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Abstract

Cubic Ly and L, interpolating splines based on
C' smooth, piecewise cubic Sibson elements on a
tensor-product grid are investigated. Computational
tests were carried out for an 800 m by 800 m area
of Baltimore, Maryland represented by an 801 x 801
set of 1-meter-spacing (posting) data set. Interpo-
lating splines at coarser resolutions were computed
along with /1, ¢, and ¢, errors relative to the 800
m by 800 m data set. Piecewise planar interpolations
at the coarser resolutions were also computed along
with the above errors for comparative purposes.

1. Introduction

Currently, irregular geometric surfaces and, in
particular, terrain are often represented by piecewise
planar surfaces on triangulated networks (often called
”TINs” or "triangulated irregular networks” when the
triangles are irregular in shape). However, generating
an accurate, error-free surface within a triangulated
network framework requires extremely fine triangula-
tions in regions of rapid change and therefore storage
and manipulation of huge amounts of data. The con-
ceptual superiority of using smooth surfaces for rep-
resentation of terrain and of irregular geometric sur-
faces in general has long been recognized. Recently,
a new class of cubic ”Ly” splines that perform well in
preserving the shape of data sets has been developed
(Lavery, 2000a, 2000b, 2001). We will compare L
splines with a class of conventional ” Ly” splines and
with piecewise planar surfaces.

2. Cubic L; Splines, Cubic L; Splines
and Piecewise Planar Surfaces

The cubic splines z(z,y) used in this paper con-
sist of C! smooth, piecewise cubic Sibson elements
(Han and Schumaker, 1997; Lavery, 2001) on regu-
larly spaced rectangular grids with nodes (z;,y;) =
(czi,cyj),i=0,1,...,1,j=0,1,..., J, where ¢, and ¢,
are known constants. These cubic splines, which exist

on the domain D = (xg,xr) X (yo,ys), are character-
ized by their values z;; = z(x;,y;) and the values of
their derivatives 2{; = %(mhyj) and z}; = g—;(mi, Yj)
at the nodes (z;,y;). At each node (x;,y;), the ele-
vation z;; is given. To calculate a cubic interpolating
spline, one must compute the values of the derivatives
z;; and z . The zj and z . of a cubic Ly spline are
calculated by minimizing the following weighted sum
of the absolute values of the second derivatives of the
spline and a regularization term
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over all Sibson-element surfaces z that interpolate the
data z;;. The 2f; and 2j; of a conventional cubic Ly
interpolating spline are calculated by minimizing the
following weighted sum of the squares of the second
derivatives of the spline and a regularization term

// <8x2> 4(3T5y>2+(gz>]dxdy

J
+ &2 Z [(z5)% + (2%)?]
0 =0

()
over all Sibson-element surfaces z that interpolate the
data z;;. The regularization parameter € in (2) is the
same as the € in (1). The integral in (2) was dis-
cretized in the same manner as the integral in (1). A
piecewise planar surface z is calculated by dividing
each rectangle [x;, x;41] X [y, y;41] into two triangles
by drawing the diagonal from the corner (x;,y;) to
the corner (x;y1,y;+1) and letting z inside each tri-
angle be the linear interpolant of the data at the three
corners of the triangle.



3. Multiresolution Representation
of Urban Data

Computational tests were carried out on a set of
801 x 801 data that consists of an 800 m by 800 m
portion of a 1000 x 1000 set of 1-meter-posting dig-
ital elevation data for downtown Baltimore, Mary-
land surrounding Oriole Park at Camden Yards. The
data set was obtained from the Joint Precision Strike
Demonstration Project Office (JPSD PO) Rapid Ter-
rain Visualization (RTV) ACTD. In Fig. 1, we
present the surface for the 800 m by 800 m, 1-meter-
posting subset of the Baltimore data set mentioned
above.

Fig. 1. Surface based on 1-meter-posting for 800 m by 800m

area of Baltimore, Maryland.

The first row of the tables below contain the spac-
ings, designated by “s” in meters. In the left hand
column of the tables the following notation is used:
A€1 = HZ[LLS] — data||g1, Aég = HZ[LLS] — data||g2,
Alo = ||2[1,,s) — datal|e,,, where data is the original
801 x 801 data used to plot Fig. 1.

Table 1. Norms of differences between
cubic L, splines on coarse grids and original
data.

s(m) 5 10 20 40

Aty 1.314 2207 3.709 5.987
Al 3.640 5.058 7.582 11.34
Al,, 9450 1084 103.1 104.2

Table 2. Norms of differences between
cubic L, splines on coarse grids and original
data.

s(m) 5 10 20 40

Aty 1488 2450 4.014 6.305
Aly 3.726 5.144 7.702 11.69
Al 101.2  113.0 98.50 104.1

Table 3. Norms of differences between
piecewise planar surfaces on coarse grids and
original data.

s(m) 5 10 20 40

Al 1.389 2346 3.902 6.099
Aty 3.690 5.130 7.545 11.15
Al 89.82 9485 9557 101.1

Overall, this evidence indicates that L; splines
preserve shape better for this terrain data set than
do Ly splines. With respect to the piecewise pla-
nar surface interpolation the criteria for preservation
of shape depends strongly on the measure of differ-
ence between the interpolation and the original data.
Piecewise planar performs better than the Lo spline
for this data set given the three measures of perfor-
mance used. The comparison with the L; spline de-
pends on the error measure.

4. Conclusion

The results in this paper indicate that Lq splines
are excellent candidates for representation of urban
terrain. In this article, we have investigated the ap-
proximation properties of Lq interpolating splines on
increasingly coarse grids, ignoring intermediate data.
In the future, computational experiments with L,
smoothing splines, which use all of the data, includ-
ing the data between the coarse-grid nodes, will be
carried out. It is expected that the performance of
L splines will be further enhanced by doing this.
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