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1. Introduction

Consider the simple communication system model
shown in Fig. 1. The goal is to transmit one of M
possible symbols, i.e., an M -ary signaling system, over
a memoryless additive noise channel. We will assume
all signals are discrete-time with T samples. The trans-
mitter assigns a unique signal sm : {1, . . . , T} → � to
each symbol m � {1, . . . , M}. It is this signal that is
sent through the channel. At the other end, the received
signal is

y [t ] = sm [t ] + n [t ], t = 1, . . . , T ,

where n : {1, . . . , T} → � is a noise process, and the
job of the receiver is to decide which symbol was trans-
mitted. Our goal is to design a set of signals sm ,
m = 1, . . . , M , which maximize, subject to constraints
on the signals, the probability of a correct decision by
the receiver given a particular channel noise distribu-
tion.

Of course, in order to design an optimal signal set, the
action of the channel and the receiver must be com-
pletely specified. For the channel, we assume the noise
process is independent and identically distributed (iid)
with distribution pN . Further, we assume that the noise
process is independent of the symbol being transmitted.
Our detection problem falls into the class of M -ary
Bayesian hypothesis testing problems where, for
m = 1, . . . , M , the hypotheses are defined as follows,

Hm : y [t ] = sm [t ] + n [t ], t = 1, . . . , T .

To simplify notation, define the received signal vector

y �= (y [1], . . . , y [T ])T.

Finally, it is assumed that the receiver was designed
using the minimum average probability of error crite-
rion (or the uniform cost criterion). It is well known that
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Fig. 1. Model of a communication system.

(see, e.g., Sec. IV.B of Ref. [20]), under our assump-
tions, the optimal receiver is the maximum a posteriori
probability (MAP) detector. Specifically, the optimal
receiver chooses

m̂ (y) = arg max{p (Hm |y) | m = 1, . . . , M},

i.e., the hypothesis with the largest probability given the
observation y.

Clearly, the receiver will make an error if hypothesis
Hm is true, but

p (Hm' |y) > p (Hm |y),

for some m' � m . Thus, the probability of a correct
decision under hypothesis Hm is

p ({correct decision} | Hm ) = p ({p (Hm |y) > p (Hm' | y),

�m' � m} | Hm )

= p��ln
p (Hm |y)
p (Hm' |y)

> 0, �m' � m�� Hm�,

where, in order to put things in terms of the familiar
log-likelihood ratio, we have assumed p (Hm' |y) > 0 for
all y, m' � {1, . . . , M}. For the signal set design prob-
lem considered here, no knowledge of the prior distribu-
tion on the hypotheses Hm , m = 1, . . . , M , will be as-
sumed. Of course, the conditional distribution p (Hm |y)
is known since, given a signal set, this distribution is
completely determined by the distribution on the chan-
nel noise. Specifically, in view of our assumptions,

p (Hm |y) = �T

t=1

pN (y [t ] � sm [t ]).

If the prior distribution were known, the quantity to
be maximized could be expanded as

p ({correct decision})=�
m=1

p ({correct decision} | Hm ) �p (Hm ).

As p (Hm ) is not assumed to be known, the worst-case
prior distribution will be used to compute p ({correct
decision}) for any given signal set. In particular, let

S �= �� � ���
m=1

�m = 1, �m � 0, m = 1, . . . , M�.

The goal will be to find signal sets which maximize

min
��S

�
m=1

p ({correct decision} | Hm ) � �m .

It is not difficult to show that this is equivalent to max-
imizing

min
m�{1,...,M}

p ({correct decision} | Hm ). (1)

A standard assumption in transmitter design is that
the signals are restricted to be of the form

sm [t ] �= �K
k=1

�m,k�k [t ], (2)

where �k : {1, . . . , T} → �, k = 1, . . . , K , are given
basis functions and �m,k � �, m = 1, . . . , M ,
k = 1, . . . , K , are the free parameters. Finally, due to
power limitations in the transmitter, the signals are
forced to satisfy some type of power constraint, either
peak amplitude or average energy. In this paper, we will
assume a peak amplitude constraint, i.e.,

| sm [t ]| 	 C , m = 1, . . . , M , t = 1, . . . , T , (3)

where C > 0 is given. Note that we could just as easily
have considered an average energy constraint in our
formulation. Our design problem is thus reduced to
choosing parameters �m,k in order to maximize Eq. (1),
subject to the constraints Eq. (3).
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2. The Optimization Problem

The details of casting the design problem introduced
in the previous section in such a way that it may be
solved using standard nonlinear programming al-
gorithms are presented in this section. The design of
optimal signal sets under the assumption of Gaussian
noise has been well studied (see, e.g., Ref. [22]). In fact,
a gradient-based first-order algorithm was developed
and analyzed in Ref. [5] for the case of Gaussian noise,
K = 2 basis functions, and an average energy constraint
on the signals. The performance of optimal detectors in
the presence of non-Gaussian noise as a function of the
signal set was first studied by Johnson and Orsak in Ref.
[10]. It was shown in Ref. [10] that the dependence of
detector performance on the signal set is related to the
Kullback-Leibler (KL) distance between distributions
for the various hypotheses. Based on this work, Gocken-
bach and Kearsley Ref. [7] proposed the nonlinear pro-
gramming (NLP) formulation of the signal set design
problem which is considered here.

Given our assumptions on the noise process, the log-
likelihood ratio may be written

ln
p (Hm |y)
p (Hm' |y)

= �T

t=1

ln
p (Hm | y [t])
p (Hm' | y [t ])

.

Note that, since randomness only enters the received
signal through the additive noise process, when hypoth-
esis Hm is true, the receiver computes

p (Hm | y [t ]) = pN (n [t ]),

and, for m' � m ,

p (Hm' | y [t ]) = pN (n [t ] + (sm' [t ] � sm [t ])).

Thus, upon substitution, the statistic of interest to us is

ln
p (Hm |y)
p (Hm' |y)

= �T

t=1

ln� pN (n [t ])
pN (n [t ] + (sm' [t ] � sm [t ]))�.

Now, assuming the variance of the statistic (4) does
not change as we vary m' � m , maximizing p ({correct
decision} | Hm ) is equivalent to maximizing the expected
value of the statistic Eq. (4) for each m' � m . That is,
under hypothesis Hm , the probability of correctly choos-
ing Hm is maximized if we maximize

min
m'�m

E��T

t=1

ln� pN (n [t ])
pN (n [t ] + (sm' [t ] � sm [t ]))��Hm�.

Thus, for the signal design problem considered here, we
may equivalently use

min
m�{1,...,M}

min
m'�m

E��T

t=1

ln� pN (n [t ])
pN (n [t ] + (sm' [t ] � sm [t ]))��Hm�

as the objective function. Define the function
KN : � → � as

KN (
 ) �= �
�

ln� pN (� )
pN (� + 
 )�pN (� )d� ,

i.e., the KL distance between the noise distribution and
the noise distribution shifted by �
 . Note that if we
assume a symmetric distribution for the noise (this is not
a restrictive assumption), then KN (�) will be an even
function. It is not difficult to show that

E��T

t=1

ln� pN (n [t ])
pN (n [t ] + (sm' [t ] � sm [t ]))��Hm�
= �T

t=1

KN (sm' [t ] � sm [t ]).

Define

� �= (� 1,1, . . . , � 1,K, . . . , �M,1, . . . , �M,K) � �MK.

Substituting the expansion Eq. (2), we see that, under
our assumptions, the signal set design problem is equiv-
alent to solving the optimization problem

min
���MK

max���T

t=1

KN��K
k=1

(�m',k � �m,k)�k [t ]��m , m'

�{1, . . . , M}, m' > m�
s.t. ��K

k=1

�m,k�k [t ]�2

	C 2, m= 1, . . . , M , t= 1, . . . , T .

(SS )

It is only necessary to consider m' > m since KN (�) is an
even function.

The problem (SS ) is already in a form which may be
handled by algorithms which tackle inequality con-
strained mini-max problems. Such algorithms have been
developed by, e.g., Kiwiel in Ref. [13], Panier and Tits
in Ref. [16], and Zhou in Ref. [25], all in the context of
feasible iterates. In Ref. [25], Zhou extends the non-
monotone line search-based algorithm of Ref. [26] to
handle the constrained case. The algorithm of Ref. [16]
extends the feasible SQP algorithm of Ref. [17] to han-
dle mini-max objective functions. A recent algorithm for
the constrained mini-max problem which does not gen-
erate feasible iterates is the augmented Lagrangian ap-
proach of Rustem and Nguyen Ref. [23]. The problem
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may be converted into an equivalent single objective
smooth nonlinear programming problem by adding an
additional variable. This is the approach taken by Gock-
enbach and Kearsley in Ref. [7]. Additionally, they add
a “regularization” term (possibly zero) to the converted
objective. Specifically, consider

min
���MK,���

� � 2 � �r ||� ||2
2

s.t. � �T

t=1

KN��K
k=1

(�m',k � �m,k)�k [t ]�
	 � � 2, m' , m � {1, . . . , M},

m' > m ,

��K
k=1

�m,k�k [t ]�2

	 C 2, m = 1, . . . , M , t = 1, . . . , T ,

� � 0,
(SS' )

where �r is small (possibly zero).
It turns out that problems (SS ) and (SS' ) are difficult

to solve using standard off-the-shelf nonlinear program-
ming codes. To begin with, it was observed in Ref. [7]
that outside of the feasible region, the linearized con-
straints for problem (SS ) are often inconsistent, i.e. no
feasible solution exists. This can be a big problem for
sequential quadratic programming (SQP) based al-
gorithms, generally considered the most successful al-
gorithms available for NLP problems with a reasonable
number of variables. Of course, with feasible iterates,
the linearized constraints are always consistent and the
solutions of the QP sub-problems are always well-de-
fined. As an alternative to feasible iterates, there are
infeasible SQP-based algorithms which use special
techniques to deal with inconsistent QPs (see, e.g., Ref.
[24, 12, 4]). Another difficulty in applying a local NLP
algorithm is that problem (SS ) has many local solutions
which may prevent convergence to a global solution.

3. Local Algorithms

Sequential Quadratic Programming (SQP) has
evolved into a broad classification encompassing a vari-
ety of algorithms. When the number of variables is not
too large, SQP algorithms are widely acknowledged to
be the most successful algorithms available for solving
smooth nonlinear programming problems. For an excel-
lent recent survey of SQP algorithms, and the theory
behind them, see Ref. [4].

In general, an SQP algorithm is characterized as one
in which a quadratic model of the problem is formed at
the current estimate of the solution and is solved in order
to construct the next estimate of the solution. Typically,
in order to ensure global convergence, a suitable merit
function is used to perform a line search in the direction
provided by the solution of the quadratic model. While
such algorithms are potentially very fast, the local rate
of convergence is critically dependent upon the type of
second order information utilized in the quadratic model
as well as the method by which this information is
updated.

3.1 Infeasible SQP

Numerous SQP algorithms that do not require iterates
to remain feasible have been suggested by researchers
(e.g., Refs. [3, 6, 24] among others). Because of the
nonlinear nature of the constaints appearing in this
specific class of problems, the linearizations employed
by SQP are frequently inconsistent. As a result, con-
straint perturbation techniques must be employed to en-
sure that the algorithm can generate a descent direction
at every iteration. This, at least in part, explains the
superior performance of hybrid SQP algorithms re-
ported on here (see Tables 2 and 3). These algorithms
are particularly desirable because they do not require a
feasible starting point.

3.2 Feasible SQP

In Ref. [19, 17, 18, 9], variations on the standard SQP
iteration are proposed which generate iterates lying
within the feasible set. Such methods are sometimes
referred to as “Feasible SQP” (or FSQP) algorithms. It
was observed that requiring feasible iterates has both
algorithmic and application-oriented advantages. Al-
gorithmically, feasible iterates are desirable because

• The Quadratic Programming (QP) subproblems are
always consistent, i.e., a feasible solution always ex-
ists, and

• The objective function may be used directly as a merit
function in the line search.

State of the art SQP algorithms typically include com-
plex schemes to deal with inconsistent QPs. Further, the
choice of an appropriate merit function (to enforce
global convergence) is not always clear. Requiring feasi-
ble iterates eliminates these issues. In order to overcome
the problem of inconsistent QPs in this work, we use the
CFSQP implementation Ref. [14] of the FSQP al-
gorithm proposed and analyzed in Ref. [18] as our local
algorithm.
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4. Global Solutions

4.1 Stochastic Approach

In one attempt to overcome the problem of local solu-
tions, we use a stochastic two-phase method (see, e.g.,
Ref. [1]) where random initial points are generated in
the feasible region and a local method is repeatedly
applied to a subset of these points. Such an approach
may be thought of as simply a “smart” way of generat-
ing many initial points for our fast local algorithm with
the hopes of eventually identifying a global solution.
Specifically, we will use the Multi-Level Single Linkage
(MLSL) approach Ref. [1, 11], which is known to find,
with probability one, all local minima (hence the global
minima) in a finite number of iterations.

Let � denote the cumulative set of local minimizers
identified by the MLSL algorithm. At iteration � , for
some integer N > 0 fixed, we generate N points
�(��1)N+1, . . . , ��N distributed uniformly over the
feasible set X for (SS ). For each of the points
�i � {�1, . . . , ��N } we check to see if there is another
point �j within a “critical distance” r� of �i which also
has a smaller objective value. If not, then the local al-
gorithm, call it � is applied with initial point �i and the
computed local minimizer is added to the set �. After
all points are checked, r� is updated, � is set to � + 1 and
the process is repeated. At any given iteration, the local
maximizer with the smallest objective value is our cur-
rent estimate of the global solution. For ease of notation,
define the (mini-max) objective

F (� ) �= max���T

t=1

KN��K
k=1

(�m',k � �m,k)�k [t ]��m , m'

� {1, . . . , M}, m' > m�.

Further, let �(� ) denote the local minimizer obtained
when a local algorithm is applied to problem (SS ) with
initial point � . The following algorithm statement is
adapted from Ref. [1].

Algorithm MLSL

Step 0 . set � ← 1, � ← Ø.

Step 1 . generate N points �(��1)N+1, . . . , ��N uni-
formly over X .

set i ← 1.

Step 2 . if (∃j s.t. F (�j ) < F (�i ) and ||�i � �j ||s < r� )
then goto Step 3 .

else set � ← � � {�(�i )}.

Step 3 . set i ← i + 1.
if i 	 �N then goto Step 2 .
else set � ← � + 1 and goto Step 1 .

It remains to specify how we select the critical dis-
tance r� , the definition of the metric ||�||s we use for
signal sets (as parameterized by � ), and how we gener-
ate the sample points. Following Ref. [1], we use

r� =
1

�

��(1 + n /2) � m (X ) �

� ln(�N )
�N �1/n

,

where n is the number of variables (MK for our prob-
lem), m (X ) is the volume of the feasible region, and
� > 2. To compute m (X ), note that in view of symmetry
with respect to the signals,

m (X ) = A ,

where A is the volume of the feasible region for the
parameters corresponding to one signal (recall, M is the
number of signals). The quantity A is easily estimated
using a Monte Carlo technique.

Note that, for our problem, as far as the transmitter is
concerned, a given signal set is unchanged if we were to
swap the coefficients �m1,k, k = 1, . . . , K , with �m2,1,
k = 1, . . . , K , where m1 � m2. The distance “metric”
we use in Algorithm MLSL should take this symmetry
into account. Consider the following procedure for com-
puting the distance between signal sets parameterized
by �1 and �2.

function dist(�1, �2) {

for i = 1, . . . , M � 1 do {

di = min ��K
k=1

(� i,k
1 � � j,k

2 )2� j � {1, . . . , M}/{ j1, . . . , ji�1}�
ji = arg min ��K

k=1

(� i,k
1 � � j,k

2 )2� j � {1, . . . , M}/{ j1, . . . , ji�1}�
}

return ��
i=1

di�1/2

}

This is not a metric in the strict sense of the definition,
though it suffices for our purposes and we will set

||�1 � �2||s
�= dist(�1,�2).

To aid the generation of sample points, before starting
the MLSL loop we compute the smallest box which
contains the feasible set X . By symmetry with respect to
the signals, we can do this by solving 2K linear pro-
grams. Specifically, let �̄k � �, k = 1, . . . , K be defined
as the optimal value of the linear program (LP)
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max
� 1,1,...,� 1,K

� 1,k

s.t. �K
q=1

� 1,q�k [t ] 	 C , t = 1, . . . , T ,

(Uk )

�K
q=1

� 1,q�k [t ] � � C , t = 1, . . . , T ,

and let � k � �, k = 1, . . . , K be defined as the optimal
value of the LP

min
� 1,1,...,� 1,K

� 1,k

s.t. �K
q=1

� 1,q�k [t ] 	 C , t = 1, . . . , T ,

(Lk )

�K
q=1

� 1,q�k [t ] � � C , t = 1, . . . , T .

Then, it should be clear that

X � � �= {� � �MK |�m,k � [� k, �̄k],

k = 1, . . . , K , m = 1, . . . , M}.

Using standard random number generators, it is a simple
matter to choose samples from the uniform distribution
on the box �. Thus, for Step 1 of Algorithm MLSL, we
repeatedly generate samples from the uniform distribu-
tion on �, discarding those which do not lie in X , until
we find N which do lie in X . It should be clear that such
a procedure is equivalent to drawing N samples from the
uniform distribution on X .

4.2 Expanded Space Approach

In this section we describe a reformulation of the
problem along the lines of that considered in Ref. [8] in
the context of molecular conformation. The essence of
the approach is to add variables in such a way that the
global solution of the new equivalent problem has an
enlarged basin of attraction. While the method does not
guarantee convergence to a global solution, it does in-
crease the likelihood.

To use such an approach in our context, we assign to
each signal M � 1 sets of “auxiliary” coefficients. Each
set will be used exclusively for computing the interac-
tion with one particular other signal. For a given signal,
the method will asymptotically force these sets of auxil-
iary coefficients to coalesce, as they must in order for
the solution to be feasible for the original problem. Let
the auxiliary coefficients be denoted �̃m,�,k, where m �
{1, . . . , M}, � � {1, . . . , M}/{m}, and k � {1, . . . , K}.

Thus, the problem has grown from KM to KM (M � 1)
variables. Let �̃ denote the vector of all such coeffi-
cients. As mentioned above, the coefficients �̃m,�,k and
�̃�,m,k, k = 1, . . . , K will be used only to compute the
interaction between signals m and � . Correspondingly,
define the objective function which encapsulates this
interaction as

�m,� (�̃) �= � �T

t=1

KN��K
k=1

(�̃m,�,k � �̃�,m,k)�k [t ]�.

A schematic representation of the auxiliary coefficients
and their interactions is given in Fig. 2 for the case
M = 3.

The constraint that the sets of auxiliary coefficients
for each signal must all be equal at a feasible solution is
easily expressed as a set of linear equality constraints. In
particular, it is not difficult to show that there exists a
linear operator W , a KM (M � 2) � KM (M � 1) ma-
trix, whose kernel is precisely the set of all vectors
satisfying this constraint. Finally, in view of this con-
straint, it is only necessary to enforce the power con-
straint on one set of auxiliary coefficients for each sig-
nal. Thus, our “equivalent” expanded space problem is

min
�̃��KM(M�1)

max{�m,m' (�̃) | m , m' � {1, . . . , M}, m' > m}

s.t. ��K
k=1

�̃1,2,k�k [t ]�2

	 C 2, t = 1, . . . , T ,

(ES )

��K
k=1

�̃m,1,k�k [t ]�2

	 C 2, t = 1, . . . , T , m = 2, . . . , M ,

W�̃ = 0.

Following Ref. [8], instead of attempting to solve this
problem directly, we incorporate the equality constraints
into the objective functions as a quadratic penalty term.
This allows us to approach solutions from “infeasible”
points by carefully increasing the penalty parameter and
asymptotically forcing the auxiliary coefficients to coa-
lesce for each signal. Specifically, define the penalized
objective

Pm,m' (�̃; � ) �= �m,m' (�̃) +
1
2

� 2�̃TWTW�̃,

for m , m' � {1, . . . , M}, m' > m . For a fixed value of
� > 0, we can solve (using, e.g., a mini-max SQP-type
algorithm) the problem
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Fig. 2. Schematic representation of auxiliary coefficient interactions.

min
�̃��KM(M�1)

max{Pm,m' (�̃ ; � ) | m , m' � {1, . . . , M}, m' > m}

s.t. ��K
k=1

�̃1,2,k�k [t ]�2

	 C 2, t = 1, . . . , T ,

PES (� )

��K
k=1

�̃m,1,k�k [t ]�2

	 C 2, t = 1, . . . , T , m = 2, . . . , M .

Let �̃(�̃0, � ) denote the solution of PES (� ) obtained
using a local algorithm (such as those discussed in Sec.
3) starting with the initial point �̃0. Using the solution
just obtained as the next initial point, the process may be
repeated after appropriately increasing the penalty
parameter � . At any time, a candidate global solution for
the original problem (SS ) may be computed by
“projecting” a solution �̃ = �̃(�̃' , � ) of PES (� ) into �MK

and solving (SS ) using a local algorithm with the pro-
jected vector as the initial point. We will denote the
projection operation Proj(�̃) and, using the notation
from Sec. 4.1, the computed local solution for (SS )
starting from the initial point Proj(�̃) will be denoted
�(Proj(�̃)). One possible method to compute the re-
quired projection is to simply take the arithmetic average
of the corresponding components of the auxiliary coef-
ficients, i.e., if � = Proj(�̃), then componentwise

�m,k =
1

M � 1 �
��m

�̃m,�,k,

m = 1, . . . , M , k = 1, . . . , K .
It remains to specify how we update the penalty

parameter � . At “major” iteration1 i , the penalty
parameter will be increased by a multiplicative factor,
call it 
i , i.e.,

�i+1 = 
i � �i .

In addition, we will decrease the factor 
i when the
projection for the current major iteration produces an
estimate which does not improve upon the previous esti-
mate. If �i is increased too fast for a given problem we
could get trapped in a local solution. The precise al-
gorithm statement follows.

Algorithm ES

Data . �̃0 � �KM(M�1), �1 > 0, 
0 > 1.

Parameters . � > 0.

1 A major iteration is defined here as on solution of PES (� ) and one
update of � .

447



Volume 106, Number 2, March–April 2001
Journal of Research of the National Institute of Standards and Technology

Step 0 . set i ← 1, �0 ← Proj(�̃0).

Step 1 . compute �̃i = �̃(�̃i�1, �i ).

Step 2 . compute �i = �(Proj(�̃i )).

Step 3 . if (F (�i ) > F (�i�1) + � ) then set
�i ← �i�1, �̃i ← �̃i�1, �i ← �i�1, 
i ← �
i�1.
else set 
i ← 
i�1.

Step 4 . set �i+1 ← 
i � �i , i ← i + 1.

Step 5 . goto Step 1 .

4.3 Homotopy Approach

Suppose that for a given set of basis functions (and
fixed problem size) we know the globally optimal signal
set for one particular noise distribution, say p1(�). For
example, in many cases it is possible to analytically
compute the globally optimal signal set for Gaussian
noise. In this section, we discuss a method for comput-
ing candidate globally optimal signal sets for a different
noise distribution, say p2(�), based on this knowledge.

The so-called homotopy approach relies upon the
observation that, for � � [0,1 ],

pN(� ; � ) = (1 � � )p1(� ) + � p2(� )

is a valid noise distribution. Gradually increasing � and
repeatedly applying a local algorithm, the computed
optimal signal set should trace out a continuous “path”
from that for p1 to that for p2. Let � (� , �0 ) denote the
computed optimal solution of (SS ) obtained via a local
algorithm starting with the initial point �0 and using the
noise distribution pN (� ; � ). At iteration i , we compute

�i+1 = � (�i , �i ),

and the homotopy parameter �i is updated. The proper
updating of �i is critical. Clearly, we should have

lim
i→�

�i = 1.

Further, the rate of convergence of the method is di-
rectly related to how quickly �i is increased. On the
other hand, if �i is increased too quickly then �i+1 may
“jump” to a new path of minimizers. For preliminary
tests we simply increment �i by a small, fixed, amount.

Algorithm HOM

Data . �0 � �KM, 0 < 
� << 1.

Step 0 . set i ← 1, �0 ← 
� .

Step 1 . compute �i ← � (�i�1, �i�1).

Step 2 . if �i = 1 then stop.

Step 3 . set �i+1 ← min{�i + 
� , 1}.

Step 4 . set i ← i + 1 and goto Step 1 .

Numerically, one of the biggest challenges associated
with this approach is the computation of the KL distance
KN and the derivative of the KL distance K'N . For the
distributions considered in this work these functions are
readily obtained analytically. Unfortunately, this is no
longer possible for convex combinations of these distri-
butions as considered in this section. Consequently, we
are forced to turn to numerical quadrature. For the pre-
liminary numerical implementations we use a simple
infinite trapezoid rule, i.e. we use the approximation

��

��

f (� )d� ≈ 1

�N
�N

k=�N

f � k

�N
�.

For those integrands with a slowly decaying tail we use
the change of variables

� (t ) = e t � e�t.

5. Numerical Results

Following Ref. [7], we consider the noise distribu-
tions pN listed in Table 1. For the definition of the Gen-
eralized Gaussian distribution, the constant a is defined
as

a �= �� 2�(1/4)
�(3/4) �1/2

.

For our numerical experiments, we assume � = 1. The
case K = 2 is of common interest, and we use either a
sine-sine basis

�	2
T

sin(2
�1t /T ), 	2
T

sin(2
�2t /T )�,

or a sine-cosine basis

�	2
T

sin(2
�1t /T ), 	2
T

cos(2
�1t /T )�,

where �1 = 10 and �2 = 11. When K = 2 we can display
the results in the plane as familiar signal constellations .
Finally, we run experiments for M = 8, 16 signals,
T = 50 samples, and with an amplitude bound of
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Table 1. Noise distributions and the associated KL distance function

Noise distribution pN (� ) KN (
 )

Gaussian
1

�2
� 2
exp��� 2

2� 2� 
 2

2� 2

Laplacian
1

�2
� 2
exp���2 � |� |

�
� �2 � |
 |

�
+ exp���2 � |
 |

�
�� 1

Hyperbolic Secant
1

2�
sech�
�

2�
� �2 ln�sech�



4�
��

Generalized Gaussian
1

2�(5/4)a
exp��� 4

a 4 � �2(3/4)
�2(1/4) �6


 2

� 2 +

 2

� 4�
Cauchy

1

� (1 + (� /� )2)

ln�1 +

 2

4� 2�

C = �10. Note that, for M = 16, problem (SS ) has 32
variables, 120 objective functions, and 800 constraints.

In order to demonstrate the need for special-purpose
SQP codes, we attempted to solve the problem using
VF02AD2 from the Harwell subroutine library Ref.
[15], a standard SQP code based on Powell’s algorithm
Ref. [21] and a hybrid SQP code recently developed Ref.
[3] and analyzed Ref. [2]. These codes do not directly
solve mini-max problems, we used the formulation (SS' )
suggested in Ref. [7]. In Tables 2 and 3, we list the
number of times VF02AD and the BKT SQP algorithm
Ref. [3] successfully converged to a local minimizer out
of 20 trials for a given noise distribution and basis (and
regularization parameter). In parenthesis we report on
the number of times each algorithm succeeded in con-
verging to the global minimizer. For each trial the initial
point was drawn from the uniform distribution over the
feasible set.

It is clear from the table that the standard SQP al-
gorithm had little success converging to a local solution.
The failures were essentially always due to inconsistent
constraints in the QP sub-problem. In our trials, neither
the Feasible SQP algorithm nor the hybrid BKT SQP
algorithm failed to converge to, at least, a local solution.

We ran Algorithm MLSL for 20 different problem
instances. The algorithm was stopped after it appeared
that no better local minimizers would be found (i.e., the
estimate of the global minimum remained constant for

2 Certain commercial equipment, instruments, or materials are identi-
fied in this paper to foster understanding. Such identification does not
imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

Table 2. Number of successful runs for VF02AD out of 20 trials

Noise distribution sine-sine sine-cosine sine-cosine
(�r = 0) (�r = 0) (�r = 10�6)

Gaussian 4(1) 0 1(0)
Laplacian 6(1) 0 1(0)
Hyperbolic Secant 5(1) 0 0
Generalized Gaussian 6(2) 0 0
Cauchy 2(1) 0 0

Table 3. Number of successful runs of BKT SQP algorithm out of 20
trials

Noise distribution sine-sine sine-cosine sine-cosine
(�r = 0) (�r = 0) (�r = 10�6)

Gaussian 20(8) 18(2) 18(1)
Laplacian 20(4) 20(3) 19(5)
Hyperbolic Secant 20(5) 20(1) 20(4)
Generalized Gaussian 20(4) 18(1) 20(1)
Cauchy 20(2) 19(1) 20(3)

several MLSL iterations). In Tables 4 and 5 we list our
computed minimum values for instances of (SS ) with
M = 8 and M = 16, respectively. Note that our solutions
respectively. Note that our solutions agree with those
reported in Ref. [7]. In all cases, execution was termi-
nated after no more than 10 to 15 minutes. In Figs. 3
through 8 we show the optimal signal constellations for
several of the instances of (SS ) corresponding to the
optimal values listed in Tables 4 and 5.
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Table 4. Optimal computed values for signal set design with M = 8

Noise Basis F (�*)

Gaussian sine-sine �69.793
sine-cosine �97.551

Laplacian sine-sine �63.122
sine-cosine �84.463

Hyperbolic Secant sine-sine �61.093
sine-cosine �83.196

Generalized Gaussian sine-sine �189.09
sine-cosine �264.18

Cauchy sine-sine �22.731
sine-cosine �30.673

Table 5. Optimal computed values for signal set design with M = 16

Noise Basis F (�*)

Gaussian sine-sine �29.314
sine-cosine �39.742

Laplacian sine-sine �32.370
sine-cosine �44.076

Hyperbolic Secant sine-sine �29.577
sine-cosine �40.500

Generalized Gaussian sine-sine �57.829
sine-cosine �76.138

Cauchy sine-sine �11.426
sine-cosine �15.688

Fig. 3. Optimal constellation for Gaussian noise, M = 8, sine-sine basis.

6. Conclusions

In this paper we have presented an important and
difficult optimization problem along with a broad arse-
nal of numerical optimization algorithms and modern
enhancements that can be used to solve it. These prob-
lems are not “large-scale” by modern computing stan-
dards but they are, nonetheless, extremely difficult
problems to solve efficiently.

Numerical solutions to these problems were located
using SQP methods embedded into stochastic global

algorithms. Numerous numerical tests suggest that this
embedding procedure can significantly improve the
performance of the SQP method.

Because there are so many different algorithms and
implementations for the solution of nonlinear program-
ming problems there is a need to create an accepted
collection of test problems arising from the application
of optimization. Because of the difficulties it poses, this
family of problems is a natural candidate to use as a
practical and significant test problem.
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Fig. 4. Optimal constellation for Generalized Gaussian noise, M = 8, sine-sine basis.

Fig. 5. Optimal constellation for Laplacian noise, M = 8, sine-cosine basis.
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Fig. 6. Optimal constellation for Cauchy noise, M = 16, sine-sine basis.

Fig. 7. Optimal constellation for Cauchy noise, M = 16, sine-cosine basis.
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Fig. 8. Optimal constellation for Hyperbolic Secant noise, M = 16, sine-cosine basis.
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