01 were tried,
together with several values of λ in the range 1 ≤ λ ≤ 100. The CFL restriction
∆t = 0.1(∆x)2 was applied with all these choices, and no sign of computational in-
stability was detected. Figure 18(b) is the result of stepwise numerical computation
of the nonlinear diffusion problem in [33, section 5] up to time T = 100∆t, using
βΣ = 0.001 and λ = 50. The “oil painting” effect in Figure 18(b) occurs with other
choices of βΣ ≤ 0.001 and λ ≥ 50, and the deblurred image does not improve if more
time steps are taken. SECB deblurring of the same image is shown in Figure 1(c).
In the presence of noise, the SECB deblurred image is less sharp, but maintains its
strong qualitative edge over Figure 18(b). It should be noted that the authors in [33]
did not intend their scheme to be used for images as seriously blurred as Figure 18(a).
However, the staircase effect is still pronounced, even with more mildly blurred images.

8. Concluding remarks. Setting aside all theoretical considerations, APEX
processing is a practical enhancement technique that can sharpen significant classes
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of images originating from diverse imaging modalities. One important feature of this
approach is its fast implementation on desktop platforms. Even with large image
sizes, numerous trial restorations can be accomplished in seconds or minutes of cpu
time. This makes for easy fine tuning of parameters and a quick determination of
whether the APEX method significantly improves a given image. Once improvement is
detected, fine tuning must be used to obtain optimal results. Here, another important
feature of the APEX method plays a useful role. This is the marching-backwards-
in-time option characteristic of class G psfs, which allows for deconvolution to be
performed in slow motion. Robustness is a third important property of the APEX
method, allowing detection of multiple psfs capable of significant sharpening. This
substantially increases the probability of finding a useful candidate.

On the theoretical side, this paper raises new questions. The first of these is the
existence of several useful psfs, as demonstrated for the Sydney image in Figure 1.
This phenomenon warrants further investigation. A second question concerns the
important role Lévy psfs appear to play in numerous imaging systems. The discus-
sion in section 2 has surveyed inferences of stable laws that have been made from
mtf measurements. Development of methods of analyzing imaging systems that can
rigorously establish such laws, and predict the Lévy exponent β, would be a major
advance.

Reconciling the results of section 2 with the behavior of large classes of images
raises additional questions. Electronic imaging psfs h(x, y) are found to have Lévy

exponents β > 0.5 in most cases, so that log ĥ(ξ, 0) = −α|ξ|2β is a monotone decreas-
ing concave function on ξ > 0. However, as illustrated in Figure 3, all images g(x, y)
used in this paper are such that global behavior in log |ĝ∗(ξ, 0)| is generally monotone
decreasing and convex. Another large class of images with this convexity property,
the class W, was described in [9]. When such images are APEX-fitted with a Lévy
psf in the manner shown in Figure 5(b), a value of β ≤ 0.5 is inevitably detected. An
average value of β = 0.23 was found for the six images in Figures 4, 6, 11, 15, 16,
and 17, and significantly lower values were found for the three images in Figures
12, 13, and 14. A possible partial explanation for this discrepancy is provided by the
Sydney experiment in Figure 1. There, the APEX method detected several useful
psfs with values of β smaller than the value that was used to blur the image. The de-
tected β-values in the above nine images may likewise underestimate the true imaging
system β-values. An entirely different scenario may be that the APEX method pro-
vides generic low exponent Lévy psfs capable of enhancing a wide variety of images,
independently of the imaging physics that created them. Other generic enhancement
techniques have been used for some time in image processing (see [36, Chapter 10]).
More recent approaches based on nonlinear diffusion equations are also intended as
generic enhancement methods [11]. However, nonlinear methods generally require
large numbers of iterations and may not be well suited for real-time processing of
complex high resolution imagery.

Whatever may be the reasons behind it, the effectiveness of the APEX method
on many types of images is undeniable, and the method is a useful addition to the
image processing toolbox.

REFERENCES

[1] O. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds., Lévy Processes—Theory and
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of the ubiquity of Lévy distributions in nature, Phys. Rev. Lett., 75 (1995), pp. 3589–3593.

[42] R. Weber, The ground-based electro-optical detection of deep-space satellites, in Proc. SPIE
143, 1978, pp. 59–69.

[43] C. S. Williams and O. A. Becklund, Introduction to the Optical Transfer Function, Wiley,
New York, 1989.
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