MATHEMATICAL SOFTWARE:
PAST, PRESENT, AND FUTURE*

Ronald F. Boisvert
National Institute of Standards and Technology
Gaithersburg, MD, USA

Abstract  This paper provides some reflections on the field of mathematical soft-
ware on the occasion of John Rice’s 65th birthday. I describe some of
the common themes of research in this field and recall some significant
events in its evolution. Finally, I raise a number of issues that are of
concern to future developments.

Keywords: history, computer software, mathematical software, numerical analysis,
scientific software, software packages.

*Dedicated to John R. Rice on occasion of his 65" birthday. Contribution of the National
Institute of Standards and Technology, not subject to copyright. Mention of commercial
products in this paper does not imply recommendation or endorsement by NIST. Conversely,
omission of a product’s name does not imply unsuitability for use.



4 COMPUTATIONAL SCIENCE, MATHEMATICS AND SOFTWARE

1. INTRODUCTION

1.1. THE STUDY OF MATHEMATICAL
SOFTWARE

The field of mathematical software is concerned with the science and
engineering of solving mathematical problems with computers. The pri-
mary focus is the development of general-purpose software tools appli-
cable to problems in a variety of disciplines. There are a large number
of facets to this work, including the following.

m The development and analysis of algorithms for standard mathe-
matical problems which occur in a wide variety of applications.

m  The practical implementation of mathematical algorithms on com-
puting devices, including study of interactions with particular hard-
ware and software systems.

s The environment for the construction of mathematical software,
such as computer arithmetic systems, languages, and related soft-
ware development tools.

s Software design for mathematical computation systems, including
user interfaces.

m  Testing and evaluation of mathematical software, including method-
ologies, tools, testbeds, and studies of particular systems.

m Issues related to the dissemination and maintenance of mathemat-
ical software.

In 1977 John Rice aptly characterized the need for specialized study
in this area with the following observation [63].

Many sophisticated scientists produce naive software just as many so-

phisticated computer programmers produce naive science.
Tremendous progress has been made in the mathematical software field
in the past 25 years. Yet, there continues to be a wide range of quality in
existing software, in both the research and commercial domains. Good
mathematical software results from the application of certain principles,
methodologies, and practices derived from both applied mathematics
and computer science. The study of these principles and practices is cen-
tral to the field of mathematical software. To this end, typical software
engineering practices, while beneficial to the production of mathematical
software systems, are not sufficient. Mathematical software operates in
the milieu of scientific computing, which has a number of characteristics
that distinguish it from other areas. Among these are the following.



Mathematical Software: Past, Present, and Future 5

m Floating-point arithmetic. Most scientific computations are
performed with floating-point arithmetic. Consequently, rounding
errors occur in most arithmetic operations. Mathematical algo-
rithms, therefore, must not only be correct in a strict mathemat-
ical sense, but they must control the accumulation of round-off,
avoid catastrophic loss of significance from the subtraction of like
quantities, and avoid unnecessary overflows and underflows. Such
problems are sometimes unavoidable; software systems must be
designed so that they do not fail when these anomalies do occur.

m  Approximations. Floating-point arithmetic certainly implies ap-
proximation at a very fine level. However, more substantial ap-
proximations occur in mathematical computation. Infinite series
are truncated, difficult-to-compute functions are approximated by
polynomials, derivatives are approximated by differences, integrals
are approximated by finite sums, curved domains are approximated
by polygonal ones. The combined effect of such approximations on
the final result can be quite difficult to assess. Analysis must be
used to show that the correct solution is obtained as the approx-
imations are made more precise (i.e., that the algorithm is con-
vergent). However, good software must do more. It must provide
mechanisms for a user to assess the quality of the result, and to
alert the user when the result is suspect. Well engineered soft-
ware can use such metrics to automatically control the level of
approximations, optimally adapting the algorithm to the situation
at hand.

s Infinite processes. Many mathematical computations consist
of applying some infinite process that obtains the desired result
only in the limit. Such processes must be truncated for practical
use. Considerable research efforts have been involved in finding
iterations that converge quickly. Deciding when to stop is always a
difficult problem of practical concern to software developers. Good
software must employ techniques that detect divergence or too slow
convergence and take appropriate action.

Coupled with these fundamental mathematical challenges are prac-
tical concerns about portability. How can developers produce software
with reliable, reproducible behavior when it must run in very different
environments, with different types of processor architectures, arithmetic
systems, memory hierarchies, operating systems, and language proces-
sors? Such questions are critical in the study of mathematical software.



6 COMPUTATIONAL SCIENCE, MATHEMATICS AND SOFTWARE

1.2. THE CONTRIBUTIONS OF JOHN R.
RICE

At this conference, we are celebrating John Rice’s long and influential
research career. John has made fundamental contributions to the areas
of approximation theory, numerical analysis, mathematical software, and
computer science. In the area of mathematical software, his technical
contributions have had three overriding themes.

1 Architecture of scientific software systems. John has par-
ticipated in the design and development of a variety of widely dis-
tributed mathematical software systems [37, 38, 69, 62, 67, 15]. In
the course of this work he pioneered a number of design concepts
which have influenced many systems. Among these are polyalgo-
rithms [57], meta-algorithms [59], and software parts [71].

2 Raising the level of abstraction. Software users are more ef-
ficient when they can express their computational needs in the
language of their technical field. For applied mathematics, ab-
stractions are based upon concepts of the calculus, not simple
arithmetic operations encapsulated in programming languages like
Fortran. John Rice’s work in high-level components and languages
[15, 71], intelligent interfaces [40, 42, 41], and problem-solving en-
vironments [28, 72] have served to push abstractions to higher and
higher levels.

3 Understanding software via experimentation. Understand-
ing the behavior of software is necessary in order to make prac-
tical decisions regarding algorithm selection [60]. John has of-
ten stressed the importance of the use of experimentation in such
evaluations. The many small engineering decisions made in the
course of translating an abstract algorithm into a working com-
puter program can have an enormous impact on its performance
characteristics. John has devoted much time to developing testing
and evaluation methodology [7, 36, 65, 64, 80], and applying it to
particular situations [23, 22, 35, 66]. Indeed, one of the principle
applications of the ELLPACK system [15] and its successors has
been to the performance evaluation of software for partial differ-
ential equations.

John’s contributions to the field of mathematical software have been
voluminous and far-reaching. (In this paper I have only cited a few
examples of his many writings on this subject.) In the remainder of
this paper I will enumerate some of the major events in math software,



Mathematical Software: Past, Present, and Future 7

pointing out some of John’s key contributions along the way. I will then
describe several current issues facing the field and make several hazy
predictions of the future.

2. MATHEMATICAL SOFTWARE PAST
2.1. BEGINNINGS

The earliest applications of electronic computers were in science and
engineering, for which mathematical computation played a central role.
Programming was a very difficult chore, done without modern aids like
high-level languages, compilers and debuggers. The first publication of a
piece of mathematical software in a research journal probably occurred in
1949, when Mathematical Tables and Other Aids to Computation printed
a UNIVAC code for the solution of Laplace’s equation written in machine
language [76]. Such codes were very difficult to produce, and the need
for reuse of software was recognized very early on. In 1951, Wilkes,
Wheeler and Gill presented one of the earliest program libraries, which
was developed for the EDSAC! [82].

By the 1960s, the introduction of high-level programming languages,
e.g. Algol and Fortran, had greatly eased the task of producing reusable
mathematical software. The use of such languages was not without
controversy, of course. Compiled code was not quite as efficient as hand-
tuned assembly code, but most people were willing to accept this in
light of the great savings in programmer time. Also, the subprogram
structure provided by these languages provided a simple framework for
the construction and maintenance of libraries of utilities.

In 1960, the Association for Computing Machinery (ACM) began a
new editorial department in the Communications of the ACM (CACM)
devoted to the publishing of algorithms. Edited by J. H. Wegstein of the
National Bureau of Standards (NBS), this section printed the code of
contributed Algol procedures (most such codes were quite short). Also,
remarks on and certifications of previously published codes were so-
licited. The first such contribution was a code for numerical quadrature
submitted by R. J. Herbold of NBS [34]. Each algorithm was given a
number, and the set of algorithms later became known as the Collected
Algorithms of the ACM (CALGO).

Computer manufacturers also began to develop libraries for their
users. The most prominent of these was probably the IBM Scientific
Software Package (SSP). A number of laboratories, such as Bell Labs,
Boeing, Harwell, and Monsanto, began the development of math soft-
ware libraries for their internal use. Several organizations, such as



8 COMPUTATIONAL SCIENCE, MATHEMATICS AND SOFTWARE

SHARE, the IBM user’s group, began to collect such utilities for re-
distribution.

Of course, subroutine libraries were not the only focus of researchers
in this new field. Some were imagining ways in which these new pow-
erful computers could be used to transform the way in which applied
mathematics was practiced. Many of these ideas were discussed at the
Symposium on Interactive Systems for Experimental Applied Mathe-
matics held in in Washington, D.C. in August 1967 [46]. The vision
there is remarkably clear; many of the participants reported on develop-
ments in technologies which would only finally begin to be realized in the
1980s and 1990s. At Purdue, for example, John Rice, Saul Rosen and
colleagues designed NAPSS (Numerical Analysis Problem-Solving Sys-
tem), an interactive mathematical problem-solving system which would
accept input akin to normal mathematical notation [13], and would em-
ploy a variety of heuristics to automate numerical analysis. Unfortu-
nately, the resources necessary for such an ambitious system exceeded
even the supercomputers of the day (like the CDC 6400), and a fully
functional system was never realized.

2.2. A COMMUNITY EMERGES

Perhaps the first event that provided a real sense of community for
researchers interested in the production and dissemination of reusable
mathematical software was the Mathematical Software Symposium held
at Purdue University in April 1970. John Rice organized the symposium?,
which was sponsored by ACM and the Office of Naval Research, and
the proceedings were published as a book by Academic Press [58]. In-
cluded in the proceedings were 23 papers, four descriptions of selected
mathematical software, and more than 40 pages of introductory material
prepared by Rice.

One of the recommendations from the Symposium was for the estab-
lishment of a journal that would publish papers related to mathematical
software. John Rice vigorously pursued this possibility®. After consider-
able negotiations with ACM and the Society for Industrial and Applied
Mathematics (STAM), ACM agreed to publish the new journal. Papers
from an NSF-sponsored conference were used to provide articles to seed
the journal. Mathematical Software II was held at Purdue in May 1974.
There were 225 attendees, with 82 papers presented. The best of those
papers make up the majority of the first volume of the ACM Transac-
tions on Mathematical Software (TOMS) which published its first issue
in 1975 with John Rice as Editor-in-Chief. John continued in that posi-
tion until 1993.



Mathematical Software: Past, Present, and Future 9

TOMS was chartered not only to publish traditional research papers,
but also algorithms (with included code which would be refereed), certi-
fications, translations, and remarks on previously published algorithms.
The Algorithms section of CACM was moved to TOMS, and hence
TOMS algorithms were numbered beginning at 493. One of the im-
portant features of the new journal was the establishment of a reliable
Algorithms Distribution Service for CALGO. The distribution, on mag-
netic tape, was performed on a cost-recovery basis by IMSL, Inc. Ob-
taining software in machine-readable form was much more useful than
reading code on paper. This also allowed TOMS to adopt the policy
of not printing the code of algorithms in the pages of its journal, thus
saving much in production costs.

A third conference organized by John Rice, Mathematical Software
III, was held at University of Wisconsin in 1977 [61]. By the end of the
decade, mathematical software had emerged as a viable research area
with an active community to support it. After publishing 25 volumes,
TOMS remains a vibrant outlet for the work of this community [79].

2.3. SOFTWARE EMERGES

Another important activity in the 1970s were the numerous efforts to
develop carefully constructed, systematized collections of mathematical
software. One of the first of these was the NATS project, the National
Activity to Test Software, which was conceived in 1970. A joint venture
of Argonne National Laboratory, Stanford University, and the University
of Texas at Austin, NATS was designed to study problems in producing,
certifying, distributing, and maintaining quality numerical software. A
key part of this effort was the production of two Fortran software pack-
ages, EISPACK [29, 75] for eigenvalue problems, and FUNPACK [13]
for special functions.

EISPACK, which first appeared in 1972, was based upon algorithms
published in the 1960s in Numerische Mathematik and later collected
by Wilkinson and Reinsch in the Handbook for Automatic Computation
[83]. Although the core of EISPACK was largely a Fortran translation
of these existing Algol codes, the project was enormously influential. It
set a new standard for quality transportable mathematical software, rig-
orously tested in a wide variety of computing environments. Its success
inspired the development of many systematized collections, or “PACKs”,
in other areas: LINPACK for linear systems [17], FISHPAK for separa-
ble elliptic problems [77], DeBoor’s B-spline interpolation package [16],
MINPACK for nonlinear systems [50], DEPAC for ordinary differential
equations [74], Fullerton’s function library FNLIB [27], Swarztrauber’s



10 COMPUTATIONAL SCIENCE, MATHEMATICS AND SOFTWARE

FFTPACK for fast Fourier transforms [78], and QUADPACK for nu-
merical quadrature [53].

Of all the early “PACKs”, LINPACK undoubtably saw the most
widespread use. One of the keys to LINPACK’s success was the de-
cision to base its coding on the newly proposed Basic Linear Algebra
Subprograms (BLAS) [47]. The BLAS performed elementary vector op-
erations, such as norms, dot products, scaling, and vector sums. The
innermost loops in LINPACK’s column-oriented algorithms occurred in-
side the BLAS. This allowed optimization of the whole package by simply
optimizing the BLAS. This approach proved quite successful, and many
machine-specific versions of the BLAS were developed and supported by
computer manufacturers.

The 1970s also saw great advances in software for ordinary differential
equations (ODEs). Gear’s code DIFSUB [30] provided a well designed
framework for automatic integration of both stiff and non-stiff prob-
lems using linear multistep methods. Shampine and Gordon’s ODE [73]
did the same for Runge-Kutta methods. Many subsequent packages
were built using these basic designs. Other influential packages included
COLSYS for two-point boundary-value problems [3] and DASSL* for
differential algebraic systems [52].

A number of high quality multi-purpose libraries also had their start
in the 1970s. In 1970, six British computing centers began an effort to
develop a library for their ICL 1906A /S computers. The next year Mark
1 of the Nottingham Algorithm’s Group (NAG) library was released.
Implementations for other systems followed, and in 1976 a not-for-profit
company, Numerical Algorithms Group, Ltd., was formed to continue
development and distribution. The NAG effort continues today [51].
The first commercial math library effort was also begun in 1970 with the
incorporation in Houston, Texas of IMSL, Inc. by Charles W. Johnson
and Edward Battiste. By the time the company showed its first profit
in 1976, there were 430 library subscribers; the IMSL library remains
a viable commercial product [43]. Bell Laboratories also developed a
library, PORT, whose single-source approach to portability influenced
many subsequent efforts [25].

The development of ELLPACK, a system for elliptic boundary-value
problems, also began in the mid 1970s. This effort, which was led by
John Rice, was a cooperative project of Purdue University, the Uni-
versity of Texas at Austin, Yale University, and others. In ELLPACK,
the solution process was partitioned into a number of distinct phases
(domain processing, discretization, indexing, linear system solution, and
output), and the interfaces between these phases were carefully defined.
This design allowed the development of a large library of components



Mathematical Software: Past, Present, and Future 11

which could be easily composed to build algorithms for solving particular
problems. ELLPACK also proved to be an excellent testbed for the eval-
uation of software for elliptic problems. To ease the use of the system,
John Rice designed a very-high-level language to describe the problem
to be solved, and to select the components to be used to solve it. The
system first became fully operational in 1978 [15]. Many of the basic
concepts in ELLPACK’s design, such as high-level user interfaces and
plug-and-play software parts technology, are in common use in modern
problem-solving environments.

The development of mathematical software in the 1970s and early
1980s is described in detail in the book Sources and Development of
Mathematical Software edited by Wayne Cowell [14].

2.4. INCREASED ACCESS

By the beginning of the 1980s a substantial collection of mathematical
software, mostly in the form of Fortran subprograms, was available for
use. The user base for this software had grown substantially, and with
it came a new problem: how to locate that needed software component.
The National Bureau of Standards (now NIST) developed an extensive
catalog of such software. Their Guide to Available Mathematical Soft-
ware (GAMS), based upon a detailed tree-structured problem-oriented
classification system [8], allowed readers to see which components of
which libraries and packages, both public domain and commercial, were
available to solve each problem. The catalog remains available today as
an online resource [33].

Another barrier to the widespread use of software developed by the
research community was simply the process of obtaining the code. One
had to locate the author, request a magnetic tape, and attempt to deci-
pher its format. Useful software was often lost to the community when
an author changed institutions and there was no longer support for dis-
tributing it. In 1985, Jack Dongarra, then at Argonne National Labs,
and Eric Grosse at Bell Labs, started a software repository they called
netlib [18], which pioneered the use of computer networks in software
distribution. Software could be obtained automatically by return email
after sending requests to an address whose email was processed by a
Unix daemon. The ready availability of such software changed the way
in which many researchers worked. Many more made routine use of high
quality software, and many others were freed of the necessity of maintain-
ing their own private repositories. Now Web-accessible and supported
by the University of Tennessee at Knoxville and Bell Labs, with mirrors



12 COMPUTATIONAL SCIENCE, MATHEMATICS AND SOFTWARE

worldwide, netlib remains the premier repository of software developed
by the mathematical software community [11].

The 1980s also saw the first commercial success for general-purpose
interactive systems for mathematics. A system for matrix computations
developed as a teaching aid during the period 1977-84 by Cleve Moler at
the University of New Mexico, was commercialized as a tool for control
system engineers. Today MATLARB is a very popular system for scientific
computing [49]. The overall structure of modern interactive mathematics
systems was greatly influenced by the system Mathematica developed by
Stephen Wolfram in 1988 [84]. Mathematica was the first commercial
system to integrate symbolic, numerical, and graphical capabilities into
a single package. The growing availability of personal computers and
workstations was an important factor in the success of these systems.
With these tools, the use of mathematical software was beginning to
expand to those with little experience in numerical methods or even
programming.

2.5. NEW ARCHITECTURES

The 1980s also brought vector and parallel computers into widespread
use, and with them additional challenges to the design of mathematical
software. Vector processor vendors developed specialized math libraries
tuned for their systems, mainly containing software for linear systems
and FFTs. These solutions emerged because the performance of linear
algebra software such as LINPACK was disappointing on vector register
architectures like the Cray and Convex. The main reason for this was
the fact that moving data from memory to vector registers was very
costly, and that LINPACK’s column-oriented algorithms, based on the
BLAS, necessitated more data movement than was really necessary.

In 1984 John Rice hosted a workshop at Purdue (“ParVec Work-
shop Number 4”) in which a variety of schemes for developing portable
high-performance software for vector parallel systems were proposed [68].
Jack Dongarra and Sven Hammarling proposed the development of new
classes of BLAS: Level 2 BLAS for matrix-vector operations, and Level
3 BLAS for matrix-matrix operations. Encapsulating O(n?) and O(n?)
operations, respectively, as fundamental operations would provide much
more opportunity to optimize core operations on different processors.
These new BLAS [20, 19] would provide the basis for a major new lin-
ear algebra package released in 1992. LAPACK [2], which included the
functionality of both EISPACK and LINPACK, used block-oriented algo-
rithms in which the fundamental operations were now matrix operations
encapsulated in the Level 3 BLAS. These have proven to be highly effi-



Mathematical Software: Past, Present, and Future 13

cient on modern vector processors and symmetric multiprocessors. Ev-
ery major computer manufacturer now supports tuned BLAS for their
systems and incorporates LAPACK in their math library. Community
efforts are currently underway to extend the BLAS in new directions,
such as sparse matrix operations [6]

In the late 1980s multiprocessor systems of widely differing design
were becoming routinely available, and with them a host of new pro-
gramming models, supported by specialized message-passing primitives.
Developing portable software for the class of distributed memory (mul-
tiple instruction multiple data, or MIMD) systems became a new chal-
lenge. The PVM system developed in 1991 provided a useful abstraction
for parallel programming and was very widely adopted [31]. Its imple-
mentation on many parallel machines demonstrated the usefulness and
feasibility of a common message-passing infrastructure. This led to a
grass root message-passing standardization effort. The resulting Mes-
sage Passing Interface (MPI) transformed the landscape for distributed
parallel computing [32].

One of the first portable math software libraries for distributed ar-
chitectures was ScaLAPACK, a distributed memory counterpart of LA-
PACK linear system solvers [5]. This package became the core of several
multi-purpose distributed memory math software libraries which first
appeared in the 1990s. Among these are the NAG Parallel Library [51],
IBM’s PESSL [44], and the European PINEAPL effort [54].

The increasing complexity of scientific software systems being de-
veloped in the 1990s led to an interest in new software architectures.
Object-oriented approaches to the development of mathematical soft-
ware began to be seriously considered. The notorious inefficiencies of
pure object-oriented design, and the lack of language standardization
made such pursuits difficult. Nevertheless, approaches that allowed
many of the advantages of object-oriented design without sacrificing ef-
ficiency were developed. LAPACK++, a subset of the linear systems
solvers in LAPACK written in C++, was one of the first such successful
packages [21]. Today object-oriented approaches are routinely used in
scientific computing.

2.6. EXPANDING VISION

By the 1990s, rapidly increasing computer power was leading to new
visions for the future of mathematical software systems. During that
period, for example, John Rice and colleagues led in the establishment
of a new community of researchers interested in exploiting the promise
of expert systems for numerical computing. In a series of conferences



14 COMPUTATIONAL SCIENCE, MATHEMATICS AND SOFTWARE

held at Purdue [40, 42, 41], the use of Al approaches for such tasks as
algorithm selection, automatic programming, and process management
were explored.

By this time, computation had become an essential ingredient in the
practice of science and engineering. Interest in computational science as
a new field of study was beginning, and interdisciplinary programs for
training its practitioners were being established in many universities.
John Rice and others began to develop a new vision for mathematical
software systems to support computational science research. These sys-
tems, called problem-solving environments [28, 72], would provide natu-
ral graphical user interfaces in which scientists describe their problems
using the vocabulary of their native discipline. They would provide ac-
cess to rich libraries of problem-solving components enabling Web-based
parallel and distributed computation. Users would be able to interact
with ongoing computations, to easily visualize results, to manage a large
database of experimental results, and to ask advice of expert advisory
systems. Many small-scale special-purpose systems now under devel-
opment and use can be classified as problem-solving environments, and
research groups throughout the world are working on infrastructure nec-
essary for the routine construction and use of such systems. Work at
Purdue on parallel ELLPACK [39], WebELLPACK [48], and PYTHIA
[80] are serving to address issues in PSE design. Examples of current
work in network-based scientific computing are Netsolve [12], the NEOS
optimization server [15], and the computational grid [6].

The vision of scientific computation in heterogeneous distributed en-
vironments places stringent requirements on the portability and inter-
operation of scientific software that are extremely difficult to achieve [4].
Such needs have sparked interest in the use of common virtual environ-
ments such as Java® for computational science and engineering. The
Java language and its environment (the Java Virtual Machine), which
has become available on nearly every computing platform, provides a
fixed floating-point model, threads, remote execution, standard GUIs,
and other facilities within a simple object-oriented programming lan-
guage. While these are the main facilities necessary for the construc-
tion of problem-solving environments, there has been some reluctance
to adopt Java within the scientific community due to concerns about
efficiency and the lack of several programming conveniences important
to scientists and engineers [10]. Community efforts such as the Java
Grande Forum are seeking to improve this situation [45].

Virtual environments do not necessarily solve the problem of perfor-
mance portability, since virtual machine instructions must be mapped on
to local computer hardware for execution. Modern computing hardware



Mathematical Software: Past, Present, and Future 15

is extremely complex, characterized by multiple processing units, vec-
tor pipes, register farms, several levels of cache (with increasing access
times), local memory, remote memory, and disk storage. Getting the
highest performance possible requires that the programmer take into
account all the special properties of the system in use. This leads to
extremely complex software even for the simplest of tasks. Matrix mul-
tiplication can turn into a 10,000-line polyalgorithm. Recent approaches
have provided new hope for overcoming this software development night-
mare. Clint Whaley and Jack Dongarra have recently developed a sys-
tem, called ATLAS, for Automatically Tuned Linear Algebra Subpro-
grams [81]. ATLAS generates highly efficient BLAS for a given archi-
tecture using an experimental approach. By running many hundreds of
tests, ATLAS determines the most efficient way to implement a given
operation. The result is consistently on par with, and often exceeding,
code which takes expert programmers weeks to develop. Matteo Frigo
and Stephen Johnson have taken a similar approach in the computa-
tion of fast Fourier transform [26]. For FFTs, hardware also interacts
with the prime factorization of the sequence length n to add further
complication. FFTW, the Fastest Fourier Transform in the West, uses
heuristics and experimentation to develop a just-in-time strategy for fast
computation for a given n on a given processor.’

3. MATHEMATICAL SOFTWARE PRESENT

In this section I point out a variety of meta-issues that face mathe-
matical software researchers today.

3.1. MASS-MARKET SOFTWARE

Until recently mathematical software was produced mostly by experts
in numerical analysis as a byproduct of their research in algorithms.
Users of this software also were fairly sophisticated, with some expe-
rience in numerical algorithm development themselves. They had an
appreciation of the limitations of numerical algorithms, and the neces-
sity of careful verification of results, even when using software developed
by experts.

Today’s community of mathematical software developers and users
is much larger, and much more diverse. The great demand for mathe-
matical computations has made mass-marketed mathematical software
profitable. Commercially supported mathematical and statistical soft-
ware is now widely available, with high-level interfaces that allow use by
non-programmers. Such users often do not have the background neces-
sary to recognize the difference between a difficult problem and a routine



16 COMPUTATIONAL SCIENCE, MATHEMATICS AND SOFTWARE

one. The mathematical landscape is still littered with pitfalls, and these
users may be too trusting of the results produced by the scientific soft-
ware systems that they use. Programmers who add mathematical and
statistical capabilities to commercial software systems are no longer ex-
perts in numerical analysis. They may be content to code up a formula
from a book without giving thought to its numerical properties. The
problem may be even more severe in systems that are not overtly math-
ematical in nature. Mathematical computations are increasingly being
done in embedded devices, coded by programmers whose mathematical
sophistication may be suspect.

As a result, in spite of tremendous progress in numerical methods
and software, many users of modern mathematical software are at risk.
There is now a desperate need for numerical analysts to develop and
apply methodologies for the validation of mathematical and statistical
software. Techniques, tools, reference data, and reference software are
needed to support critical evaluations of mathematical software by de-
velopers and users [9]. Unfortunately, there is little interest and support
within the research community for such activities.

Those software developers who seek advice regarding numerical soft-
ware production are likely to look to popular sources like Numerical
Recipes [55]. Books like this provide a reasonably good introduction to
numerical methods, and the programs they include provide good exam-
ples of the basic techniques. Programs like these are often incorporated
wholesale into applications, in spite of the fact that they are typically less
efficient, robust, and reliable than state-of-the-art mathematical soft-
ware. The mathematical software community needs more popularizers
who can bring the message of good numerical software design to those
in other fields.

3.2. TOWER OF BABEL

For many years there was one language for scientific computing: For-
tran. This greatly simplified the development and reuse of mathematical
software components. Today we are faced with a plethora of program-
ming languages in use for scientific computing. Though officially ob-
solete, Fortran 77 is still the language of many. Good compilers are
now available for Fortran 90, and many have been extended to sup-
port Fortran 95, the current Fortran standard, although their adoption
by programmers has been slow in coming. The C language has proven
much more popular, for which excellent compilers are now available.
Most GAMS users who cannot find the software they seek are looking
for C procedures. C++, the object-oriented extension to C, is the choice



Mathematical Software: Past, Present, and Future 17

for a growing number of new mathematical modeling projects. Unfortu-
nately, C++ has not, until recently, had an agreed-to standard, and, as
a result, developing portable software has been difficult. Java, the popu-
lar network-aware object-oriented programming language developed by
Sun, is being seriously considered by many, although its performance and
language features leave much to be desired. The fact that Java is now
being widely taught in universities insures its future. Finally, many soft-
ware components are being developed in the very-high-level languages
used in specialized systems; MATLAB is the primary example.

We are clearly facing a transition in computer languages for science
and engineering computation. Numerical analysts no longer have much
influence on the choice of language of those doing numerical computing.
Language choices are more often made based on other considerations,
such as the need for convenient and portable graphical user interfaces,
visualization tools, and other critical system services. While such ser-
vices are largely unavailable to Fortran programmers wishing to develop
portable systems, they are conveniently at hand in C, C++, and Java.
The increased portability afforded by the widespread availability of Java
Virtual Machines on Windows, Unix, and Apple platforms, has made
Java a very attractive option. While mixed-language programming is
possible, and does provide the ability to reuse legacy Fortran software,
this option is not popular among users. It adds complexity to the soft-
ware project, while making the code more difficult to transport.

Unfortunately, there is almost no support for the migration of the
existing base of Fortran mathematical software components to other
languages. As a result, this well-engineered software is being increasingly
bypassed in favor of inferior home-grown solutions.

3.3. THE RISKS OF SELF-PUBLISHING

The rise of the Internet has greatly eased the exchange of information
among researchers. It is simple and convenient for research groups to
develop a Web page to distribute software and documentation to poten-
tial users. While this has led to increased access to research software,
it places the long-term maintenance of the output of the research com-
munity in jeopardy. Project Web pages on departmental servers are not
permanent fixtures. Nevertheless, many researchers are using such fa-
cilities in place of submitting their software to more permanent archives
such as netlib or the Collected Algorithms of the ACM. There is a danger
that much of the currently available expertise embedded in such software
will be lost to future researchers.



18 COMPUTATIONAL SCIENCE, MATHEMATICS AND SOFTWARE

4. MATHEMATICAL SOFTWARE FUTURE

In this section, I offer a few predictions regarding future mathematical
software research and usage.

Prediction: Within five years ACM will cease print publication of
TOMS.

Subscriptions to TOMS have been dropping at the rate of about 5
percent per year for some time. Other ACM journals, and indeed most
other mathematics and computer science journals, are experiencing the
same phenomenon. One of the reasons for this is the proliferation of
specialized journals, principally developed by commercial publishers.

For some time, ACM has been considering mechanisms for maintain-
ing their publication program as a viable service to the community. The
solution to this problem is found in the ACM Digital Library (ACMDL)
which premiered in 1998 [1]. The ACMDL provides its subscribers with
online access to all ACM journal articles and conference proceedings
published since 1985 at a subscription fee which is less than the cost of
three printed journals. Currently this accounts for more than 350,000
pages of text. Acceptance of the ACMDL by members and subscribers
has been overwhelming, providing ACM with the additional revenue to
begin the work of extending the ACMDL holdings to include all material
published by ACM since its inception in 1947. At the same time, the
success of the ACMDL has contributed to a further 25 percent drop in
print subscriptions in 1999. If present trends continue, printed versions
of ACM journals will be no longer be sustainable in five years time.
Instead, they will be superseded by their electronic counterparts.

The ACMDL will serve to blur the distinctions between individual
ACM journals. The concept of a journal will be replaced by that of an
input stream to the ACMDL controlled by a certification authority, i.e.,
a board of editors supported by volunteer referees. In such an environ-
ment, it will be much easier (and much less financially risky) for ACM to
initiate new refereed input streams, and to phase out those which have
become less productive. Rather than subscribe to individual journals,
ACMDL subscribers will have access to an individually tailored notifi-
cation service which will alert them to the availability of new articles in
their areas of interest.

Publications in the ACMDL will not be restricted to articles with a
severe page limit. Extended appendices will be easily accommodated,
as will other artifacts such as software, audio, video, etc.



Mathematical Software: Past, Present, and Future 19

Prediction: Users will no longer install mathematical software on their
workstations.

The need for instantaneous distribution and use of mathematical soft-
ware components in heterogeneous network environments will put new
pressures for software portability. A key element of the solution will be
standardized virtual environments in which software can execute. Java is
an example of such an environment. Its widespread availability also pro-
vides a new model for software distribution. Complex conglomerations
of source code will no longer need to be explicitly downloaded and in-
stalled on the local systems in advance of their use. Instead pre-compiled
bytecodes for the virtual machine will be able to be downloaded from
sites of developers or vendors on demand. This also provides a solution
to the problem of distributing patches and updates to software. Rather
than purchasing an entire library, software users will have the option of
subscribing to a service, paying only for the portions of the library that
they actually use.

Another new model for software reuse in a network environment is
based on a remote execution paradigm. In this case, problem-solving
services are made available to users over the network. When a problem
need be solved, a message containing a high-level specification of the
problem is sent to the service provider, who provides both the software
and the execution cycles needed to solve it. This model is probably more
appropriate for access to large scale systems, like finite-element modeling
packages.

Prediction: The percentage of people directly using math software
libraries will decrease.

The wide availability of problem-solving environments (PSEs) for var-
ious domains will bring computational capabilities to an even wider au-
dience than today. These users will make use of the services of the PSE,
blissfully unaware of the complex system, involving software libraries,
expert systems, and remote execution, which are being marshalled on
their behalf.

However, if this vision is to be realized, a new class of software de-
signers must be trained. They must be well-versed in numerical analysis,
mathematical algorithms, modern software design, and high-performance
computing and communications. Additional research in mathematical
software must be performed to provide new methods for improving the
robustness and adaptability of mathematical software systems, and to
address new problem areas. And finally, new methods for assessing the



20 COMPUTATIONAL SCIENCE, MATHEMATICS AND SOFTWARE

correctness and reliability of complex mathematical software systems
must be devised and deployed.

Mathematical software is still a vital and vibrant research area that
will increase in importance in the coming decades. We are grateful to
John Rice for his vision and leadership in getting us here.

Notes

1. The EDSAC (Electronic Delay Storage Automatic Computer) was built in the late
1940s at the Mathematical Laboratory of the University of Cambridge. It was operational
from 1949 until 1958.

2. The organizing committee included Robert Ashenhurst, Charles Lawson, M. Stuart
Lynn, and Joseph Traub

3. A committee that included Wayne Cowell, Lloyd Fosdick, Tom Hull, M. Stuart Lynn,
and Joseph Traub worked with him.

4. DASSL won the 1991 Wilkinson Prize for Numerical Software
5. Java is a trademark of Sun Microsystems.

6. FFTW won the 1999 Wilkinson Prize for numerical software.

References

[1] ACM Digital Library. Association for Computing Machinery, New
York. See http://www.acm.org/dl/.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammar-
ling, A. McKenney, and D. Sorensen. LAPACK User’s Guide.
SIAM Publications, Philadelphia. Third edition, 1999. See also
http://www.netlib.org/lapack/.

[3] U. Ascher, J. Christiansen, and R. D. Russell. A collocation solver
for mixed order systems of boundary value problems. Mathematics
of Computation, 33:659-679, 1979.

[4] L. S. Blackford, A. Cleary, A. Petitet, R. C. Whaley, J. Demmel,
I. Dhillon, H. Ren, K. Stanley, J. J. Dongarra, and S. Hammarling.
Practical experience in the numerical dangers of heterogeneous com-
puting. ACM Transactions on Mathematical Software, 23(12):133—
147, 1997.

[5] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
[. Dhillon, J. J. Dongarra, S. Hammarling, G. Henry, A. Pe-
titet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK
Users’ Guide. SIAM Publications, Philadelphia, 1997. See also
http://www.netlib.org/scalapack/.

[6] BLAS Technical Forum. See
http://www.netlib.org/cgi-bin/checkout/blast/blast.pl.



7]

[12]

[13]
[14]

[15]

[16]
[17]

[18]

[19]

[20]

Mathematical Software: Past, Present, and Future 21

R. F. Boisvert, E. N. Houstis, and J. R. Rice. A system for perfor-
mance evaluation of partial differential equations software. IFEE
Transactions on Software Engineering, 5:418-425, 1979.

R. F. Boisvert, S. E. Howe, and D. K. Kahaner. GAMS—a frame-
work for the management of scientific software. ACM Transactions
on Mathematical Software, 11:313-355, 1985.

R. F. Boisvert, ed. The Quality of Numerical Software: Assessment
and Enhancement. Chapman & Hall, London, 1997.

R. F. Boisvert, J. J. Dongarra, R. Pozo, K. A. Remington, and
G. W. Stewart. Developing numerical libraries in Java. Concur-
rency: Practice and Experience, 10(11-13):1117-1129, 1998.

S. Brown, J. J. Dongarra, E. Grosse, and T. Rowan. The netlib
mathematical software repository. D-LIB Magazine, September
1995.

Seehttp://www.dlib.org/dlib/september95/09contents.html.

H. Cassanova and J. J. Dongarra. Applying Netsolve’s network-
enabled server. IEEE Computational Science and Engineering,
5(3):57-67, July-September 1998.

W. J. Cody. The FUNPACK package of special function subrou-
tines. ACM Transactions on Mathematical Software, 1:13-25, 1975.

W. R. Cowell, ed. Sources and Development of Mathematical Soft-
ware. Prentice-Hall, Englewood Cliffs, NJ, 1984.

J. Czyzk, M. P. Mesnier, and J. J. Moré. The NEOS server. IEEE
Computational Science and Engineering, pp. 68-75, 1998. See also
http://www-fp.mcs.anl.gov/otc/.

C. de Boor. A Practical Guide to Splines. Volume 27 of Applied
Mathematical Sciences. Springer-Verlag, New York, 1978.

J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart.
LINPACK Users’ Guide. STAM Publications, Philadelphia, 1979.

J. J. Dongarra and E. Grosse. Distribution of mathematical software
via electronic mail. Communications of the ACM, 30(5):403-407,
1987.

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An
extended set of FORTRAN basic linear algebra subprograms. ACM
Transactions on Mathematical Software, 14:1-17, 1988.

J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. An set
of level 3 basic linear algebra subprograms. ACM Transactions on
Mathematical Software, 16:1-17, 1990.



22

[21]

[24]

[25]

[26]

[29]

[30]

[31]

COMPUTATIONAL SCIENCE, MATHEMATICS AND SOFTWARE

J. J. Dongarra, R. Pozo, and D. Walker. LAPACK++: a
design overview of object-oriented extensions for high per-
formance linear algebra. In Proceedings of Supercomputing
93, pp. 162-171. TEEE Computer Society, 1993. See also
http://www.netlib.org/lapack++/.

W. R. Dyksen, E. N. Houstis, R. E. Lynch, and J. R. Rice. The
performance of the collocation and Galerkin methods with Hermite
bicubics. SIAM Journal on Numerical Analysis, 21:695-715, 1984.

W. R. Dyksen, C. J. Ribbens, and J. R. Rice. The performance
of numerical methods for elliptic problems with mixed boundary
conditions. Numerical Methods for Partial Differential Equations,
4:347-361, 1988.

I. Foster and C. Kesselman. Globus: A metacomputing infrastruc-
ture toolkit. International Journal of Supercomputer Applications,

11(2):115-128, 1997.

P. A. Fox, A. D. Hall, and N. L. Schryer. The PORT mathematical
subroutine library. ACM Transactions on Mathematicsl Software,
4:104-126, 1978.

M. Frigo and S. G. Johnson. FFTW: An adaptive software archi-
tecture for the FFT. In Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, 3:1381-1384.
IEEE Computer Society, 1998. Also see http://www.fftw.org/.

W. F. Fullerton. Portable special function routines. In (Wayne Cow-
ell, ed.), Portability of Numerical Software, pp. 452-483. Springer—
Verlag, New York, 1977. See also http://www.netlib.org/fnlib/.

E. Gallopoulos, E. N. Houstis, and J. R. Rice. Computer as
thinker/doer: problem-solving environments for computational sci-
ence. IEEE Computational Science and Engineering, 1(2):11-23,
Summer 1994.

B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler. Ma-
triz Eigensystem Routines — EISPACK Guide Extension. Volume 51
of Lecture Notes in Computer Science. Second edition, Springer-
Verlag, New York, 1977.

C. W. Gear. Numerical Initial Value Problems in Ordinary Differ-
ential Equations. Prentice-Hall, Englewood Cliffs, NJ, 1971.

A. Geist, A. Beguelin, J. J. Dongarra, W. Jiang, R. Mancheck, and
V. Sunderam. PVM: Parallel Virtual Machine. MIT Press, 1994.
See also http://www.netlib.org/pvm/.



32]

[33]

[34]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

Mathematical Software: Past, Present, and Future 23

W. Gropp, M. Snir, B. Nitzberg, and E. Lusk. MPI: The Com-
plete Reference. Scientific and Engineering Computation Series.
MIT Press, 1998.

Guide to Available Mathematical Software. National Institute of
Standards and Technology. See http://math.nist.gov/gams/.

R. J. Herbold. Quadl. Communications of the ACM, 3(2):74, Febru-
ary 1960.

E. N. Houstis, R. E. Lynch, and J. R. Rice. Evaluation of numer-
ical methods for elliptic partial differential equations. Journal of
Computational Physics, 27:323-350, 1978.

E. N. Houstis and J. R. Rice. An experimental design for the compu-
tational evaluation of elliptic partial differential equation solvers. In
The Production and Assessment of Numerical Software, Academic

Press, pp. 57-66, 1980.

E. N. Houstis, W. F. Mitchell, and J. R. Rice. Algorithm 637 GEN-
COL: Collocation on general domains with bicubic Hermite poly-
nomials. ACM Transactions on Mathematical Software, 11:413-415,
1985.

E. N. Houstis, W. F. Mitchell, and J. R. Rice. Algorithm 638 INT-
COL and HERMCOL: Collocation on rectangular domains with
bicubic Hermite polynomials. ACM Transactions on Mathematical
Software, 11:416-418, 1985.

E. N. Houstis, J. R. Rice, and T. S. Papatheodorou. Parallel ELL-
PACK: an expert system for parallel processing of partial dif-
ferential equations. Mathematics and Computation in Simulation,
31:497-508, 1989.

E. N. Houstis, J. R. Rice, and R. Vichnevetsky, eds. Intelligent
Mathematical Software Systems. North-Holland, Amsterdam, 1990.

E. N. Houstis, J. R. Rice, and R. Vichnevetsky, eds. Fzpert Systems
for Scientific Computation. North-Holland, Amsterdam, 1992.

E. N. Houstis, J. R. Rice, and R. Vichnevetsky, eds. Artificial Intel-
ligence, Fxpert Systems and Symbolic Computing. North-Holland,
Amsterdam, 1992.

IMSL libraries. Visual Numerics, Inc., Houston.
See http://www.vni.com/.

International Business Machines Corporation. Parallel Engineering
and Scientific Subroutine Library for AIX, Guide and Reference,
1997.



24

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

[57]

COMPUTATIONAL SCIENCE, MATHEMATICS AND SOFTWARE

Java Grande Forum Numerical Working Group. National Institute
of Standards and Technology.
See http://math.nist.gov/javanumerics/.

M. Klerer and J. Reinfelds, eds. Interactive Systems for Experimen-
tal Applied Mathematics. Academic Press, New York, 1968. This is
the proceedings of the ACM Symposium on Interactive Systems
for Experimental Applied Mathematics held in Washington, DC in
1967.

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear al-
gebra subprograms for Fortran usage. ACM Transactions on Math-
ematical Software, 5:308-323, 1979.

S. Markus, S. Weerawarana, E. N. Houstis, and J. R. Rice. Scientific
computing via the Web: The net pellpack PSE server. IEEE Com-
putational Science and Engineering, 4(3), July-September 1997.
MATLAB. The MathWorks, Inc. See
http://www.mathworks.com/.

J. J. Moré, B. S. Garbow, and K. E. Hillstrom. User
Guide for MINPACK-1. Technical Report ANL-80-74, Ar-
gonne National Laboratory, Argonne, IL, 1980. See also
http://www.netlib.org/minpack/.

NAG libraries. Numerical Algorithms Group, Ltd., Oxford. See
http://www.nag.co.uk/.

L. Petzold. A description of DASSL: a differential/algebraic systems
solver. IMACS Transactions on Scienticic Computation, 1, 1982.
R. Piessens, E. de Donker, and D. Kahaner. QqUADPACK — A Sub-
routine Package for Automatic Integration. Springer-Verlag, New
York, 1983. See also http:www.netlib.org/quadpack/.
PINEAPL: A European project in HPCN. Numerical Algorithms
Group, Ltd., Oxford.

See http://www.nag.co.uk/projects/PINEAPL/.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C: The Art of Scientific Computing. Cam-
bridge University Press, 1993.

J. R. Rice and S. Rosen. NAPSS — a numerical analysis problem
solving system. In Proceedings of the ACM National Conference,
pp. 51-56, 1966.

J. R. Rice. On the construction of polyalgorithms for automatic

numerical analysis. In Interactive Systems for Ezperimental Applied
Mathematics, pp. 301-313. Academic Press, New York, 1968.



[58]
[59]
[60]
[61]
[62]
[63]

[64]

[65]

Mathematical Software: Past, Present, and Future 25

J. R. Rice, ed. Mathematical Software. Academic Press, New York,
1971.

J. R. Rice. A metalgorithm for adaptive quadrature. Journal of
Association for Computing Machinery, 22:61-82, 1975.

J. R. Rice. The algorithm selection problem. In (Rubicoff & Yovits,
eds.), Advances in Computers. Volume 15, Academic Press, 1976.

J. R. Rice, ed. Mathematical Software 1II. Academic Press, New
York, 1977.

J. R. Rice. Algorithm 525: ADAPT - adaptive smooth curve fitting.
ACM Transactions on Mathematical Software, 4:1-30, 1978.

J. R. Rice. Software for numerical computation. In (P. Wegner, ed.),
Research Directions in Software Technology. MIT Press, 1979.

J. R. Rice. Methodology for the Algorithm Selection Problem.
In Performance Ewvaluation of Numerical Software, pp. 301-307.
North-Holland, 1979.

J. R. Rice, E. N. Houstis, and W. R. Dyksen. A population of linear,
second order, elliptic partial differential equations on rectangular
domains. Mathematics of Computation, 36:475-484, 1981.

J. R. Rice. Performance analysis of 13 methods to solve the Galerkin
method equations. Linear Algebra and Applications, 53:533-535,
1983.

J. R. Rice. Algorithm 625: A two dimensional domain processor.
ACM Transactions on Mathematical Software, 10:443-452, 1984.

J. R. Rice. The BLAS, Linear Algebra Modules and Supercomput-
ers. Technical Report CSD-TR-501, Purdue University Department
of Computer Science, 1984.

J. R. Rice, C. Ribbens, and W. Ward. Algorithm 622: A sim-
ple macro processor. ACM Transactions on Mathematical Software,
10:410-416, 1984.

J. R. Rice and R. F. Boisvert. Solving Elliptic Problems Using ELL-
PACK. Volume 2 of Springer Series in Computational Mathematics,
Springer—Verlag, New York, 1985.

J. R. Rice and H. D. Schwetman. Interface issues in a software parts
technology. In Software Reusability, IEEE Computer Society Press,
1987.

J. R. Rice and R. F. Boisvert. From scientific software libraries to
problem-solving environments. IEEE Comp. Sci. € Engin., 3(3):44—
53, Fall 1996.



26

73]

[74]

[75]

[81]

[82]

[83]

[84]

COMPUTATIONAL SCIENCE, MATHEMATICS AND SOFTWARE

L. F. Shampine and M. K. Gordon. Computer Solution of Ordinary
Differential Equations. W. H. Freeman & Co., San Francisco, 1975.

L. F. Shampine and H. A. Watts. Design of a User Oriented Package
of ODE Solvers. Technical Report SAND79-2374, Sandia Labora-
tories, Albuquerque, NM, 1980.

B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe,
and V. C. Klema. Matriz Figensystem Routines — EISPACK Guide.
Volume 6 of Lecture Notes in Computer Science, Springer—Verlag,
New York. Second edition, 1976.

F. E. Snyder and H. M. Livingston. Coding of a Laplace boundary
value problem for the UNIVAC. Mathematical Tables and Other
Aids to Computation, 3:341-350, January 1949.

P. N. Swarztrauber and R. A. Sweet. Algorithm 541: Efficient For-
tran subprograms for the solution of elliptic partial differential
equations. ACM Transactions on Mathematical Software, 5:352—
364, 1979. See also http://www.netlib.org/fishpak/.

P. N. Swarztrauber. Network Vectorizing the FFTs. In (G. Ro-
drigue, ed.), Parallel Computation, pp. 51-84. Academic Press, New
York, 1982. See also http://www.netlib.org/fftpak/.

Transactions on Mathematical Software. Association for Computing
Machinery, New York. See http://www.acm.org/toms/.

S. Weerawarana, E. N. Houstis, J. R. Rice, A. Joshi, and C. E.
Houstis. PYTHIA: a knowledge based system to select scientific
algorithms. ACM Transactions on Mathematical Software, 22:447—
468, 1996.

R. C. Whaley and J. J. Dongarra. Automatically tuned linear alge-
bra software. In Proceedings of Supercomputing ’98, IEEE Computer
Society, 1998. Also see http://www.netlib.org/atlas/.

M. V. Wilkes, D. J. Wheeler, and S. Gill. The Preparation of Pro-
grams for an FElectronic Digital Computer. Addison Wesley Press,
Cambridge, MA, 1951.

J. H. Wilkinson and C. Reinsch, eds. Linear Algebra. Volume II of
Handbook for Automatic Computation, Springer—Verlag, New York,
1971.

S. Wolfram. The Mathematica Book. Cambridge University Press,
1999.





