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1. Introduction

Mathematics plays an important role in the science of
metrology. Mathematical models are needed to under-
stand how to design effective measurement systems, and
to analyze the results they produce. Mathematical tech-
niques are used to develop and analyze idealized models
of physical phenomena to be measured, and mathemati-
cal algorithms are necessary to produce practical solu-
tions on modern computing devices. Finally, mathemat-
ical and statistical techniques are needed to transform
the resulting data into useful information.

Applied mathematics has played a visible role at
NBS/NIST since the Math Tables project in the 1930s,
and formal mathematical and statistical organizations
have been part of NBS/NIST since the establishment of
the National Applied Mathematics Laboratory in 1947.
Among these organizations was the NBS Institute for
Numerical Analysis (1947-54), which has been credited

as the birthplace of modern numerical analysis. The
NIST Mathematical and Computational Sciences Divi-
sion (MCSD) is the modern successor to these NBS/
NIST organizations.

In this paper we indicate some of the important con-
tributions of mathematics to NBS/NIST measurement
programs during the past 60 years. We then provide
examples of more recent efforts in the application of
mathematics to measurement science. This includes
work in the the solution of ill-posed inverse problems,
characterization of the accuracy of software for micro-
magnetic modeling, and in the development and dissem-
ination of mathematical reference data. Finally, we com-
ment on emerging issues in measurement science to
which mathematicians will devote their energies in
coming years.
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2. History

2.1 Early Developments

Mathematical research at NBS began in the late
1930s when NBS Director Dr. Lyman J. Briggs con-
ceived a project for the computation of tables of mathe-
matical functions of importance in applications. The
resulting Mathematical Tables Project was located in
New York and administered by the Works Projects Ad-
ministration. The project, under the direction of Arnold
N. Lowan, employed mathematicians and a large num-
ber of additional staff to carry out the necessary compu-
tations by hand. From 1938 to 1946, 37 volumes of the
NBS Math Tables Series were issued, containing tables
of trigonometric functions, the exponential function,
natural logarithms, probability functions, and related
interpolation formulae [23].

Such tabulated values of mathematical functions can
be considered to be the results of property measure-
ments, though of a logical system rather than a physical
one. Thus, the Bureau’s first foray into mathematical
research was intimately involved with measurement.

The contributions of applied mathematics to the war
effort in the 1940s fueled a widespread recognition of
the importance of mathematical research to the attain-
ment of national goals. In 1946, the Chief of Naval
Research suggested that NBS consider the establishment
of a national laboratory for applied mathematics. NBS
Director Dr. Edward U. Condon was enthusiastic about
the idea, and the National Applied Mathematics Labora-
tory (NAML) was established at NBS the following year
with John H. Curtiss as its director. The program for the
NAML was to have two main components: numerical
analysis and statistical analysis [10]. The NAML had
four main operating branches, the Institute for Numeri-
cal Analysis (INA), the Computation Laboratory, the
Machine Development Laboratory, and the Statistical
Engineering Laboratory. The first of these was housed
at the University of California Los Angeles, while the
remaining were located at NBS in Washington. These
were the organizational beginnings of today’s Informa-
tion Technology Laboratory at NIST, which continues to
work in applied mathematics, statistics, and high perfor-
mance scientific computation, among other areas.

The original prospectus for the NAML proposed that
it serve as a computation center for the Federal govern-
ment. Computing equipment for large-scale computa-
tions were not readily available in the late 1940s, of
course. NAML was the first organization in the world to
build and put into service a successful large scale, elec-
tronic, fully automatic stored-program digital comput-
ing system [10]. This system, the Standards Eastern Au-
tomatic Computer (SEAC), designed and built in

collaboration with the NBS Electronics Division, was
put into continuous operation in May 1950. Its original
configuration included a 512-word mercury delay line
memory and teletype input-output. Despite its stagger-
ing 12 000 diodes and 1000 vacuum tubes, the SEAC
operated reliably 77 % of the time during its first three
years of operation. A machine of somewhat different
design, the Standards Western Automatic Digital Com-
puter (SWAC), was built at the INA in Los Angeles.
These unique computational facilities allowed mathe-
maticians from NBS and other institutions to perform
calculations that spurred the development of modern
numerical analysis. The name NAML was dropped in
1954 in favor of “Applied Mathematics Division.”

2.2 Institute for Numerical Analysis

Approximately three-fourth’s of the output of NAML
during its first 5 years was in numerical analysis. Re-
search in this area was emphasized due to the surging
need for appropriate mathematical methods for use in
exploiting the nation’s emerging digital computing ca-
pability. Dr. Mina Rees, Director of the Mathematical
Sciences Section of the Office of Naval Research, which
provided more than 80 % of the funding for the NAML,
is credited with this vision. The center of this activity
within NAML was the INA, an organization that, in a
very real sense, pioneered modern numerical analysis.

The list of INA Directors and permanent staff during
its period of operation (1947-54) reads like a Who’s
Who of modern numerical analysis, including Forman
S. Acton, George E. Forsythe, Magnus R. Hestenes,
Fritz John, Cornelius Lanczos, Derrick H. Lehmer, J.
Barkeley Rosser, Charles B. Tompkins, and Wolfgang R.
Wasow. These were augmented by many visiting faculty
appointments, junior researchers, and graduate fellows.

Among INA’s areas of emphasis were:

• Solution of linear systems of equations
• Linear programming
• Computation of eigenvalues of matrices
• Finite difference methods for partial differential equa-

tions
• Monte Carlo methods
• Numerical solution of ordinary differential equations
• Numerical methods for conformal mapping
• Asymptotic expansions
• Interpolation and quadrature

The story of the development of Krylov subspace
methods for the solution of systems of linear algebraic
equations illustrates the far-reaching impact of the
INA’s technical program. The conjugate gradient al-
gorithm is the earliest example of this class of methods.
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It is a method of iterative type which does not require
explicit storage or manipulation of a matrix (only the
ability to apply the underlying operator to any given
vector). As such, it is ideal for the solution of very large
and sparse systems. For symmetric (or Hermitian) posi-
tive definite systems it has the property that it converges
in finite time (after n iterations for a system of order n );
nevertheless, because of its iterative nature it can often
be stopped earlier, providing acceptable results at mod-
erate cost.

The first complete description of the conjugate gradi-
ent method appeared in a paper published in the NBS
Journal of Research by Magnus R. Hestenes and Eduard
Stiefel [19]. Hestenes was a member of the NBS INA,
and Stiefel a visiting researcher from the Eidgenössis-
chen Technischen Hochschule (ETH) in Zurich. Their
paper remains the classic reference on this method.
Other INA staff, such as Cornelius Lanczos and Marvin
Stein, also made fundamental early contributions to the
development of the method.

While there was much early interest in the algorithm,
it went into eclipse in the 1960s as naive implementa-
tions failed on the increasingly larger problems which
were being posed. Interest in the conjugate gradient
method surged again in the 1970s when researchers
discovered new variants and successful techniques for
preconditioning the problem (i.e., premultiplication by a
carefully chosen easily invertible matrix) to reduce the
number of iterations. Today, these methods are the stan-
dard techniques employed for the solution of large linear
systems. Citation searches for the term conjugate gradi-
ent turn up more than one million articles in which the
term is used during the last 25 years. Krylov subspace
methods were identified as one of the top ten algorithms
of the century by Computing in Science and Engineer-
ing 1 [13] in January 2000. An account of the history of
the conjugate gradient method can be found in Ref. [18].

NBS was required to give up the administration of the
INA in June 1954, a result of new Department of De-
fense rules which torpedoed funding arrangements with
the Office of Naval Research. This was one of the unfor-
tunate events in the wake of the AD-X2 battery additive
controversy in which NBS found itself embroiled from
1948 to 1953. The INA was transferred to UCLA, but
by this time most INA members had taken positions in
industry and in universities. More information about the
INA can be found in the accounts of Todd and Hestenes
[20, 34].

1 A publication of the IEEE Computer Society and the American
Institute of Physics.

2.3 Handbook of Mathematical Functions

With the establishment of the NAML in 1947 the
Math Tables Project was transferred to the NBS Compu-
tation Laboratory. Subsequent tabulations were issued in
the newly established NBS Applied Mathematics Series
(AMS) of monographs, whose earliest issue provided
tables of Bessel functions [2].

In 1956 NBS embarked on another ambitious pro-
gram which was a natural outgrowth of its work on
mathematical tables. Led by Dr. Milton Abramowitz,
who was then Chief of the Computation Laboratory, the
project would develop a compendium of formulas,
graphs, and tables which would provide practitioners
with the most important facts needed to use the growing
collection of important mathematical functions in appli-
cations. Among these are the Bessel functions, hyperge-
ometric functions, elliptic integrals, probability distri-
butions, and orthogonal polynomials.

With substantial funding from the National Science
Foundation, many well-known experts in the field were
enlisted as authors and editorial advisors to compile the
technical material. By the summer of 1958, substantial
work had been completed on the project. Twelve chap-
ters had been written, and the remaining ones were well
underway. The project experienced a shocking setback
one weekend in July 1958 when Abramowitz suffered a
fatal heart attack. Irene Stegun, the Assistant Chief of
the Computation Laboratory, took over management of
the project. The exacting work of assembling the many
chapters, checking tables and formulas, and preparing
material for printing took much longer than anticipated.
Nevertheless, the 1046-page Handbook of Mathematical
Functions, with Formulas, Graphs, and Mathematical
Tables was finally issued as AMS Number 55 in June
1964 [1].

The public reaction to the publication of the Hand-
book was overwhelmingly positive. In a preface to the
ninth printing in November 1970, NBS Director Lewis
Branscomb wrote

The enthusiastic reception accorded the
“Handbook of Mathematical Functions” is little
short of unprecedented in the long history of math-
ematical tables that began when John Napier pub-
lished his tables of logarithms in 1614.

The Handbook has had enormous impact on science
and engineering. The most widely distributed NBS/
NIST technical publication of all time, the government
edition has never gone out of print (more than 145 000
have been sold), and it has been continuously available
as a Dover reprint since 1965. The Handbook’s citation
record is also remarkable. More than 23 000 citations
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have been logged by Science Citation Index (SCI) since
1973. Remarkably, the number of citations to the Hand-
book continues to grow, not only in absolute numbers,
but also as a fraction of the total number of citations
made in the sciences and engineering. During the mid
1990s, for example, about once every 1.5 hours of each
working day some author, somewhere, made sufficient
use of the Handbook to list it as a reference.

2.4 Mathematical Analysis

A number of difficult mathematical problems
emerged in the course of developing the Handbook
which engaged researchers in the Applied Mathematics
Division for a number of years after its publication. Two
of these are especially noteworthy, the first having to do
with stability of computations and the second with pre-
cision.

Mathematical functions often satisfy recurrence rela-
tions (difference equations) that can be exploited in
computations. If used improperly, however, recurrence
relations can lead to ruinous errors. This phenomenon,
known as instability, has tripped up many a computation
that appeared superficially to be straightforward. The
errors are the result of subtle interactions in the set of all
possible solutions of the difference equation. Frank W. J.
Olver, who wrote the Handbook’s chapter on Bessel
functions of integer order, studied this problem exten-
sively. In a paper published in 1967 [28], Olver provided
the first (and only) stable algorithm for computing all
types of solutions of a difference equation with three
different kinds of behavior: strongly growing, strongly
decaying, and showing moderate growth or decay. This
work is reflected today in the existence of robust soft-
ware for higher mathematical functions.

Another important problem in mathematical compu-
tation is the catastrophic loss of significance caused by
the fixed length requirement for numbers stored in com-
puter memory. Morris Newman, who co-authored the
Handbook’s chapter on combinatorial analysis, sought
to remedy this situation. He proposed storing numbers
in a computer as integers and performing operations on
them exactly. This contrasts with the standard approach
in which rounding errors accumulate with each arith-
metic operation. Newman’s approach had its roots in
classical number theory: First perform the computations
modulo a selected set of small prime numbers, where
the number of primes required is determined by the
problem. These computations furnish a number of local
solutions, done using computer numbers represented in
the normal way. At the end, only one multilength com-
putation is required to construct the global solution (the
exact answer) by means of the Chinese Remainder The-
orem. This technique was first described in a paper by

Newman in 1967 [26]; it was employed with great suc-
cess in computing and checking the tables in Chap. 24
of the Handbook. Today, this technique remains a stan-
dard method by which exact computations are per-
formed.

In the 1960s NBS mathematicians also made pioneer-
ing efforts in the development and analysis of graph-the-
oretic algorithms for the solution of combinatorial opti-
mization problems. Jack Edmonds did ground-breaking
work in the analysis of algorithms and computational
complexity, focusing on the establishment of measures
of performance which distinguished practical al-
gorithms from impractical ones [15]. This work pro-
vided a solid foundation for algorithms which have be-
come the mainstay of operations research. In recognition
of this work, Edmonds received the 1985 John Von
Neumann prize from the Institute for Operations Re-
search and the Management Sciences (INFORMS).

2.5 Scientific Computing

As computing systems became more powerful, NBS
scientists were increasingly drawn to the use of compu-
tational methods in their work. Results of experimental
measurements needed to be analyzed, of course, but
more and more scientists were using mathematical mod-
els to help guide the measurement process itself. Mod-
els could be developed to simulate experimental systems
in order to determine how best to make the measure-
ments or how to correct for known systematic errors.
Finally, mathematical models could be used to under-
stand physical systems that were extremely difficult to
measure. Increasingly, NBS mathematicians were being
consulted to help develop such models and to aid in
devising computational methods of solving them.

While the NBS Applied Mathematics Division had
always engaged in collaborative work with NBS scien-
tists, during the 1970s through the 1990s this became
the central theme of its work (and that of its successor
organizations, the Center for Applied Mathematics, and
then the Computing and Applied Mathematics Labora-
tory). Examples of such long-term collaborations in-
clude the study of combustion, smoke and gas flow
during fires [4], the modeling of semiconductor devices
[5], and the modeling of alloy solidification processes
[9].

In the 1980s the newly formed NBS Scientific Com-
puting Division began the development of a repository
of mathematical software tools to aid NBS scientists in
the development and the solution of models. Among
these were the NIST Core Mathematics Library (CM-
LIB) and the joint DOE/NIST Common Math Library
(SLATEC) [8]. The growing collection of such tools was
indexed in the Guide to Available Mathematical Soft-
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ware (GAMS) [6], which continues to provide the com-
putational science community with information on, and
access to, a wide variety of tools, now via a convenient
Web interface (http://gams.nist.gov/).

2.6 Current Mathematical Research

Today the NIST Mathematical and Computational
Sciences Division (MCSD) is focused on (1) assuring
that the best mathematical methods are applied in solv-
ing technical problems of the NIST Laboratories, and
(2) targeted efforts to improve the environment for com-
putational science within the broader research commu-
nity. The Division provides expertise in a wide variety of
areas, such as nonlinear dynamics, stochastic methods,
optimization, partial differential equations (PDE), com-
putational geometry, inverse problems, linear algebra,
and numerical analysis. This is applied in collaborative
research projects performed in conjunction with other
NIST Laboratories. Substantial modeling efforts are un-
derway in the analysis of the properties of materials, in
computational electromagnetics, and in the modeling of
high-speed machine tools, for example. Modeling ef-
forts are supported by work in the development of math-
ematical algorithms and software in areas such as adap-
tive solution of PDEs, special functions, Monte Carlo
methods, deconvolution, and numerical linear algebra.

In response to needs of the wider community, MCSD
has developed a number of Web-based information ser-
vices, such as the Guide to Available Mathematical Soft-
ware, the Matrix Market (see Sec. 4.1), the Java Numer-
ics site, and the Digital Library of Mathematical
Functions (see Sec. 5). In addition, staff members are
involved in standardization efforts for fundamental lin-
ear algebra software and for numerical computing in
Java.

Current work of the Division is described in its Web
pages at http://math.nist.gov/. The following sections
provide further details of several of these projects which
have particular relevance to the measurement sciences.

3. Mathematics of Physical Metrology

In physical metrology it is often necessary to fit a
mathematical model to experimental results in order to
recover the quantities being measured. In some cases the
desired variables can be measured more or less directly,
but the measuring instruments distort the measured
function so much that mathematical modeling is re-
quired to recover it. In other cases the desired quantities
cannot be measured directly and must be inferred by
fitting a model to the measurements of variables dynam-
ically related to the ones of interest.

3.1 Deconvolution

An example of measurements of the first type was
brought to Bert Rust’s attention by Jeremiah Lowney
[24] of the NIST Semiconductor Electronics Division.
The measurements were linear scans by a scanning elec-
tron microscope (SEM) across a semiconductor chip on
which a circuit had been etched. The goal was to mea-
sure the location of features on the chip with uncertainty
levels of 10 nanometers (nm) or smaller. The measure-
ments are modeled by a system of linear, first kind
integral equations,

y0(xi ) = �xi+4�

xi�4�

K (� � xi )yt(� )d� + �i ,

(1)
i = 1, 2, ..., 301,

where the variables x and � are both distances (in nm)
along the scan, yt(� ) is the desired “true” signal strength
at distance � , and the values y0(xi ) are observed signal
strengths on a mesh x1, x2, ..., x301, with a mesh-width
�x = xi+1 � xi = 2 nm. These measured values fail to
give a faithful discrete representation of the unknown
function yt(� ) because they are smoothed by the mea-
surement process and because of the additive random
measurement errors �i . The incident scanning beam is
not infinitely sharp. The beam intensity is thought to
have a Gaussian profile

K (� � xi ) =
1

�2��
exp��

1
2� 2 (� � xi )2�, (2)

with a “beam diameter” d = 2.56� = 37.5 nm. The ob-
served signal is thus the sum of a convolution of the true
signal yt(� ) with this Gaussian function and the random
measuring errors.

The measurements for a scan across a sharp step-like
edge are shown in Fig. 1. At the left of the plot, the
electron beam is incident on (and perpendicular to) a
presumably flat surface. The electrons penetrate the
semiconductor and excite a roughly spherical distribu-
tion of secondary emissions. Most of these secondary
electrons are reabsorbed by the material but a signifi-
cant fraction escape into the vacuum chamber above.
These escaped electrons are collected by an electrode to
generate the current that gives the measured signal. As
the primary beam crosses the edge, more and more of
the emitted electrons come from the lower surface, and
many of these are reabsorbed by the wall. Thus there is
a sharp drop in the signal. Even when the incident beam
has moved well clear of the wall, its “shadow” persists
for a large distance, causing a slow recovery of the
signal to its original level.
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Fig. 1. Upper and lower 95 % confidence bounds for the observed signal from the SEM plotted as
a function of distance x (in nanometers) on the chip, with the zero chosen to be at the center of the
record.

To estimate yt(� ) it is necessary to discretize the inte-
gral equations to obtain an underdetermined linear re-
gression model

yo = Kyt + � , � � N (0, S 2), (3)

where yo and � are order-301 vectors containing the
known measurements and unknown measuring errors, K
is a known matrix with elements Ki,j = Ki (�j )�� , S 2 is
the (estimable) variance matrix for the errors, and yt is
an unknown vector of length 361 whose elements com-
prise a discrete approximation to yt(� ) on a mesh �1, �2,
..., �361 with mesh spacing �� = �x . The limits of each
integral extend for a distance of 4� = 1.5625d nm on
each side of the corresponding measurement point xi .
For the middle 301 points in the discretization mesh
�i+30 = xi , but 30 extra �j points were required on each
end of the range [x1, x301] to accommodate these limits
of integration. This means that the linear regression
model has more unknowns than equations, with the di-
mensions of K being 301 � 361. This indeterminacy,
which is common in deconvolution problems, admits an
infinitude of least squares estimates which solve the
problem equally well, but almost all of them are physi-
cally impossible.

There are many ways to make the problem exactly
determined (i.e., to transform K into a square matrix) by
making assumptions about the behavior of yt(� ) outside
the range of measurements. But the resulting square

matrix is always ill conditioned so the least squares
estimate, though unique, always oscillates wildly be-
tween extreme positive and negative values. Figure 2 is
a plot of the estimate ye(� ) when it is assumed that

yt(�j ) = yt(�31), j = 1, 2, ..., 30,
(4)

yt(�j ) = yt(�331), j = 332, 333, ..., 361,

which reduces the number of unknowns from 361 to
301. The flat looking segments of the curve are actually
oscillating between extreme values on the order of
�106. To understand this behavior it is necessary to
consider the effect of the measurement errors on the
estimate.

The measured data did not come with uncertainty
estimates, but before the scan reached the edge, there
was a long segment (not shown in Fig. 1) where the
beam was moving over a flat surface, so all of the
variations could be attributed to measurement errors. By
analyzing those variations and using the theoretical
knowledge that the standard deviation of the error
should be proportional to the square root of the signal
strength, it was possible to estimate a variance matrix S 2

for the observations. The errors at adjacent mesh points
were correlated, so S 2 was not diagonal, but it was
positive definite, so it had a Cholesky factorization
S 2 = LLT, where L is a lower triangular matrix. Scaling
the regression model with L�1 gives
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Fig. 2. Linear least squares estimate of yt, assuming fixed constant extensions outside the range of
measurements, plotted as a function of distance � (in nanometers) from the center of the record.

L�1yo = L�1Kyt + L�1� ,
(5)

L�1� � N (0, I301),

where I301 is the order-301 identity matrix. The fact that
the random errors in this rescaled model are indepen-
dently distributed with the standard normal distribution
simplifies the analysis of the effects of those errors on
the estimated solution.

Let ye be an estimate for yt and

r = L�1(yo � Kye) (6)

be the corresponding residual vector. Comparing this
expression with Eq. (5) suggests that ye is acceptable
only if r is a plausible sample from the (L�1� )-distribu-
tion. This means that the elements of r should be dis-
tributed N (0,1), and the sum of squared residuals rTr
should lie in some interval [301 � 	�602,
301 + 	�602], with |	 |< 2. This last condition follows
from the fact that

�301

i=1

(L�1� )2
i = �TS�2� � 
 2(301). (7)

hence

�{�TS�2�} = 301, Var {�TS�2�} = 2 � 301. (8)

When the assumptions of Eq. (4) are imposed on the
scaled model of Eq. (5), L�1K becomes a 301 � 301

matrix, so, in theory, the unique least squares estimate
satisfies L�1yo = L�1Kye exactly. Because of rounding
errors, calculations on a real computer did not give an
exact 0 residual vector, so the calculated sum of squared
residuals was 8.20 � 10�4 which is neglible when com-
pared to the expected value 301. This means that almost
all of the variance in the measured record is explained
by the model. A significant part of that variance is due
to measurement errors, so the least squares estimate has
captured variance that properly belongs in the residuals.
This misplaced variance is amplified by the ill-condi-
tioning to produce the wild oscillations in Fig. 2.

One approach to resolving the indeterminacy in Eq.
(5) and stabilizing the estimated solution is to impose
physically motivated a priori constraints in order to re-
duce the size of the set of feasible solutions. For many
measurement problems, nonnegativity is an appropriate
and often powerful constraint, especially when comput-
ing confidence intervals for the estimate. Consider the
case of computing upper and lower confidence bounds
for each of the 361 elements of the estimated solution.
Let the chosen confidence level be 100� % (with
0 < � < 1), and define

�L�1(yo � Ky )�2 = (yo � Ky )T S�2(yo � Ky ). (9)

The problem then is, for j = 1, 2, ..., 361, to compute

ŷ lo
j = min �eT

j y � �L�1(y0 � Ky )�2 = 
 2�, (10)
y�0
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ŷ up
j = max �eT

j y � �L�1(y0 � Ky )�2 = 
 2�, (11)
y�0

where ej is the unit vector whose j th element is one, and

 2 is a statistical parameter which must be chosen to
guarantee that

Pr{ŷ lo
j � eT

j yt � ŷ up
j } � � . (12)

In 1972, Rust and Burrus [32] conjectured, and in 1994
Rust and O’Leary [33] proved that valid 100� % confi-
dence intervals are obtained if


 2 = �min + 	 2, (13)

where

�min = min ��L�1(yo � Ky )�2�, (14)
y�0

and 	 is the � -percentile for the N (0,1) distribution.
The calculation of each of the bounds in Eqs. (10) and

(11) is a separate quadratic programming problem. In
1972, Rust and Burrus [32] gave heuristic arguments to
show that each pair ŷ lo

j and ŷ up
j were the two roots of the

piecewise quadratic equation

�j (� ) = min ��L�1(yo � Ky )�2 �eT
j y = ��. (15)

y�0

In 1986 O’Leary and Rust [27] gave a formal proof of
this fact and presented an efficient algorithm called
BRAKET-LS for calculating those roots. It has been
successfully used for radiation spectrum unfolding by
users both at NIST [14] and other laboratories [16].

An inspection of Fig. 1 reveals that, for the present
problem, the constraints yj � 0.045 are even more ap-
propriate than nonnegativity. These constraints can be
reduced to nonnegativity by a simple transformation of
variables, but unfortunately, as indicated by Fig. 3, they
do not constrain the solution set enough to overcome the
indeterminacy. The vertical axis has been truncated in
order to exhibit the behavior of the estimate in the inter-
val �300 � � � 300. The maximum ye(� ) would have
to be increased to the value 70.0 to accommodate the
off-scale excursions on both ends of the plot.

Fortunately, there are more powerful constaints
which are appropriate for this problem and which can be
reduced to nonnegativity by a transformation of vari-
ables. For a simple edge, the signal should be monoton-
ically non-increasing before it “bottoms out” and
monotonically non-decreasing during the recovery. It is
easy to design a matrix T so that the linear transforma-
tion yt = Tz converts the constraints z � 0 into the de-
sired monotonicity constraints on the elements of yt.
One can then use BRAKET-LS on the transformed
problem with unknown solution z . Figure 4 gives the
upper and lower two standard deviation bounds obtained
when the turning point is chosen to be �109 = �144 nm.
The bounds explode at each end of the record, but within

Fig. 3. Constrained linear least squares estimate, with constraints yj � 0.045, j = 1, 2, ..., 361,
plotted as a function of distance � (in nanometers) from the center of the record.
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the interval of measurement [�300, +300] nm, the con-
fidence intervals are comparable in size to those for the
measured signal (cf. Fig. 1). The most difficult part of
designing the matrix T is determining the point where
the non-increasing constraint should be changed to a
non-decreasing one. If a gap is left between the two
segments, the uncertainties explode in that gap, but the

bounds in the two segments are not very sensitive to the
small variations in the turning point, so good results can
be obtained by trial and error.

The quality of the confidence intervals in Fig. 4 is a
good recommendation for the corresponding estimate
which is plotted in Fig. 5. The estimate is plotted as a
solid curve and the measured data as a dashed curve.

Fig. 4. Monotonicity constrained, one-at-a-time, 95 % confidence interval bounds for the true
signal plotted as a function of the distance � (in nanometers) from the center of the record.

Fig. 5. Monotonicity constrained estimate (solid curve) and observed signal (dashed curve) plotted
as functions of distance (in nanometers) from the center of the record.
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The edge definition for the estimate is much sharper
than that for the data. The sharp drop begins at
�92 = �178 nm and reaches the minimum level at
�94 = �174 nm. The drop is almost, but not exactly,
linear. The single intermediate point at �93 = �176 nm
falls slightly to the left of the straight line connecting the
two extreme points. The uncertainties indicated in Fig.
4 are not sufficiently small to permit the conclusion that
the variation in the interval �178 � � � �174 repre-
sents a real departure from a vertical drop rather than an
uncertainty in the location of that drop. In the latter
case, the results indicate that the best estimate for that
location is (176 � 2) nm, and in either case the original
goal of measuring the location of the drop to an accu-
racy of 10 nm or smaller has been attained.

A surprise in the estimate in Fig. 5 was the staircase
form of the recovery segment. This is unlikely to be the
result of an inappropriate assumption of monotonicity.
Had the monotonicity assumptions not been correct, the
likely result would have been null sets for the feasible
regions in the constrained estimation problems of Eqs.
(10) and (11). The bounds in Fig. 4, which were calcu-
lated independently from the estimate, also display a
hint of this staircase effect. One should not dismiss the
idea that the steps indicate a real layering of the material
in the etched chip. Studies with scanning tunneling mi-
croscopes [17, 21] of etched surfaces on silicon have
revealed terraces with width distributions very similar to
the distribution of widths of the steps in the figure. But
more work should be done before drawing any conclu-
sions about the cause of these steps because the interpre-
tation of SEM scans is not simple or easy.

3.2 Parameter Estimation

Another important mathematical modeling problem
in physical metrology is fitting a system of ordinary
differential equations (ODEs) to a set of observed time
series data which are corrupted by measurement errors.
The desired quantities, which are unknown parameters
in the ODEs, cannot be measured directly. Their values
must be inferred from the fit to the measurements of
dynamically related variables.

An example of a problem like this was brought to Bert
Rust by Robert W. Ashton of the NIST Biotechnology
Division. The problem arose in connection with a study
of the ability of anhydrothrombin (AT), a derivative of
the enzyme thrombin (T), to compete with thrombin for
the binding of a potent thrombin inhibitor hirudin (H).
The chemical equations for the reactions are

(AT)
+

�2

T + H →
← (TH)
�1

�4 ↓ ↑ �3

(ATH)

where (TH) is the thrombin-hirudin complex, (ATH) is
the anhydrothrombin-hirudin complex, and �1, �2, �3,
and �4 are the rates of the indicated reactions.

Two experiments were performed. In the first
thrombin and hirudin were allowed to react, forming the
(TH) complex, until equilibrium was established, and
then, at time t = 0, an aliquot of anhydrothrombin was
added. Then, over the next 33 hours, aliquots were re-
moved at eight unequally spaced times and assayed for
thrombin activity. This experiment was repeated three
times, so the final data consisted of an average value and
an estimate of its uncertainty at each of the eight time
points. These data are are plotted on the upper curve in
Fig. 6 with the concentrations of thrombin in units of
percent activity.

In the second experiment, anhydrothrombin and
hirudin were allowed to come to equilibrium with the
(ATH) complex, and at time t = 0 an aliquot of thrombin
was added. Then again, thrombin assays were taken at
eight unequally spaced times. This experiment was also
repeated three times to get averages and uncertainties.
These data are plotted on the lower curve in Fig. 6. Note
that the thrombin concentrations in the two experiments
converge to the same equilibrium value.

The mathematical problem is to estimate �1, �2, �3,
and �4 from the 16 measured thrombin concentrations.
It can be shown that

�4 = �
�2�3

�1
, (16)

where � = 0.4312, so the ODEs describing the kinetics
of the reactions can be written

dT
dt

= �1(TH) � �2(T)(H),

d(AT)
dt

= �3(ATH) � �
�2�3

�1
(AT)(H),

dH
dt

= �1(TH) + �3(ATH)

(17)

��2(T)(H) � �
�2�3

�1
(AT)(H),

d(TH)
dt

= �2(T)(H) � �1(TH),

d(ATH)
dt

= �
�2�3

�1
(AT)(H) � �3(ATH).
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Fig. 6. Simultaneous fits to the two thrombin concentration time series.

Ashton and his colleagues [35] had already found an
approximate solution to this problem using two pertur-
bation expansions, but they wanted an independent con-
firmation of their result.

Equations (17) are nonlinear ODEs which do not have
a closed form solution. To estimate the vector � = (�1,
�2, �3)T it is necessary to combine a numerical ODE
integrator with a nonlinear fitting program to minimize
the sum of squared residuals

� (� ) = �2

k=1
�8

i=1

[T c
k,i (� ) � T o

k,i ]2, (18)

where k is the experiment number, i is the index of
measurement times, the T o

k,i are the measured values, and
the T c

k,i (� ) are the corresponding predicted values ob-
tained by numerically integrating the ODEs.

The nonlinear fitting program begins with initial esti-
mates � (0) and iterates to a local minimum of Eq. (18).
On each iteration it must integrate the system [Eq. (17)]
with the current values of � . It also requires the partial

derivatives
��
��1

,
��
��2

, and
��
��3

in order to compute the

step for the next iteration. To obtain these, it must also
integrate the system of 15 variational equations ob-
tained by taking partial derivatives of each of the ODEs
in Eq. (17) with respect to �1, �2, and �3.

Fortunately the initial values for the solutions to the
ODEs in Eq. (17) were known exactly. For many prob-
lems of this type, the initial values are either unknown
or are measured values, subject to the same kind of

measurement errors as the other measured points. In
such cases, it is necessary to treat them as unknown
parameters to be determined by the fit. The fitting prob-
lem is then much more difficult. Even for relatively
simple problems like the present one, the response func-
tion [Eq. (18)] has many local minima corresponding to
values of � which do not give good fits to the data. It is
absolutely necessary to pick starting estimates � (0) close
enough to the correct local minimum to give a good fit.
The difficulty of finding such values increases very
rapidly as the number of unknown parameters increases.

The estimates obtained by simultaneously fitting the
data from the two experiments were

�̂1 = (1.62 � .23) � 10�5 s�1,

�̂2 = (6.0 � 1.6) � 107 s�1,

�̂3 = (3.01 � .31) � 10�5 s�1.

The corresponding solutions to the ODEs are plotted as
smooth curves in Fig. 6. The fits accounted for 99.4 %
of the combined total variance in the two measured
records. These results agree quite well with those ob-
tained by Ashton and his colleagues, so the goal of the
exercise was attained. But it should be noted that the
lower curve does not fit its data as well as the upper
curve, and that there is no guarantee that there is not
another local minimum of Eq. (18) which would give
even better fits.
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4. Testing and Evaluation of Software

The need for measurement as an aid to understanding
is not unique to physical systems. As software systems
increase in complexity, many of their properties have
become difficult to know a priori. Thus, experimental
techniques for evaluating performance characteristics of
software, such as speed and accuracy, have come into
widespread use. We will describe several recent projects
which are providing tools for the measurement of prop-
erties of mathematical algorithms and software.

A frequently applied method for the testing of numer-
ical software is to exercise it on a battery of representa-
tive problems. Often such problems are generated ran-
domly, insuring that a large number of test cases can be
applied. Unfortunately, this is rarely sufficient for seri-
ous numerical software testing. Errors or numerical dif-
ficulties typically occur for highly structured problems
or for those near to the boundaries of applicability of the
underlying algorithm. These parts of the domain are
rarely sampled in random problem generation, and
hence testing must also be done on problem sets that
illustrate particular behaviors. These are often quite dif-
ficult to produce, and, thus, researchers often exchange
sample problem sets. Such data sets serve a variety of
additional purposes:

1. Defining the state-of-the-art.
2. Characterizing industrial-grade applications.
3. Catalyzing research by posing challenges.
4. Providing a baseline of performance for software

developers.
5. Providing data for users who want to gain confidence

in software.

Unfortunately, these collections are often lost when the
underlying technology is picked up by the commercial
sector, leaving software developers and users without an
important tool to use in judging the capability of their
products. In this section we will describe recent work in
the NIST Mathematical and Computational Sciences
Division to address such needs in core linear algebra
software and in micromagnetic modeling software.

4.1 The Matrix Market

The decomposition, solution and eigenanalysis of sys-
tems of linear equations are fundamental problems in
scientific computation for which new algorithms and
software packages are continually being developed. The
study of measures of inherent difficulty for the solution
of such problems, so-called condition numbers , occu-
pied mathematicians at the NBS INA in the 1950s [10].
Today, linear systems of equations that are represented

by sparse matrices remain of paramount importance. A
sparse matrix is a matrix in which most elements are
zero. Figure 7 is a sparsity plot for such a matrix; the
dots show where nonzeros are located. Problems of this
type arise in modeling based on partial differential
equations, such as in fluid flow and structural analysis.
The behavior of algorithms and software for such prob-
lems is highly dependent on the sparsity structure and
the numerical properties derived from the underlying
problem. As a result, in order to make reliable, repro-
ducible and quantitative assessments of the value of new
algorithmic developments it is useful to have a common
collection of representative problems through which
methods can be compared. Researchers in this area have
exchanged problem sets of this type informally for some
time. One of the difficulties with such collections is that
their size and diversity makes them unwieldy to manage
and use effectively. As a result, such collections have not
been used as much as they should, and matrices useful
for testing are not easy to find.

Developments in network communications in-
frastructure, such as the World Wide Web, have provided
new possibilities for improving access to and usability
of test corpora of this type. The NIST Matrix Market is
such a Web-based repository of matrices for use in the
comparative analysis of algorithms and software for nu-
merical linear algebra. More than 500 matrices of size
up to 90 449 � 90 449 from a wide variety of applica-
tions are made available in the Matrix Market. Matrices
are gathered together into sets. Matrices in a set are
related by application area or contributed from a single
source. Sets are grouped further into collections, such as
the well-known Harwell-Boeing collection. Individual
matrices may be stored explicitly as dense or sparse
matrices, or may be available implicitly via a code that
generates them. Matrix generators are either run at
NIST remotely via Web-based form, or run locally as a
Java applet in a Web browser. In other cases, Fortran
code may be downloaded for inclusion in a local testing
application. Available matrices are of a wide variety of
types, e.g., real, complex, symmetric, nonsymmetric,
Hermitian. Some are only representations of nonzero
patterns. Others include supplementary data such as
right-hand sides, solution vectors, or initial vectors for
iterative solvers. We store matrices and associated mate-
rial one-per-file, in both the Harwell-Boeing format, as
well as in a new Matrix Market format. Software for
reading and writing such matrices in Fortran, C, and
Matlab2 are provided.

2 Certain commercial equipment, instruments, or materials are identi-
fied in this paper to foster understanding. Such identification does not
imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.
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Fig. 7. Structure plot of a sparse matrix. Dark spots indicate the position of nonzero matrix
elements.

For each matrix we provide a summary Web page
outlining the properties of the matrix and displaying a
graphical representation of its properties. Graphics in-
clude sparsity plots such as shown above, and three-di-
mensional representations in Virtual Reality Modeling
Language (VRML) format which can be manipulated
graphically in a Web browser. Spectral portraits, which
illustrate the sensitivity of matrix eigenvalues, are also
available in many cases. Similarly, we have developed a
Web page for each set that gives its background (e.g.,
source and application area), references, and a thumb-
nail sketch of each matrix’s nonzero pattern. We main-
tain a separate database that contains all of the informa-
tion on these pages in a highly structured form. This
allows us to manipulate the data in various ways; for
example, all of the Web pages for matrices and sets are
automatically generated from this database. The data-
base also supports both structured and free-text re-
trieval. The Matrix Market search tool, for example,
allows users to locate matrices with particular special
properties, e.g., all real symmetric positive definite ma-
trices with more than 10 000 rows and less than 0.1 %
density.

The Matrix Market has supported linear algebra re-
searchers and software developers since 1997. About

500 matrices are downloaded from the site each month.
Further details can be found in Ref. [7] or at the Web site
http://math.nist.gov/MatrixMarket/.

4.2 Micromagnetic Modeling

The purpose of micromagnetic calculations is to com-
pute the behavior of the magnetization in a magnetic
material in response to a sequence of applied magnetic
fields. This kind of modeling is important for the design
of magnetic devices such as magnetic recording heads
and media, and for the microstructural design of mag-
netic materials. If micromagnetic calculations are to
substitute for physical experiments, the software em-
ployed must first be validated. Careful comparison to
experimental results is one way to do this. Such a project
is quite ambitious, requiring (1) valid solutions for the
model equations, (2) good values of materials parame-
ters, and (3) careful experimental design and assessment
of experimental errors.

The work we have done is focused solely on the first
of these issues. The mathematical model for micromag-
netism is derived from the atomic scale physics of elec-
tron spin and orbital interactions, and is thought to be
valid over length scales large enough that the magnetiza-
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tion can be approximated by a continuous field of three-
dimensional vectors of constant magnitude. This micro-
magnetic model consists of a set of nonlinear partial
differential equations often referred to as Brown’s equa-
tions .

Taking the model as a given, we set out to test the
output of various computational methods. We have done
this through development of standard problems to be
solved by the micromagnetics community as a whole,
and by developing a public micromagnetic code that can
serve as a reference and testbed for computational tech-
niques.

Testing the validity of computed results really tests a
number of separate but related things:

• the validity of algorithms,
• correct implementation of algorithms (bug free code),

and
• valid use of the algorithms.

These three items require a skilled mathematician, a
skilled programmer, and a skilled operator familiar with
the limitations of the algorithms. Sometimes, but not
always, one person is responsible for all three of these
skills.

Our experience with standard problems and reference
code has been a consequence of our formation and facil-
itation of the Micromagnetic Modeling Activity Group
(
MAG), which was created to work on standard prob-
lems in micromagnetics and on publicly available micro-
magnetic code.

Our contact with the community of researchers in the
field of magnetism, and in micromagnetics in particular,
has been mainly through the use of “piggy-back” work-
shops held as evening sessions at major international
magnetism conferences. We began by convening a steer-
ing committee of representatives from industry,
academia and government labs to plan our first work-
shop. Following this meeting the importance of the
steering committee has diminished, and we have been
formulating plans based mostly on feedback, often by
quick show-of-hands opinion polls at the workshops.

4.2.1 Standard Problems

It is important to achieve a balance in problem defini-
tion between over-specification of the problem and lack
of focus. In the extreme limit of over-specification, all
aspects of solving the problem are determined, and par-
ticipants have no freedom to select differing solution
methods. Effectively, all participants are forced to run
the same program, and comparisons of the contributed
solutions can reveal only potential compiler or CPU
errors. On the other extreme, characterized by lack of

focus, participants solve significantly different prob-
lems, and again nothing is learned about the validity of
the solutions.

Because we want to test solution methods, in our
standard problems we have specified the material ge-
ometry, material parameters and applied field direc-
tions. All other parameters, including the discretization
scheme, discretization size, dynamic behavior and the
specific applied field values are left open.

For problems where the results are to be published in
archival journals, we try to keep the scope of the prob-
lem small so that the standard problem results can be a
small part of a larger paper containing variations on the
problem. Otherwise, we felt that reviewers and editors
might fail to see the value of results that had been
previously calculated.

Our first standard problem was proposed, specified,
and posted before anyone had attempted to solve it. The
problem was conceptually simple, and the parameters
corresponded to the parameters of working devices. In
retrospect, the first standard problem was poorly se-
lected because it proved to be too computationally de-
manding for participants to compute a valid solution.

Learning from this mistake, we made the second stan-
dard problem specification scalable by selection of a
parameter value. For small parameter values, the prob-
lem was less computationally demanding than for large
parameter values. We expected solutions which closely
agree for small parameter values and that diverged as the
parameter value increases.

The most important consideration in collecting solu-
tions to a standard problem is that the demands on par-
ticipants time must be kept to a minimum. We have used
two methods of collecting solutions. With our first stan-
dard problem, we recognized that initial results were
disagreeing rather severely. Recognizing that such re-
sults could prove embarrassing to individuals, or even to
corporations, the results were posted in anonymous
fashion on a collection of web pages, so results could be
compared without learning the source of any particular
solution. Even under the protection of anonymity, lobby-
ing was often required to obtain solutions.

Following our experience with the first standard prob-
lem and having proposed two different, simpler standard
problems, we switched to publication of standard prob-
lem results in regular archival journals. Workshop at-
tendees felt that this would allow researchers to get
credit for their work through normal channels. In addi-
tion to publication, we requested data from those pub-
lishing papers on the standard problems to post on the

MAG web page where results could be compared
side-by-side.
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4.2.2 Reference Software

The public code project complements the standard
problem suite by providing freely available software
with source code that can be used to provide expanded
detail on solutions to the standard problems, and provide
reference results to other problems. It runs on a wide
range of machines, and presents a graphical user inter-
face that allows it to be used by the non-specialist. In
particular, it is a useful aid to understanding experimen-
tal results.

In developing reference micromagnetic software we
had several goals in mind. The code needed to be pow-
erful and flexible enough for in-house research, and to
provide sample results for the standard problems. On the
other hand, an issued raised in the first 
MAG meeting
was the importance of having a code available that ex-
perimentalists could use to help interpret their results,
without a major investment of time to learn to use the
code. We also wanted a modular code that could be used
as a development platform for new researchers in the
field of micromagnetics.

To provide portability and an easy to use graphical
interface, we decided to write the user interface code in
the Tcl/Tk scripting language, while the core of the
micromagnetic solver would be written in C++ for mod-
ularity and extensibility. To make the code widely avail-

able, we created a web site where regular alpha and beta
releases of both full source code and executables would
be placed.

4.2.3 Results

The activities of 
MAG, including complete standard
problem specifications and results are documented at
http://www.ctcms.nist.gov/~rdm/mumag.html. The
public reference code is available for download at http://
math.nist.gov/oommf/.

Our first attempt at a standard problem encountered a
number of difficulties. The problem involves calculating
the domain patterns and hysteresis loops for a 1 
m � 2

m rectangle of material, 20 nm thick with materials
parameters set to mimic Permalloy (Ni80Fe20). At first
this appeared to be a reasonable problem. Problems hav-
ing a similar geometry were being solved in industry in
modeling of recording heads, but the hysteresis loop
calculations requested for the standard problem proved
to be much more demanding than the calculations of
reversible behavior used for the recording heads. A sub-
set of the collected results are shown in Fig. 8. An
additional result is published in Ref. [30]. The disparity
in the computed results is believed to be due to a number
of factors:

Fig. 8. Anonymously submitted solutions to Standard Problem #1. Each image depicts the horizontal component of the magnetization in the zero
field state obtained after application of a large field 1� from the vertical.
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• Proximity of specified field values to critical values.
The maximum field requested was very close to the
field required for complete saturation, and applying
the field 1 � off axis was insufficient to break the
symmetry of the problem

• Large problem dimensions relative to intrinsic length
scales. The exchange length for Permalloy is approxi-
mately 5 nm. The number of computational grid cells
required to discretize down to this length scale was
prohibitive.

Standard Problem #2 is a bar of magnetic material,
with aspect ratios 5:1:0.1. The material is specified by
magnetization Ms and exchange stiffness parameter A .
The intrinsic length scale, the exchange length, is given
by � = �2A /
0M 2

s . Magnetocrystalline anisotropy is
set to zero. All length scales can be expressed in unit of
� and all fields can be expressed in units of Ms. With the
applied field oriented in the [1,1,1] direction relative to
the principle axes of the bar, the problem is to calculate
the remnant magnetization and coercivity of the bar as
a function of the bar width. The problem is expected to
become progressively more challenging as the bar di-
mensions are increased relative to � . Results have been
published in the open literature [3, 12, 22, 25] including
an analytical solution for the limit of small dimensions
[12]. A representative plot is shown in Fig. 9.

Standard Problem #3, like problem #2, involves an
object with variable dimensions, but is more suitable for
a 3D code. The object is a cube with magnetization, Ms,
exchange stiffness parameter, A , and magnetocrystalline
anisotropy constant Ku = 0.1 � 1

2 
0M 2
s , with the easy

direction parallel to a principle axis of the cube. There
is no applied field. For very small cubes, the minimum
energy state is expected to be nearly uniform magnetiza-
tion, and for a large cube the minimum energy state is
expected to involve a number of domains. The problem
is to find the cube edge length, L , such that the nearly
uniform “flower” state has the same energy as a “vortex
state” (Fig. 10). Solutions for this problem agree well,
ranging from L = 8.469� to L = 8.52� , with one paper
published in the open literature [29] and the others de-
scribed on the web site listed above.

The problem specification assumes that the “flower”
and “vortex” states are the two lowest energy states for
the cube. However, in one of the submitted solutions, the
existence of another “twisted flower” state is described
that has the lowest energy near L = 8.5.

Standard Problem #4 is a “proposed” problem, cur-
rently posted for comments from the community. It is
primarily intended as a test for dynamic micromagnetic
calculations. The material is a 500 nm � 125 nm
rectangle of material, 3 nm thick, with parameters de-
signed to mimic Permalloy. The dynamics of the magne-
tization have been specified as the Landau-Lifshitz-
Gilbert equation.

Fig. 9. Coercive field as a function of the bar width for Standard Problem #2. The labels refer to the
authors of Refs. [3, 12, 22, 25].
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Fig. 10. Schematic drawings of the expected “flower” and “vortex”
magnetization states for Standard Problem #3.

Starting with magnetization in a specified zero-field
“s-state,” fields are applied instantaneously to reverse
the magnetization, and the evolution of the magnetiza-
tion is traced as the magnetization comes to equilibrium
in its new state. Calculations for two switching fields are
specified, applied 170 � and 190 � from the long axis of
the rectangle of material. Because the s-state is asym-
metric, for one of these fields the magnetization will
reverse by rotating in the same direction throughout the
sample. The computation is expected to be more diffi-
cult for the other applied field, since preliminary com-
putations have shown that the magnetization initially
rotates in different directions in different parts of the
sample, creating vortices and domain walls that are
more difficult to resolve.

4.2.4 Outcomes

We have developed several standard problems in
micromagnetics, and have enlisted the help of the micro-
magnetics community in generating results to these
standard problems. As our experience has increased, we
have become better at proposing tractable, well-defined
problems. As a result, we have been able to shift from
collecting anonymous solutions to the problems, where
the identity of the solution author is protected, to solu-
tions that are subject to peer review and published in the
normal way. This transition is important since it allows
the problem solvers to get credit and financial support
for their work through normal channels. The standard
problems are now in a state where they can be used in
a limited way for their intended purpose, to detect errors
in micromagnetic computer software.

The first public release of the reference micromag-
netic software occurred in January 1998. The software
was developed by Michael Donahue and Donald Porter,
with some early contributions by Robert McMichael.
We have released upgrades on a regular basis since that
time. The documentation, which is included with each
release and is available on the web site in online form,

has been published as a NIST report [11]. The software
runs on a wide variety of Unix and Windows computers,
and has contributed to at least 10 papers in refereed
journals. We have also used the reference code to
provide solutions to the standard problems. This is espe-
cially useful as interested parties can determine addi-
tional details about the solutions not included in the
reports by downloading the software and replicating the
results. This is also a good practice exercise for learning
to use the code.

Results from the standard problems also feed back
and influence the public code. For example, the first
three submitted solutions to Standard Problem #2 were
Streibl, McMichael, and Diaz (refer to Fig. 9). We ex-
pected the solutions to agree for small values of d /lex,
and although close, there appeared to be a systematic
disagreement between the Streibl results and the other
two. We examined our results (McMichael) more
closely, and determined that there was a bias in the
calculation of the demagnetization field near the edges
of the bar [12]. We implemented an improved demagne-
tization module, and submitted new results (Donahue)
that agree closely with the Streibl results, and the ana-
lytic result in the small particle limit.

5. Digital Library of Mathematical
Functions

In Sec. 2.3 we described the development of the NBS
Handbook of Mathematical Functions . The functions
whose properties were laid out in this reference work
continue to play a critical role in applied mathematical
modeling. As a result, practitioners still need ready ac-
cess to a reliable source of information about mathemat-
ical functions, which accounts for the Handbook’s con-
tinued popularity. Nevertheless, it is now out-of-date in
many respects. Since its publication, numerous ad-
vances in related fields of mathematics have been made:

• New functions have entered the realm of practical
importance, e.g., q-series.

• New fields of application have emerged, e.g., in non-
linear dynamics.

• Analytical developments have occurred, e.g., in
asymptotics.

• New properties, e.g., integral representations and ad-
dition formulas, have been discovered.

• Numerical developments, e.g., interval analysis and
Padé approximations, have occurred.

• Computer algebra and symbolic processing have
come into wide use.

• An enormous increase in computing power has made
obsolete standard numerical processes of the 1950s,
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such as table-making and interpolation, while increas-
ing the value of others.

• Comprehensive software packages have been con-
structed for working and computing with functions.

At the same time, dissemination of information is
being revolutionized by the rapid development of the
Internet and World Wide Web. A modern successor to
the Handbook should provide new capabilities unavail-
able in print media, such as:

• Generic representation of mathematical entities such
as formulas, graphs, tables and diagrams.

• Advanced search, with the ability to locate formulas
based on mathematical subexpressions.

• Downloading of mathematical entities into document
processors.

• Importing of formulas directly into symbolic comput-
ing systems.

• Continuous updating to incorporate corrections, addi-
tions and extensions.

• Maintenance of communication channels between
users and developers, with a public record of usage.

• Support for external application modules to provide
tutorials, application notes or research monographs in
fields that use mathematical functions.

• Recommendations of algorithms and software for
computing functions, with links to sources.

• Generation of numerical tables and graphs for user-
specified ranges of input.

NIST has begun the process of completely rewriting
the Handbook for presentation as an on-line resource
with many of these features. The result will be the NIST
Digital Library of Mathematical Functions (DLMF).
The project entails (a) gathering all pertinent mathemat-
ical information, (b) constructing a state-of-the-art ref-
erence database with all necessary tools for long-term
maintenance, (c) presenting validated reference infor-
mation on the Web, and (d) developing application mod-
ules in quantum mechanics, electromagnetism, and an
adaptive learning system for mathematical functions.

The DLMF project is being managed by four princi-
pal editors at NIST: Daniel Lozier, Frank Olver, Charles
Clark, and Ronald Boisvert. They are assisted by a panel
of 10 associate editors representing expertise in special
functions, numerical analysis, combinatorics, computer
algebra, physics, chemistry, and statistics. The DLMF
will have 38 chapters:

1. Mathematical and Physical Constants
2. Algebraic and Analytical Methods
3. Asymptotic Approximations
4. Numerical Methods

5. Computer Algebra
6. Elementary Functions
7. Gamma Function
8. Exponential Integral, Logarithmic Integral, Sine

and Cosine Integrals
9. Error Functions, Dawson’s Integral, Fresnel Inte-

grals
10. Incomplete Gamma Functions and Generalized Ex-

ponential Integral
11. Airy and Related Functions
12. Bessel Functions
13. Struve Functions and Anger-Weber Functions
14. Confluent Hypergeometric Functions
15. Coulomb Wave Functions
16. Parabolic Cylinder Functions
17. Legendre Functions and Spherical Harmonics
18. Hypergeometric Functions
19. Generalized Hypergeometric Functions and Meijer

G-Function
20. q-Hypergeometric Functions
21. Classical Orthogonal Polynomials
22. Other Orthogonal Polynomials
23. Elliptic Integrals
24. Theta Functions
25. Jacobian Elliptic Functions
26. Weierstrass Elliptic and Modular Functions
27. Bernoulli and Euler Numbers and Polynomials
28. Zeta and Related Functions
29. Combinatorial Analysis
30. Functions of Number Theory
31. Statistical Methods and Distributions
32. Mathieu Functions and Hill’s Equation
33. Lame Functions; Spheroidal Wave Functions
34. Heun Functions
35. Painleve Transcendents
36. Integrals with Coalescing Saddles
37. Wavelets
38. 3j, 6j, 9j Symbols

The second through fifth chapters will provide back-
ground material in mathematical and numerical analy-
sis. The remaining chapters deal with individual func-
tions or classes of functions. An emphasis will be placed
on a concise presentation of the mathematical properties
of the functions, including formulas, visualizations,
methods of computation, and representative applica-
tions. Pointers to state-of-the-art software for computing
the functions will also be supplied. Detailed tables of
function values, which occupied more than half of the
original Handbook, will not be included The last six
chapters contain material on functions which were not
represented in the original Handbook, and all the chap-
ters are enlarged. Tables aside, the DLMF will contain
twice the material found in the original Handbook.
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The technical material is being developed by some 50
external participants. Of these, authors under contract to
NIST will complete a survey of the literature as the basis
for their chapters. After chapters are approved by the
Editorial Board they will be carefully checked by inde-
pendent external validators, also under contract to NIST.

The DLMF will be made available in a highly interac-
tive Web site maintained by NIST (see Fig. 11). Each
labeled item (e.g., section, formula, table) will have
metadata associated with it, both to aid in searching, and
to provide readers with further information such as links
to original references and generalizations. Interactive
tools for visually exploring functions will be supplied as
Java applets or as VRML worlds. Providing certified
tables of function values on demand for each of the
functions in the DLMF is beyond the scope of the cur-
rent project. However, this is recognized as a need, and
it will be demonstrated for several of the functions in the
DLMF.

A prototype of the Digital Library can be inspected at
http://dlmf.nist.gov/. Completion of the system is ex-
pected in 2002.

6. Future Trends in Mathematics at NIST

The widespread availability of substantial computa-
tional power will increase the demand for mathematical
and computational modeling. As more and more people
attempt to exploit such methodology, there will be
greater need for specialized, but flexible, computational
problem-solving environments for science and engineer-
ing applications [31]. These will be built from mathe-
matical components which must have a higher degree of
reliability than those in common use today. Mathemati-
cal research will be needed in the development of fast,
reliable, adaptive and self-validating algorithms for a
wide variety of problems. As the development of math-
ematical software components moves from the research
community to the commercial sector there will also be
a critical need for techniques and tools to assess the
accuracy and reliability of mathematical systems and
components. NIST is a natural home for the develop-
ment of measurement technology in this area.

Increased computational modeling capabilities will
have an even greater impact on future NIST measure-

Fig. 11. Windows illustrating the capabilities of the Digital Library of Mathematical Functions.
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ment programs. As higher fidelity models are proposed
and efficient solution techniques developed, there comes
the real possibility of replacing many physical measure-
ments by virtual measurements performed on mathe-
matical models. Before this can occur, however, sub-
stantial efforts must be made to more carefully
characterize models and sources of error so that the
precision and accuracy of virtual measurements can be
quantitatively assessed in the same way as physical mea-
surements. Of course, such technology would not make
experiment-based metrology obsolete. Instead, experi-
mental measurements would be targeted to the calibra-
tion and validation of mathematical models.
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