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Abstract. Blind deconvolution seeks to deblur an image without knowing the cause of the blur.
Iterative methods are commonly applied to that problem, but the iterative process is slow, uncertain,
and often ill-behaved. This paper considers a significant but limited class of blurs that can be
expressed as convolutions of two-dimensional symmetric Lévy “stable” probability density functions.
This class includes and generalizes Gaussian and Lorentzian distributions. For such blurs, methods
are developed that can detect the point spread function from one-dimensional Fourier analysis of the
blurred image. A separate image deblurring technique uses this detected point spread function to
deblur the image. Each of these two steps uses direct noniterative methods and requires interactive
tuning of parameters. As a result, blind deblurring of 512 × 512 images can be accomplished in
minutes of CPU time on current desktop workstations. Numerous blind experiments on synthetic
data show that for a given blurred image, several distinct point spread functions may be detected
that lead to useful reconstructions.
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1. Introduction. Blind deconvolution seeks to deblur an image without know-
ing the cause of the blur. This paper considers a significant but limited class of blurs
and develops methods for detecting the system point spread function by appropriate
Fourier analysis of the blurred image. This detected point spread function is then in-
put into an image deblurring procedure to produce the deblurred image. Each of these
two separate tasks uses direct noniterative algorithms. As a result, blind deblurring
of 512× 512 images can be accomplished in minutes of CPU time on current desktop
workstations. The methods are applicable in the presence of noise. Reconstructions
obtained in this fashion are usually good enough for immediate use. However, if nec-
essary these can be further refined by using them as initial values in iterative blind
restoration algorithms.

Blind deconvolution is a difficult problem that is not fully understood. Nonunique-
ness is compounded with discontinuous dependence on data due to ill-posedness in
the deblurring problem. So far, most approaches to blind deconvolution have been
iterative in nature. Because of the underlying analytical difficulties, no convergence
proofs are known. In fact, the iterative process is generally ill-behaved and may de-
velop stagnation points or diverge altogether. When the iterative process is stable, a
large number of iterations may be necessary to resolve fine detail. As in all inverse
problems, successful blind restoration depends on input parameters that properly
restrict the class of admissible solutions. Several trial solutions based on different
parameter choices are typically necessary before obtaining the correct answer. When
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each trial solution requires a long and uncertain iterative process, location of optimal
parameters presents serious difficulties. For this reason, blind deconvolution examples
in the literature usually involve simple images of small size. Complex high resolution
images of size 512 × 512 or larger do not appear feasible with current approaches.
One application for the methods presented here would be speeding up such iterative
procedures by providing a good initial guess.

The present paper does not attempt to solve the blind deconvolution problem in
full generality. Rather, attention is focused on a class of blurs, the class G defined
below. This is a wide class that includes and generalizes Gaussian and Lorentzian
distributions, and has important applications. However, out of focus and motion
blurs are not included in G. Likewise, a large class of sharp images is exhibited and
characterized in terms of its behavior in the Fourier domain. This is the class W
described below. It is shown how one-dimensional (1-D) Fourier analysis of blurred
image data can be used to detect class G point spread functions acting on class
W images. Lévy “stable” probability density functions play a central role in this
analysis. The paper is based on empirical observations about the class W that have
not previously been exploited in the literature.

The Fourier approach presented here is helpful in clarifying the role of noise as it
separately affects the detection and reconstruction problems. It also leads naturally
to the BEAK method of detection for class W images, based on a new type of a
priori information. This information involves the “gross behavior” of the sharp image
along a single line through the origin in the Fourier transform plane. For class W
images, such gross behavior can be summarized by two positive numbers. As noted
in section 7 and discussed more fully in [8], there are several practical contexts where
such information may be available, or may be reliably estimated.

The more generally applicable APEX method is discussed in section 8. This
method may be applied without prior knowledge of gross behavior in the sharp image,
provided that image is a recognizable object. The procedure requires interactive
adjustment of a key parameter. However, each such trial solution can be accomplished
in seconds of CPU time. Important additional flexibility is provided by the marching
backward in time option characteristic of class G point spread functions.

These two procedures are illustrated with several numerical experiments on syn-
thetically blurred images, with added noise. Numerous other experiments with the
APEX method, on a wide variety of images and point spread functions, show that for
a given blurred image several distinct point spread functions may be detected that
lead to useful reconstructions.

1.1. Image deblurring. In the simplest case, image deblurring is associated
with the solution of two-dimensional (2-D) convolution equations

Hf ≡
∫
R2

h(x− u, y − v)f(u, v)dudv ≡ h(x, y)⊗ f(x, y) = g(x, y),(1.1)

where g(x, y) is the recorded blurred image, f(x, y) is the desired unblurred image,
h(x, y) is the blurring kernel or point spread function (psf) of the imaging process,
and ⊗ denotes convolution. The psf h(x, y) represents the cumulative effects of all
distortions caused by the media through which signals propagate, as well as all optical
and electronic aberrations produced by imperfect sensing and recording equipment.
In many applications, h(x, y) is known or may be obtained experimentally by imaging
a known point source. It is assumed that h(x, y) is such that the linear problem
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Hf = g has at most one solution. This is the case for the class of point spread
functions described in section 3.

The blurred image g(x, y) includes noise, which is viewed as a separate additional
degradation,

g(x, y) = ge(x, y) + n(x, y),(1.2)

where ge(x, y) is the blurred image that would have been recorded in the absence of
noise, and n(x, y) represents the cumulative effects of all noise processes and other
errors affecting final acquisition of the digitized array g(x, y). This includes nonlinear
noise processes where n(x, y) may be a function of f(x, y). Both ge(x, y) and n(x, y)
are unknown, but n(x, y) may be presumed small. The unique solution of (1.1) when
the right-hand side is ge(x, y) is the exact sharp image denoted by fe(x, y). Thus,

h(x, y)⊗ fe(x, y) = ge(x, y).(1.3)

The integral equation problem (1.1) is generally ill-posed, and the presence of
noise in the data presents serious difficulties. The strategy is to avoid the unique
solution of (1.1). Instead we look for some approximate solution f† such that the L2-
norm ‖ f† − fe ‖ is small. A discussion of the merits of several linear and nonlinear
algorithms for approximately solving (1.1) when h(x, y) is known may be found in [6].
The direct SECB method used in this paper is outlined in section 4, with references
to [3], [4], and [5].

The case where the blurring kernel is not shift invariant is considerably more
difficult and is not considered in this paper.

2. Blind deconvolution. In several instances, the imaging process leading to
g(x, y) is not fully understood, and the psf h(x, y) is unknown in (1.1). Given the noisy
blurred image g(x, y), blind deconvolution seeks to simultaneously reconstruct both
h(x, y) and the unknown image f(x, y) in (1.1). Here, a priori constraints are placed
on h and f to reduce the multiplicity of solutions. Even so, the problem remains
fraught with difficulties. It is pointed out in [22] that the Fourier phase problem of
recovering an image from the modulus of its Fourier transform is a special case of
(1.1), namely

f(x, y)⊗ f(−x,−y) = g(x, y).(2.1)

The latter problem is more easily solved in two dimensions than it is in one dimension,
where severe nonuniqueness prevails [10], [15], hence the claim in [22] that blind
deconvolution is not theoretically feasible in fewer than two dimensions. Numerical
experience with 1-D problems tends to support that claim. In [21], uniqueness in 2-D
blind deconvolution is analyzed by considering the Fourier magnitude problem.

Most blind approaches to (1.1) are iterative in nature, and typically involve
nonnegativity and/or support constraints on the components h and f . In [1], be-
ginning with a nonnegative guess for one of the components, say f , (1.1) is solved for
h using FFT algorithms. Nonnegativity and L1-norm conservation are then enforced
on h. The resulting h is now fed back into (1.1) which is solved to produce a new
estimate for f , and so on. According to [22], this method can diverge, with the new
estimates becoming visually worse than the preceding ones. In [11], the basic decon-
volution step in [1] is accomplished using Wiener filtering. A support constraint is
also incorporated. This permits blind deconvolution of noisy complex-valued images,
provided these images are relatively simple. When the support constraint in [11] is
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replaced by a nonnegativity constraint, the algorithm is found to behave poorly in the
presence of noise, sometimes producing unrecognizable reconstructions [14]. Better
noise tolerance is found if deconvolution at each iterative step in [1] is accomplished
using the Lucy–Richardson method [14]. The latter is itself an iterative procedure that
automatically preserves nonnegativity and conserves the L1-norm. Approximately 10
Lucy–Richardson iterations within one blind iteration were found necessary in [14].
Such an approach is viable in the context discussed in [14] where small size images of
simple objects are considered, and the primary aim is object recognition. For larger
images of complex objects, the Lucy–Richardson method often requires thousands of
iterations to resolve fine detail [6] and may not be suited for blind deconvolution.

Several blind procedures are based on minimizing an appropriate cost functional,
and this minimum must be found iteratively. Various linear and nonlinear functionals
are explored in [9], [20], [22], [24], [26], and [27], and examples of successful blind de-
convolution are given. However, following work in [25] on the Fourier phase problem,
several authors caution against the possibility of erroneous solutions associated with
local minima of the cost functional. In [22], conjugate gradient minimization of a par-
ticular cost functional is proposed, and the method is demonstrated for simple images.
For more complicated objects, the author points out that there may be a multiplicity
of solutions, each corresponding to a local minimum of the error functional. The same
difficulty is stressed in [24], where a different cost functional is used. To circumvent
stagnation at local minima, the Monte Carlo global minimization technique known
as simulated annealing is advocated in [24] and applied to small images. Such an
approach quickly becomes impractical for larger images. In the functional proposed
in [26], the authors again note the possibility of stagnation at local minima. The
phenomenon of successive psf iterates hn converging to the Dirac δ-function, with the
corresponding restorations fn converging to the original blurred image g, is reported
in [22] and [14], where substantially different algorithms are discussed.

Clearly, at the present time, blind deconvolution is too new and too difficult a
subject for there to exist highly reliable algorithms. Part of the difficulty may stem
from algorithmic formulations designed to accomodate very general deconvolution
problems. By restricting the class of blurs, we simplify the blind problem and other
approaches become feasible. One such avenue is explored in this paper.

3. Class G point spread functions. Point spread functions may be viewed as
2-D probability density functions, since they are nonnegative and have unit L1(R2)
norm. A symmetric Lévy “stable” density h(x, y) has Fourier transform given by [13],
[23]

ĥ(ξ, η) ≡
∫
R2

h(x, y)e−2πi(xξ+yη)dxdy = e−α(ξ2+η2)β , α > 0, 0 < β ≤ 1.(3.1)

Such Lévy densities play a role in many important image deblurring applications.
The Gaussian case, corresponding to β = 1, occurs in very diverse contexts includ-
ing optical seekers in cruise missiles, undersea imaging, nuclear medicine, computed
tomography scanners, and ultrasonic imaging in nondestructive testing. The case
β = 5/6 describes long-exposure atmospheric turbulence blurring [18] and is impor-
tant in some astronomical and surveillance satellite applications. The case β = 1/2
corresponds to the Cauchy or Lorentzian distribution. This has been used to model
X-ray scattering in radiology. In addition, in astronomical “adaptive optics” systems
that use deformable mirrors to compensate for turbulence, Lorentzian distributions
have recently been found to best-fit empirically obtained point spread functions [12].
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Values of β satisfying 0 < β ≤ 1 characterize a wide variety of electron-optical devices
[19]. Such devices are important in night vision systems, low light level TV, under-
sea imaging, and many new biomedical imaging applications. References for many of
these applications of Lévy densities may be found in the bibliographies of [3] and [5].

In some applications, several electron-optical devices may be cascaded together
and used to image objects through a distorting medium such as the atmosphere or the
ocean, or may be combined with other devices to produce a biomedical imaging tool.
The overall psf is then the convolution product of the individual component psfs,

ĥ(ξ, η) = e−
∑J

i=1 αi(ξ
2+η2)βi

, αi ≥ 0, 0 < βi ≤ 1.(3.2)

The general functional form given in (3.2) may also be used to best-fit a large
class of empirically determined optical transfer functions, by suitable choices of the
parameters αi, βi, and J . However, other types of blurs important in applications,
including out of focus and motion blurs, are not expressible in the form (3.2).

We define the class G of blurring kernels to be the class of all psfs h(x, y) whose
Fourier transforms satisfy (3.2). With such psfs, we may define fractional powers
Ht, 0 ≤ t ≤ 1, of the convolution integral operator H in (1.1) as follows:

Htf ≡ F−1
{
ĥt(ξ, η)f̂(ξ, η)

}
, 0 ≤ t ≤ 1.(3.3)

Class G psfs are intimately related to diffusion processes, in that u(x, y, t) = Htf
is the solution at time t of a generalized diffusion equation (see (4.2) below). The
present paper is exclusively concerned with such kernels. More general blurs will be
considered in a later report. It should be noted that the classG represents only a small
subclass of the class of infinitely divisible densities [13], [23]. The latter class includes
various types of multimodal point spread functions whose correct blind identification
would be difficult.

3.1. Approximate equivalence and nonuniqueness in blind restoration.
Approximations to class G point spread functions at equispaced points on a 2-D
mesh can be generated using inverse FFT algorithms. Below, several such psfs are
obtained in this fashion and used to construct synthetic data for blind deconvolution
experiments. To construct an approximation to a pure Lévy density with given (α, β)

on a 512 × 512 grid, we inverse FFT the expression e−α(ξ2+η2)β , with (ξ, η) in (3.1)
viewed as discrete integer frequencies satisfying −256 ≤ ξ, η ≤ 256. Figure 1(A) is
one example of such an approximate Lévy density function. A similar process applied
in (3.2) generates approximations to more general class G psfs.

The behavior of ĥ(ξ, η) at infinity is uniquely determined by the values of α and β
in the Fourier transform expression (3.1). Accordingly, distinct pairs (α, β) determine
distinct symmetric stable densities hαβ(x, y). However, on a finite mesh, approximate
Lévy densities generated by the inverse FFT procedure described above need not have
this property. In limited precision arithmetic, a pair (α1, β1) may produce a density
that closely approximates, at mesh points, a density associated with a different pair
(α2, β2). In that case, we say that the densities hα1β1

(x, y), hα2β2
(x, y) are approxi-

mately equivalent. An example of this phenomenon is shown in Figure 1(B), where we
have superposed 1-D cross sections of densities associated with the pairs (0.072, 0.582)
and (0.04, 0.682). Note that approximate equivalence of the pairs (α1, β1), (α2, β2)
requires α1 > α2 and β1 < β2. Also, a compound class G psf in (3.2) may be
approximately equivalent to a pure Lévy density in (3.1).
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Fig. 1. (A) Lévy density function constructed by inverse FFT of e−0.75(ξ2+η2)1/3
on 512×512

grid, with integer (ξ, η), −256 ≤ ξ, η ≤ 256. (B) Approximate equivalence of Lévy density functions
shown by superposing 1-D cross sections. Dashed curve has α = 0.072, β = 0.582; solid curve has
α = 0.04, β = 0.682.

These considerations imply an a priori nonuniqueness in blind deconvolution of
digital images stored in finite precision. One cannot expect to identify the true system
psf, but only a psf that is approximately equivalent to the true psf. Indeed, numerous
blind deblurring experiments using the BEAK method discussed in section 7 show
that while the true system psf is seldom detected, approximately equivalent psfs are
commonly found.

More genuine nonuniqueness occurs if the blind deconvolution problem is under-
stood to mean the following. Given the blurred image g(x, y) find a psf h(x, y) that
leads to a useful restoration. As will be seen with the APEX method in section
8, several nonequivalent psfs may be found that lead to useful yet visually distinct
reconstructions.

4. Deblurring in class G and backward diffusion equations. When the
psf is a Gaussian, the blurred image g(x, y) may be viewed as the solution at time
t = 1, of the heat equation with an appropriate constant diffusion coefficient, λ > 0.
The desired deblurred image f(x, y) is the initial data in this heat flow problem:

ut = λ∆u, 0 < t ≤ 1,

u(1) = g(x, y).
(4.1)

Indeed, u(x, y, t) = Htf, 0 ≤ t ≤ 1, with H being Gaussian convolution. Accordingly,
deblurring Gaussian blurred images is mathematically equivalent to solving the heat
equation backward in time. More generally, for psfs in class G as in (3.2), the heat
equation in (4.1) becomes a generalized linear diffusion equation with fractional powers
of the Laplacian,

ut = −
J∑

i=1

λi(−∆)βiu, λi = αi(4π
2)−βi , 0 < t ≤ 1.

u(1) = g(x, y).

(4.2)
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Such fractional diffusion equations occur in several branches of applied mathematics.
See [2], [17], and references therein. In [3], [4], and [5], a method is developed and
analyzed for solving diffusion equations such as (4.2) backward in time, and applied to
image deblurring. This is the so-called SECB method, based on a new slow evolution
constraint. With f, g, and n as in (1.1), (1.2), and u(t) the solution of (4.2), let
constants ε, M, be given such that

‖ u(0) ‖≡‖ f ‖≤ M, ‖ u(1)− g ‖≡‖ n ‖≤ ε, ε 	 M.(4.3)

For any constant K > 0 such that K 	 M/ε define s∗ by

s∗ = log {M/(M −Kε)} / log(M/ε).(4.4)

The SECB constraint applied to the backward in time solution of (4.2) requires that
there exist a known small constant K > 0 and a known fixed s � s∗, such that

‖ u(s)− u(0) ‖≤ Kε.(4.5)

The SECB solution of the backward problem for (4.2), with noisy data g(x, y) given
at time t = 1, is that initial value u†(0) that minimizes

‖ u(1)− g ‖2 +(ε/M)2 ‖ u(0) ‖2 +K−2 ‖ u(s)− u(0) ‖2,(4.6)

over all choices of initial values u(0) in L2.
For a given classG point spread function h(x, y) in (1.1), we may find the optimal

deblurred image f†(x, y) in closed form in the Fourier transform domain. We have,
with z denoting the complex conjugate of z,

f̂†(ξ, η) =
ĥ(ξ, η)ĝ(ξ, η)

|ĥ(ξ, η)|2 + (ε/M)2 +K−2|1− ĥs(ξ, η)|2 ,(4.7)

leading to f†(x, y) upon inverse transforming. This leads to an efficient, direct nu-
merical deblurring procedure, based on FFT algorithms. Note that it is not necessary
to know ĥ(ξ, η) explicitly as in (3.2) in order to use this method, although theoretical
development of the method is based on the functional form (3.2). Indeed, given the
blurred image and point spread function arrays in real space, FFT algorithms can be
used to form the expression in (4.7). On the other hand, in the case of blind deconvo-
lution, the detection procedures discussed below operate in the Fourier domain, and
provide approximate values for the psf parameters αi, βi in the functional form (3.2).

In that situation, it is the detected explicit form for ĥ(ξ, η) that is used in (4.7). The
above approach offers several advantages, including the following:

1. SECB is a direct noniterative method that simultaneously restores information
at all frequencies. Given the regularization parameters ε,M,K, and s, SECB deblur-
ring of a 512× 512 image requires about 4 seconds of CPU time on an SGI R10000.
In contrast, many probabilistic methods often require thousands of iterations, and
several hours of CPU time, to reconstruct the same amount of detail that is possible
with the SECB method. See [6].

2. With Ht as in (3.3), and f† as in (4.7), one can form and display

u†(x, y, t) = Htf†(x, y)(4.8)

for selected decreasing values of t lying between 1 and 0. This simulates marching
backward in time in (4.2) and allows monitoring the gradual deblurring of the image.
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As t ↓ 0 the image u(x, y, t) becomes sharper. However, noise and other artifacts
typically become more noticeable as t ↓ 0. Gradual deblurring allows detection of
features in the image before they become obscured by noise or ringing artifacts. In
particular, as will be seen in Figures 13 and 15, marching backward in time is crucial
in the APEX method for blind deconvolution.

3. It is frequently the case that the unknown sharp image is an easily recognizable
object. In that situation, a priori knowledge of ε,M,K, s is not essential, and SECB
may be used interactively as follows. Set ε/M = 0 in (4.7) and fix a value of s in
the range 0.001 ≤ s ≤ 0.01. The sharpness parameter K is then the only unknown
quantity in (4.7) and may be adjusted interactively so as to achieve optimal results.
Useful values of K typically lie in the range 0 < K < 10. Higher levels of noise dictate
smaller values of K, and vice versa. Beginning with a small value of K, increasing K
increases sharpness in the restored image, until a threshold value is reached. Further
increase in K brings out noise which eventually obscures the image. The optimal
value of K can usually be located in less than a dozen trials and in under 60 seconds
of CPU time for a 512 × 512 image. This version of the SECB procedure is the one
used in all blind deblurring experiments discussed below.

4. The SECB constraint does not require differentiability of the unknown image
f(x, y). This is an important consideration in medical imaging and other contexts
where edges and localized singularities in f , corresponding to tumors, microcalcifi-
cations, and the like, need to be detected. By contrast, in the case of Tikhonov’s
method bounds must be placed on derivatives of f in order to stabilize the inversion
and obtain error estimates [5], [6]. Such smoothness constraints may foreclose the de-
tection of singularities. In the SECB method, there holds a rigorous L2 error bound
‖ fe − f† ‖≤ √

3 Γ ε, where, for a fixed noise level ε > 0, the computable constant Γ
satisfies Γ 	 M/ε provided s/s∗ � 1.

5. The SECB constraint has recently been shown to play a fundamental role in a
class of ill-posed partial differential equations, linear and nonlinear, that is consider-
ably wider than (4.2). See [7]. This class includes the Navier–Stokes equations. For all
of these problems, the SECB constraint results in error bounds for the reconstruction
that are stronger than previously known error estimates.

5. The class W of well-behaved images. Let fe(x, y) be the exact sharp
image defined in (1.3). Since fe(x, y) ≥ 0

|f̂e(ξ, η)| ≤
∫
R2

fe(x, y)dxdy = f̂e(0, 0) = σ > 0.(5.1)

Also, since h(x, y)⊗ fe(x, y) = ge(x, y) and h(x, y) is a probability density,

ĝe(0, 0) =

∫
R2

ge(x, y)dxdy =

∫
R2

fe(x, y)dxdy = f̂e(0, 0) = σ > 0.(5.2)

Using σ as a normalizing constant, we may normalize Fourier transform quantities
q̂(ξ, η) by dividing by σ. (In deblurring applications where g(x, y) is known while
neither fe(x, y) nor ge(x, y) are known, we use ĝ(0, 0) ≈ ĝe(0, 0) as the normalizing
constant.) Let

q̂∗(ξ, η) = q̂(ξ, η)/σ(5.3)

denote the normalized quantity. The function |f̂e∗(ξ, η)| is highly oscillatory, and

0 ≤ |f̂e∗| ≤ 1. With r > 0 and fixed θ, − π ≤ θ ≤ π, ξ = r cos θ, η = r sin θ, let
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Fig. 2. Examples of images in class W.

reiθ be a ray in the (ξ, η) plane. The two rays reiθ, rei(π+θ) compose the line through

the origin η = ξ tan θ. We shall be interested in the behavior of f̂e
∗
(ξ, η) along such

rays and lines. Since fe(x, y) is real, its Fourier transform is conjugate symmetric.

Therefore the function |f̂e∗(ξ, η)| is symmetric about the origin on the line η = ξ tan θ.
Since rotation of the image fe(x, y) by an angle φ rotates its Fourier transform by the
same angle, behavior on the line η = ξ tanφ can be obtained by prerotating fe(x, y)
by the angle −φ and examining its Fourier transform on the line η = 0.

Each of the 24 images in Figures 2 and 3 is a 512 × 512 image quantized at 8-
bits per pixel, i.e., each pixel value is an integer lying between 0 and 255. For the
purposes of this discussion, each of these images is considered to be an exact sharp
image fe(x, y). For each image, the discrete Fourier transform is a 512× 512 array of
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Fig. 3. Further examples of images in class W.

complex numbers, which we again denote by f̂e(ξ, η) for simplicity. The “frequencies”
ξ, η are now integers lying between −256 and 256, and the zero frequency is at the
center of the transform array. This ordering is achieved by premultiplying fe(x, y) by

(−1)x+y. The discrete transforms f̂e
∗
(ξ, 0), and f̂e

∗
(0, η) are immediately available.

Image rotation may be used to obtain discrete transforms along other directions.

The collection of images in Figures 2 and 3 includes several standard images
used as test objects in the image-analysis literature. It is an interesting observa-
tion that these diverse images have a great deal in common, namely the behavior

of log |f̂e∗(ξ, η)| along lines η = ξ tan θ in the (ξ, η) plane. The behavior in the first

image in Figure 3 (Grace Kelly) is typical. In Figure 4(A), log |f̂e∗(ξ, 0)| is plotted for
Grace Kelly. While local behavior is highly oscillatory, the global behavior is roughly
monotone decreasing as |ξ| increases. Indeed, on 0 ≤ ξ ≤ 256, a least squares fit
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A B

Fig. 4. (A) log |f̂e∗(ξ, 0)| in discrete Fourier transform of sharp Grace Kelly image. (B) Least
squares fit with function v(ξ) = −2.92 |ξ|0.1612 (solid line).

to the data with an appropriate convex monotone decreasing function provides a fair
representation of gross data behavior. This is the case with v(ξ) = −2.92 ξ0.1612,
for example, as shown in Figure 4(B). Similar results are found along other rays reiθ.
Moreover, while the rate of decay varies with direction, no direction seems to exist
in which decay is dramatically faster than in other directions. For each of these 24
images, a limited search along several random directions reveals the same pattern of

global monotone decay in log |f̂e∗(ξ, η)|. And, while images with many edges tend to
decay more slowly, the rate of decay is roughly of the same general order of magnitude

for all these images. Noticeably absent are lines η = ξ tan θ where |f̂e∗(ξ, η)| vanishes
on an interval or where log |f̂e∗(ξ, η)| suddenly undergoes a large change in its range
of values, remaining in the new range of values over an extended frequency interval.
In Figure 4(B) and elsewhere in this paper, nonlinear least squares algorithms were
used to fit the data with the assumed model v(ξ) = −a |ξ|b, a, b > 0. The nonlinear
procedure returns the values of a and b. A most effective interactive framework for
performing such least squares fitting is the fit command in Dataplot [16], a high-level
English-syntax graphics and analysis software package developed at the National In-
stitute of Standards and Technology. This software tool was used throughout this
paper.

It should be noted that the process of 8-bit rounding used to create digitized im-
ages introduces a certain amount of noise. The intensity level of this background noise
typically precludes actual zero values in the discrete Fourier transform of a digitized
image. This may be verified experimentally as follows. In the 2-D FFT of Grace
Kelly, set equal to zero all components f̂e(ξ, η) for which the integer frequencies ξ, η
satisfy 25 ≤ ξ2 + η2 ≤ 12100. If this modified 512× 512 array is inverse transformed
and all pixel values rounded to 8-bits, a new image fp(x, y) is created, with integer
pixel values between 0 and 255. This perturbed image is neither sharp nor recog-

nizable. However, while log |f̂p∗(ξ, 0)| deviates strongly from the behavior shown in

Figure 4(A), noise in fp(x, y) prevents actual zero values in f̂p(ξ, η).

These considerations indicate that a wide variety of sharp digitized images fe(x, y)
apparently belong to the class W defined as follows:
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Fig. 5. Sharp image not in class W because log |f̂e∗(ξ, 0)| is not globally monotone.

• |f̂e∗(ξ, η)| has at most isolated zeros in the (ξ, η) plane.

• Neglecting isolated singularities, the global behavior of log |f̂e∗(ξ, η)| on any
ray reiθ is monotone decreasing with increasing r; i.e., on the ray reiθ,

a least squares fit to log |f̂e∗(ξ, η)| with an appropriate monotone decreasing
function provides a fair representation of gross data behavior as r increases.

• While the rate of decay may vary between rays, this decay is relatively slow,
i.e., of a general order of magnitude comparable to that found in the sharp
Grace Kelly image.

Not all digitized sharp images are in class W. An interesting sharp image not in
W is shown in Figure 5.

6. Blurring, rounding, and noise in the Fourier domain. The psf detec-
tion techniques discussed in this paper involve the behavior of the blurred image along
a single ray in the Fourier transform plane. The subsequent deconvolution procedure
is also Fourier based. Accordingly, it is necessary to understand the effects of blur-
ring and noise in the Fourier domain. This may be illustrated with a known sharp
image. The 512× 512 MRI brain image fe(x, y) (first image in Figure 2) was blurred
computationally by multiplying the discrete Fourier transform of fe(x, y) with the
discrete Fourier transform of a Cauchy density simulating X-ray scattering. A double
precision calculation was used to form

ĝ(ξ, η) = f̂e(ξ, η)e
−0.075(ξ2+η2)1/2

,(6.1)

where ξ, η are integer frequencies and −256 ≤ ξ, η ≤ 256. The inverse transform
of ĝ(ξ, η) when calculated and stored in 64-bit precision will be considered to be
the noiseless blurred image ge(x, y). We need to distinguish that image from the
usual 8-bit rounded blurred image g8(x, y), even though these two images are visually
indistinguishable.

While 8-bit rounding noise in g8(x, y) is invisible, it plays a crucial role in de-
convolution as will become abundantly clear. However, blurred images are sometimes
corrupted by additional noise processes. For illustration, a significant amount of
Poisson noise was added to g8(x, y) as follows. At each pixel location in g8(x, y), the
corresponding integer gray-level value k was viewed as the mean value of a Poisson
distribution. Using a Poisson random number generator with mean k, a Poisson de-
viate l was obtained. The pixel value k was then replaced by l. This procedure was
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A B C

Fig. 6. Effects of blurring and noise in MRI brain image. (A) Sharp MRI brain image fe(x, y).
(B) Cauchy blurred MRI image g8(x, y) stored in 8-bit precision. (C) Image gp(x, y) obtained by
adding Poisson noise to image (B).

repeated for each pixel in turn, resulting in independent Poisson processes at each
pixel location. Because the variance of a Poisson distribution is equal to its mean,
relatively large deviations are possible. As a result, one can expect to visually distin-
guish the Poisson noised image gp(x, y) from g8(x, y). This is indeed the case. The
sharp MRI image fe(x, y), the 8-bit rounded Cauchy blurred image g8(x, y), and the
Poisson noised Cauchy blurred image gp(x, y) are shown in Figure 6.

In Fourier space, using the normalization (5.3) and with n8(x, y) and np(x, y),
respectively, denoting 8-bit and Poisson noise, we have

ĝe
∗(ξ, η) = f̂e

∗
(ξ, η)e−0.075(ξ2+η2)1/2

,

ĝ8
∗(ξ, η) = ĝe

∗(ξ, η) + n̂∗
8(ξ, η),

ĝp
∗(ξ.η) = ĝ8

∗(ξ, η) + n̂∗
p(ξ, η).

(6.2)

Hence,

log |ĝe∗(ξ, 0)| = −0.075|ξ|+ log |f̂e∗(ξ, 0)|.(6.3)

The plot of log |f̂e∗(ξ, 0)| in Figure 7(A) displays the characteristic behavior of a class

W image. The relatively slow decay in log |f̂e∗(ξ, 0)| compared to that in −0.075|ξ|
means that the global behavior in log |ĝe∗(ξ, 0)| for large |ξ| is primarily that in
−0.075|ξ|. As a result, the plot of log |ĝe∗(ξ, 0)| in Figure 7(B) clearly reveals the
signature of the Cauchy psf in the data ge(x, y).

Consider now log |ĝ8
∗(ξ, 0)| in Figure 7(C). Here, global behavior reflects the fact

that |ĝe∗(ξ, 0)| 	 |n̂∗
8(ξ, 0)| for large |ξ|, as the negative exponential in the psf even-

tually drives |ĝe∗(ξ, 0)| below 8-bit noise level. Comparison with Figure 7(B) shows
that high frequency behavior is undetectable in g8(x, y). That is why restoration of
g8(x, y), even with exact knowledge of the psf, cannot recover fe(x, y) exactly. This is
true no matter which deblurring method is used. Nevertheless, |ĝe∗(ξ, 0)| � |n̂∗

8(ξ, 0)|
over a broad frequency range, and the psf signature is still visible in log |ĝ8

∗(ξ, 0)|.
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A B

C D

Fig. 7. Effects of blurring and noise in MRI brain image viewed along line η = 0 in Fourier

transform plane. (A) log |f̂e∗(ξ, 0)| in sharp MRI brain image. (B) log |ĝe∗(ξ, 0)| in blurred MRI
image stored in 64-bit precision. (C) log |ĝ8∗(ξ, 0)| in blurred MRI image stored in 8-bit precision.
(D) log |ĝp∗(ξ, 0)| in Poisson noised blurred MRI image.

Indeed, we find

log |ĝ8
∗(ξ, 0)| ≈




log |ĝe∗(ξ, 0)|, |ξ| ≤ 50,

log |n̂∗
8(ξ, 0)|, |ξ| ≥ 75.

(6.4)

Evidently, because of 8-bit noise, any possible reconstruction of fe(x, y) must be based
on knowledge of ĝ8(ξ, η) restricted to the disc 0 ≤ (ξ2 + η2)1/2 ≤ 50. The situation
is even worse in the Poisson noise case in Figure 7(D). The frequency range over
which |ĝp∗(ξ, 0)| � |n̂∗

p(ξ, 0)| is narrower, and the psf signature is barely visible in
log |ĝp∗(ξ, 0)|. This time, we find

log |ĝp∗(ξ, 0)| ≈



log |ĝe∗(ξ, 0)|, |ξ| ≤ 35,

log |n̂∗
p(ξ, 0)|, |ξ| ≥ 45.

(6.5)

Reconstruction of fe(x, y) must now be based on knowledge of ĝp(ξ, η) restricted to
the disc 0 ≤ (ξ2 + η2)1/2 ≤ 35. Inevitably, such incomplete knowledge places serious
limitations on the quality of the restoration that can be achieved. For this reason,
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many new imaging devices record images in 16-bit or even 24-bit precision, and there
is considerable interest in suppressing noise.

The above discussion sets the stage for development of our methods. Comparison
of Figures 7(C) and 7(D) with Figure 7(B) will be used as a guide in visually determin-
ing an interval over which log |ĝ∗(ξ, 0)| lies above noise level. Such an interval must
exclude the regions where the gross behavior in log |ĝ∗(ξ, 0)| can be well-approximated
by a horizontal line. We now turn to the question of detecting the psf by examination
of the noisy blurred image.

7. The BEAK method in psf identification from blurred image data.
As noted in section 2, a priori information on h(x, y) and f(x, y) is necessary to
reduce the multiplicity of solutions in blind deconvolution. Nonnegativity and support
constraints are the most common forms of a priori input, but they are not always
effective and do not necessarily lead to well-behaved iterative algorithms. In this
connection, the results in the present section are highly significant. We shall show

that for class W images, knowledge of the gross behavior of log |f̂e∗(ξ, η)| along a
single ray in the Fourier transform plane is sufficient to approximately identify a class
G psf from blurred image data along the same ray. By prerotating the image if
necessary, we may assume that single ray or line to be the line η = 0. As in the case
of the sharp Grace Kelly image in Figure 4(B), gross behavior along the line η = 0
is defined to be the function v(ξ) = −a |ξ|b, a, b > 0, that provides the best least

squares fit to log |f̂e∗(ξ, 0)| on 0 ≤ |ξ| ≤ 256. Therefore, this particular form of a priori
input reduces to the two positive numbers a and b. The resulting psf identification is
almost always surprising and must be understood in a broad sense. This method is
termed the BEAK method for reasons to be explained below.

There are several practical situations where such a priori information may be
available or may be estimated. For example, in blind deblurring of satellite images,
a sharp image of a similar satellite might be used to estimate a and b. Likewise, the
sharp MRI of a different patient, or the face of a different person, might provide useful
values for a and b. See [8]. Consequently, while the theoretical significance of these
results is stressed, the method is applicable in numerous contexts. In addition, the
discussion serves to motivate the more generally applicable APEX method developed
in section 8.

The BEAK method is based on the following observations (see Figure 7). In the
basic relation

g(x, y) = h(x, y)⊗ fe(x, y) + n(x, y),(7.1)

we may safely assume that the noise n(x, y) satisfies

∫
R2

|n(x, y)|dxdy 	
∫
R2

fe(x, y)dxdy = σ > 0,(7.2)

so that

|n̂∗(ξ, η)| 	 1.(7.3)

Consider the case where the psf is a pure Lévy density ĥ(ξ, η) = e−α(ξ2+η2)β . Since
g = ge + n

log |ĝ∗(ξ, η)| = log |e−α(ξ2+η2)β f̂e
∗
(ξ, η) + n̂∗(ξ, η)|.(7.4)
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Let Ω = {(ξ, η) | ξ2 + η2 ≤ ω2} be a neighborhood of the origin where

e−α(ξ2+η2)β |f̂e∗(ξ, η)| � |n̂∗(ξ, η)|.(7.5)

Such an Ω exists since (7.5) is true for ξ = η = 0 in view of (7.3). The radius ω > 0
of Ω decreases as α and n increase. For (ξ, η) ∈ Ω we have

log |ĝ∗(ξ, η)| ≈ −α(ξ2 + η2)β + log |f̂e∗(ξ, η)|.(7.6)

Hence, for |ξ| ≤ ω,

log |ĝ∗(ξ, 0)| ≈ −α|ξ|2β + log |f̂e∗(ξ, 0)|.(7.7)

The idea is to replace the unknown log |f̂e∗(ξ, 0)| in (7.7) by its least squares approx-
imation v(ξ) = −a |ξ|b. The detection procedure is then the following. With a and b

given a priori, find positive numbers α̃, β̃, so that the function u(ξ) = −α̃ |ξ|2β̃−a |ξ|b
best fits log |ĝ∗(ξ, 0)| on |ξ| ≤ ω. This may be accomplished interactively using non-
linear least squares algorithms in Dataplot [16]. The returned values for α̃ and β̃ are

subsequently used for ĥ(ξ, η) in the SECB deblurring procedure (4.7).

For more general class G psfs where ĥ(ξ, η) = e−ΣN
i=1αi(ξ

2+η2)βi
, we again seek

the best fit to log |ĝ∗(ξ, 0)| on |ξ| ≤ ω, with a function u(ξ) = −α̃ |ξ|2β̃−a |ξ|b. Here,
the returned values for α̃ and β̃ may be considered average values for the αi, βi, and
are expected to generate a pure Lévy density that well-approximates the composite
psf.

We shall now demonstrate this technique by applying it to three examples. The
first two examples involve the blurred MRI images discussed in the previous section.
Recall that those images were blurred with a Cauchy density with α = 0.075 and
β = 0.5. We first need to supply the a priori information a, b characterizing the gross

behavior of log |f̂e∗(ξ, 0)|. Applying nonlinear least squares to the exact MRI image

in Figure 6(A), we find that the best fit to log |f̂e∗(ξ, 0)| with a function of the form
v(ξ) = −a |ξ|b, a, b > 0, on −256 ≤ ξ ≤ 256 occurs when a = 3.117 and b = 0.155.
The result is shown in Figure 8(A).

For the 8-bit image g8(x, y) in Figure 6(B), we now best-fit log |ĝ8
∗(ξ, 0)| in Fig-

ure 7(C) with u(ξ) = −α |ξ|2β−3.117 |ξ|0.155, on the interval −50 ≤ ξ ≤ 50, where the
signal is clearly above noise level. This leads to α = 0.05, β = 0.557, and the result is
shown in Figure 8(B). The returned values for α and β differ from the correct values
α = 0.075, β = 0.5 that were used to construct Figure 6(B). However, interestingly,
the point spread function with these incorrect values turns out to be approximately
equivalent to the correct Cauchy psf, a phenomenon previously discussed in section 3.1
and illustrated in Figure 1(B). In the Poisson noised image gp(x, y) in Figure 6(C), the
same procedure is now applied to log |ĝp∗(ξ, 0)| in Figure 7(D), but on the substan-
tially reduced interval −35 ≤ ξ ≤ 35. This time, we get α = 0.03, β = 0.636, and the
result is shown in Figure 8(C). Surprisingly, this detected psf is again approximately
equivalent to the correct Cauchy psf! The two detected psfs, together with the exact
psf, are plotted in Figure 8(D).

As noted in Figures 7(C) and 7(D) and the discussion in section 6, only a part
of the information necessary to reconstruct fe(x, y) is available in the blurred image
data g(x, y). Consequently, even when the exact psf is known, the quality of this
reconstruction is necessarily limited, no matter which restoration algorithm is used.
From this standpoint, applying the SECB method with these two detected psfs results
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A B

C D

Fig. 8. BEAK method of psf detection in noisy blurred MRI brain image when gross behavior

of log |f̂e∗(ξ, 0)| is known. (A) Least squares fit of log |f̂e∗(ξ, 0)| in sharp MRI image with v(ξ) =
−3.117 |ξ|0.155,−256 ≤ ξ ≤ 256 (solid line). (B) Least squares fit of log |ĝ8∗(ξ, 0)| in 8-bit blurred
image, with u(ξ) = −α |ξ|2β + v(ξ),−50 ≤ ξ ≤ 50 (solid line), returns detected parameters α =
0.05, β = 0.557. (C) Least squares fit of log |ĝp∗(ξ, 0)| in Poisson noised image with above u(ξ)
on −35 ≤ ξ ≤ 35 (solid line) returns detected parameters α = 0.03, β = 0.636. (D) Detected psfs
approximately equivalent to original Cauchy psf with α = 0.075, β = 0.5.

in quite sound restorations, as shown in Figure 9. In [6], a variety of linear and
nonlinear deblurring methods are applied to these same blurred MRI images, with
exact knowledge of the blurring Cauchy psf. The restorations in Figure 9 are of a
quality comparable to those obtained in [6]. It is significant that the presence of
heavy Poisson noise in Figure 6(C) did not preclude detection of a point spread
function closely approximating the true psf.

The last example involves the satellite image (second image in Figure 3), blurred
with a Lévy density with α = 0.015, β = 0.925, and 8-bit rounding noise. Here, the
blurring is more severe than in Figure 9(A). As a result, log |ĝ∗(ξ, 0)| in Figure 10(B)
is visually determined to lie above noise level only on the small interval 0 ≤ |ξ| ≤ 25.

At the same time, a least squares fit to log |f̂e∗(ξ, 0)| with v(ξ) = −a |ξ|b returns
a = 1.99 and b = 0.255, but produces a relatively poor fit as shown in Figure 10(A).
Consequently, the a priori information a = 1.99, b = 0.255 does not accurately portray

the gross behavior in log |f̂e∗(ξ, 0)|. Using that a priori information, we now best-fit
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C D

Fig. 9. Blind deblurring experiment with noisy data. (A) Blurred MRI image with α =
0.075, β = 0.5, stored in 8-bit precision. (B) SECB deblurring of image (A) using s = 0.001, K =
0.8, and BEAK detected psf parameters α = 0.05, β = 0.557, obtained by least squares fit in
Figure 8(B). (C) Image (A) with added Poisson noise. (D) SECB deblurring of image (C) using
s = 0.001, K = 0.035, and BEAK detected psf parameters α = 0.03, β = 0.636, obtained by least
squares fit in Figure 8(C).

log |ĝ∗(ξ, 0)| on 0 ≤ |ξ| ≤ 25, with u(ξ) = −α |ξ|2β − 1.99 |ξ|0.255. This leads to
α = 0.0433, β = 0.752, and the result is shown in Figure 10(C). As indicated in
Figure 10(D), the detected psf is not equivalent to the true psf. Nevertheless, using
that detected psf in the SECB method with s = 0.001 and K = 0.8 produces a very
good restoration, as shown in Figure 11.

The behavior of the above psf detection method in the MRI and satellite images,
as described in Figures 8 through 11, is representative of the classW. Numerous blind
deblurring experiments on the universe consisting of the 24 images in Figures 2 and
3, blurred with a large variety of class G psfs, and in the presence of various kinds
of added noise, produce similar results. (The “beak” shape of the fitted curve near
ξ = 0 in Figures 8(B), 8(C), and 9(C) suggested the terminology BEAK method.)
Often, the detected psf is found to be approximately equivalent to the true psf. This
may happen with as much as 10% added noise. At other times, the detected psf
overshoots (or undershoots) the true psf by small amounts, and is correspondingly
slightly narrower (or wider) than the true psf. In almost all cases, however, the
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Fig. 10. BEAK method of psf detection in blurred satellite image when gross behavior of

log |f̂e∗(ξ, 0)| is known. (A) Least squares fit of log |f̂e∗(ξ, 0)| in sharp satellite image with v(ξ) =
−1.99 |ξ|0.255 on −256 ≤ ξ ≤ 256 (solid line) produces relatively poor fit. (B) log |ĝ∗(ξ, 0)| in
8-bit blurred satellite image when psf is Lévy density with α = 0.015, β = 0.925. Trace lies above
8-bit noise level only on small interval, − 25 ≤ ξ ≤ 25. (C) Least squares fit of log |ĝ∗(ξ, 0)| with
u(ξ) = −α |ξ|2β + v(ξ), − 25 ≤ ξ ≤ 25 (solid line), returns detected parameters α = 0.0433, β =
0.752. (D) Detected psf not equivalent to original psf.

A B

Fig. 11. Blind deblurring in 8-bit blurred satellite image. (A) Blurred image with α =
0.015, β = 0.925, stored in 8-bit precision. (B) SECB deblurring of image (A) using s = 0.001, K =
0.8, and BEAK detected psf parameters α = 0.0433, β = 0.752, obtained by least squares fit in Fig-
ure 10(C). Good restoration achieved even though detected psf not equivalent to original psf.
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detected psf together with the SECB algorithm produce useful restorations. On the
other hand, as is evident from Figures 7(D) and 10(B), if the blur is too severe and/or
the level of added noise is too high, the interval 0 ≤ |ξ| ≤ ω wherein the signal lies
above noise becomes too small for detection of a useful psf. However, in such cases,
useful restorations typically cannot be obtained even with exact knowledge of the true
psf.

Extensive numerical experimentation using the BEAK method leads to the fol-
lowing conclusions.

• The idea of replacing the unknown log |f̂e∗(ξ, 0)| in (7.7) with its gross be-
havior v(ξ) = −a |ξ|b is plausible and demonstrably useful. Evidently, for
class W images, local fluctuations in the exact image Fourier transform are
not important in detecting the parameters of a classG psf from blurred image
data. Only the large-scale behavior, summarized by the two positive numbers
a and b, is significant.

• Detection and restoration are separate tasks, and each involves direct
noniterative procedures based on FFT algorithms. The restoration phase
generally requires interactive fine-tuning of the regularization parameters.
However, for a 512 × 512 image, each trial restoration requires about 5 sec-
onds of CPU time on current desktop workstations. The detection phase
likewise requires no more than a few seconds of CPU time.

8. The APEX method and marching backward in time. This method
seeks to identify an approximate psf by examining blurred image data along a single

ray in Fourier space, without prior knowledge of the gross behavior in log |f̂e∗(ξ, 0)|.
The method typically requires several interactive trials before locating a suitable can-
didate psf. As previously noted, such trial SECB restorations are easily obtained. In
addition, by using the marching backward in time option in the SECB method, the
APEX method becomes a robust and effective blind deconvolution tool. An unex-
pected result is that the APEX method can produce several distinct psfs leading to
good restorations. In particular, a useful restoration may be obtained with a psf differ-
ent from the one that originally blurred the image. On reflection, such nonuniqueness
is not surprising since, in contrast to section 7, no a priori information regarding the
sharp image is provided in the APEX method.

Let the true system psf be a pure Lévy density ĥ(ξ, η) = e−α(ξ2+η2)β and let Ω
be the neighborhood of the origin in Fourier space defined in (7.5). As in (7.7)

log |ĝ∗(ξ, 0)| ≈ −α|ξ|2β + log |f̂e∗(ξ, 0)|, 0 ≤ |ξ| ≤ ω.(8.1)

As shown in section 7, replacing log |f̂e∗(ξ, 0)| in (8.1) by its least squares approx-
imation v(ξ) = −a |ξ|b allows for a reasonably representative fit to log |ĝ∗(ξ, 0)| on
the whole interval 0 ≤ |ξ| ≤ ω. In particular, the beak or nib in the fitted curve near
ξ = 0, so evident in Figures 8(B), 8(C), and 9(C), follows directly from use of this
prior knowledge. Providing for correct development of the beak in the least squares
fit is essential to recovering pairs (α, β) that produce approximately equivalent psfs.

In the absence of any knowledge regarding log |f̂e∗(ξ, 0)|, we consider replacing it
by a negative constant −A in (8.1). For any A > 0, the approximation

log |ĝ∗(ξ, 0)| ≈ −α|ξ|2β −A(8.2)

is no longer valid near ξ = 0, since the curve u(ξ) = −α|ξ|2β − A has −A as its
apex. The APEX method is based on the expectation that a value A0 > 0 can
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be found such that away from the origin, the least squares fit of log |ĝ∗(ξ, 0)| with
u(ξ) = −α|ξ|2β−A0 conforms with the least squares fit that would have been obtained
had the information necessary to form the beak near ξ = 0 been available.

Choosing a value of A > 0, we best fit log |ĝ∗(ξ, 0)| with u(ξ) = −α|ξ|2β − A on
the interval 0 ≤ |ξ| ≤ ω, where the signal lies above noise level. The resulting fit is
close only for ξ away from the origin. The returned values for α and β are then used in
the SECB deblurring algorithm. Different values of A return different pairs (α, β) and
the corresponding psfs are usually not approximately equivalent. Experience indicates
that the optimal value of A generally lies in the interval 2 ≤ A ≤ 6. Increasing the
value of A decreases the curvature of u(ξ) at ξ = 0, resulting in a larger value of
β together with a smaller value of α. Decreasing A has the opposite effect. A value
of A > 0 that returns β > 1 is clearly too large, as β > 1 is impossible for probability
density functions [13].

Assume the image g(x, y) was blurred with a Lévy density with parameters
(α0, β0). A value of A that returns (α0, β0) may not exist in general, but values
of A that return pairs (α, β) near (α0, β0) do exist. If α ≈ α0 while β > β0, SECB
deblurring with the pair (α, β) overemphasizes high frequency components and typi-
cally produces graininess and/or noise in the deblurred image. One can reapply the
SECB procedure with β reduced by a small amount while keeping α at the same value.
Another possibility is to decrease the value of A in the fitting procedure, obtaining
a new pair (α1, β1) with α1 > α, and β1 < β. If α1 is too large, ringing artifacts
usually appear in the deblurred image, and the SECB procedure is reapplied with a
smaller α1. In this way, one can generally find several pairs (α, β) that produce good
restorations.

For more general class G psfs where ĥ(ξ, η) = e−
∑J

i=1 αi(ξ
2+η2)βi

, we may still
use the approximation log |ĝ∗(ξ, 0)| ≈ −α|ξ|2β − A, and apply the same technique to
extract a suitable pair (α, β) from the blurred image. In this case, a single pure Lévy
psf is being used to deblur an image that was originally blurred by a composite of
such psfs.

Considerable robustness and flexibility are added to the APEX method by using
the SECB marching backward in time option described in (4.8). In particular, it is
not always necessary to locate a value of A that returns a pair (α, β) near the correct
values (α0, β0) in order to obtain useful restorations. If β < β0 and α > α0, and severe
ringing results from SECB, this may be interpreted as having traveled too far in the
backward solution of (4.2). By displaying the solution u†(x, y, t) in (4.8) for selected
decreasing values of t lying between 1 and 0, one can monitor the gradual deblurring
of the image. One can then locate a value t0 > 0 where substantial deblurring has
occurred, but without the ringing and other artifacts that are present at t = 0. The
image u†(x, y, t0) is a useful restoration, but one that is typically of a different visual
quality than would have been obtained at t = 0, using the correct pair (α0, β0). In
some cases, however, this procedure can lead to superior restorations.

The following examples illustrate the flexibility of the APEX method. The USS
Nimitz image (last image in Figure 3) was blurred with a Gaussian density with
α = 0.001, β = 1.0, and the blurred image g(x, y) was stored in 8-bit precision. From
Figure 12(A), log |ĝ∗(ξ, 0)| was visually determined to lie above noise level on the
interval 0 ≤ |ξ| ≤ 60. We now seek the best least squares fit on that interval with
u(ξ) = −α |ξ|2β −A, with A > 0 specified. When A = 4.3, we recover the correct
values, α = 0.001, β = 1.0, and the fit is shown in Figure 12(B). When A = 2.5,
however, the least squares fit returns a false Cauchy psf with α1 = 0.1, β1 = 0.5, as
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Fig. 12. APEX method of psf detection. (A) log |ĝ∗(ξ, 0)| in Gaussian blurred USS Nimitz
image with α = 0.001, β = 1.0, stored in 8-bit precision. Trace visually determined to lie above 8-bit
noise level on interval −60 ≤ ξ ≤ 60. (B) Least squares fit of log |ĝ∗(ξ, 0)| with u(ξ) = −α |ξ|2β−4.3
on −60 ≤ ξ ≤ 60 (solid line) returns correct Gaussian psf with α = 0.001, β = 1.0. (C) Least squares
fit of log |ĝ∗(ξ, 0)| with u(ξ) = −α |ξ|2β − 2.5 on −60 ≤ ξ ≤ 60 (solid line) returns false Cauchy
psf with α = 0.1, β = 0.5. (D) Cauchy psf (solid line) differs substantially from true Gaussian psf
(dashed line).

shown in Figure 12(C). Note that α1 = 100 α, and β1 = 0.5 β so that the pair (α1, β1)
is not near (α, β). As shown in Figure 12(D) the false Cauchy psf differs substantially
from the correct Gaussian psf.

The results of SECB deblurring with these detected psfs is shown in Figure 13.
A very good restoration is obtained in Figure 13(B) using the correctly identified
Gaussian psf, while the false Cauchy psf produces severe ringing in Figure 13(C).
However, if backward in time continuation with the false psf is terminated at t = 0.45
rather than at t = 0, a useful restoration ensues as shown in Figure 13(D). Clearly,
the image in Figure 13(B) is sharper than that in Figure 13(D), but the latter is quite
remarkable considering that α1 = 100 α.

In the next example, the Golden Gate Bridge image in Figure 3 was blurred with
a Lévy density with α = 0.009, β = 0.75 and stored in 8-bit precision. The trace of
log |ĝ∗(ξ, 0)| in Figure 14(A) was visually determined to lie above noise level on the
interval 0 ≤ |ξ| ≤ 55. With A = 5.75, the APEX method returns approximately
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Fig. 13. APEX method in blind deblurring of Gaussian blurred Nimitz image. (A) Blurred
image with α = 0.001, β = 1.0, stored in 8-bit precision. (B) SECB deblurring of image (A) using
s = 0.001, K = 0.65, and detected psf parameters α = 0.001, β = 1.0 obtained by least squares fit
in Figure 12(B) with apex = −4.3. (C) SECB deblurring of image (A) using s = 0.001, K = 0.65,
and false Cauchy psf with α = 0.1, β = 0.5 obtained by least squares fit in Figure 12(C) with apex
= −2.5. Wrong psf produces severe ringing. (D) SECB deblurring with false Cauchy psf as in
(C), but with “marching backward in time” process in (4.8) terminated at t = 0.45. (Image (C)
corresponds to t = 0.) Image (D) not as sharp as image (B).

correct values α1 = 0.01, β1 = 0.769, and the fit is shown in Figure 14(B). With
A = 3.5, the curvature at the fit apex in Figure 14(C) is considerably greater than
it is in Figure 14(B). The attempt to accomodate log |ĝ∗(ξ, 0)| near ξ = 0 without
forming a beak results in erroneous values α2 = 0.332 ≈ 37 α, β2 = 0.378 ≈ 0.5 β.
These two detected psfs, shown in Figure 14(D), are substantially different. SECB
deblurring with the approximately correct pair (α1, β1) is shown in Figure 15(B).
Deblurring with (α2, β2) results in severe ringing, as shown in Figure 15(C). However,
when backward in time continuation is terminated at t = 0.5 rather than at t = 0,
the image in Figure 15(D) is obtained. Overall, the image quality in Figure 15(D) is
superior to that in Figure 15(B).

While both the APEX method and the BEAK method in section 7 can be suc-
cessfully applied in the presence of noise, it should be recognized that noise affects
both detection and deblurring phases. In the detection phase, the interval |ξ| ≤ ω
may become too narrow to enable easy detection of pairs (α, β) that produce good
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Fig. 14. APEX method of psf detection. (A) log |ĝ∗(ξ, 0)| in blurred Golden Gate Bridge image
with α = 0.009, β = 0.75 stored in 8-bit precision. Trace visually determined to lie above 8-bit noise
level on interval −55 ≤ ξ ≤ 55. (B) Least squares fit of log |ĝ∗(ξ, 0)| with u(ξ) = −α |ξ|2β − 5.75
on −55 ≤ ξ ≤ 55 (solid line) returns approximately correct parameters α = 0.01, β = 0.769. (C)
Least squares fit of log |ĝ∗(ξ, 0)| with u(ξ) = −α |ξ|2β −3.5, −55 ≤ ξ ≤ 55 (solid line), returns false
parameters α = 0.332, β = 0.378. (D) False psf (solid line) differs substantially from approximate
psf (dashed line).

restorations. Additional trial solutions may be necessary to locate an optimal pair. In
the deblurring phase, as noted in Figure 7(D), noise masks high frequency information
needed for high resolution reconstructions. This is reflected in lower values of K that
must be used in the SECB method to control noise amplification. This limitation is
independent of the detection phase, and is present even with exact knowledge of the
psf.

The fact that detection and reconstruction are separate tasks provides a signifi-
cant advantage over iterative blind deconvolution methods in the presence of noise.
Iterative algorithms deblur the image at the nth stage using the psf calculated at the
preceding stage. This deblurred image is then used to calculate a new psf. However,
unexpected noise amplification in the deblurred image at any stage can seriously af-
fect calculation of the psf at the next stage. Such errors propagate and may amplify
as the iteration progresses. The close coupling of detection with restoration is one
reason why the iterative approach is often ill-behaved.

It is instructive to examine the performance of the APEX method when the lim-
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Fig. 15. APEX method in blind deblurring of blurred Golden Gate Bridge image. (A) Blurred
image with α = 0.009, β = 0.75, stored in 8-bit precision. (B) SECB deblurring of image (A)
using s = 0.001, K = 0.5, and approximately correct parameters α = 0.01, β = 0.769 obtained
by least squares fit in Figure 14(B) with apex = −5.75. (C) SECB deblurring of image (A) using
s = 0.001, K = 0.5, and false psf with α = 0.332, β = 0.378 obtained by least squares fit in
Figure 14(C) with apex = −3.5. Wrong psf produces severe ringing. (D) SECB deblurring with false
psf as in (C), but with “marching backward in time” process in (4.8) terminated at t = 0.5. (Image
(C) corresponds to t = 0.) Visual quality in image (D) is better than in image (B).

itations due to noise are removed. Such an idealized experiment is useful in assessing
the rationality of expecting that suitable psfs may be identified by varying the con-
stant A in (8.2). For this purpose, eight sharp images from Figures 2 and 3 were
blurred with class G psfs, and the blurred images were stored in 32-bit precision.
These blurred images are shown in Columns A in Figure 16. With 24-bit imagery
currently available, such an experiment is not devoid of practical interest. The APEX
method with the marching backward in time option was used to deblur this diverse
set of images. As shown in columns B, high quality detailed reconstructions were
achieved. Significantly, in almost all cases, the detected psf that restored the image
was not equivalent to the one used to blur the image.
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Fig. 16. Idealized APEX experiment with no noise. Blurred images in columns A were stored
in 32-bit precision. Deblurred images in columns B were obtained with APEX detected psfs that
differed substantially from the psfs used to create columns A. First row: Pyramids of Giza and Mars
moon Phobos. Second row: Uranus and its moons and alphanumeric image. Third row: Dragon
image and Mariner spacecraft. Fourth row: Edge on galaxy and hurricane image.



2006 ALFRED S. CARASSO

9. Conclusion. By limiting attention to the class G of point spread functions,
a new approach to blind deconvolution has been developed whereby the psf detection
problem is detached from the image reconstruction problem. Two methods of detec-
tion were proposed, each based on 1-D Fourier analysis of blurred image data. The
first method, the BEAK method, requires prior knowledge of the gross behavior in
the unknown sharp image along a single line through the origin in the Fourier plane.
A large class of images was exhibited, the class W, for which such prior knowledge
reduces to two positive numbers. This method often returns psfs that are approxi-
mately equivalent to the true system psf. The second method, the APEX method,
may be applied without this prior knowledge but solves a somewhat different prob-
lem, namely, that of finding a psf that leads to a useful reconstruction. Several such
psfs exist in general. The APEX method requires interactive adjustment of param-
eters in a manner analogous to the manual tuning of an FM station or the manual
focusing of binoculars. Thus, prior knowledge of a different kind underlies the APEX
method. It takes the form of user recognition or rejection of the restored image, and
it is applied at the end of the reconstruction phase rather than at the beginning of
the detection phase. This approach is rendered feasible through use of the fast, direct
SECB deblurring method.

Except for Gaussians and Lorentzians, Lévy densities are not known in closed
form as functions of the spatial variables x, y. Their relatively simple functional forms
in Fourier space naturally suggest methods that operate in the Fourier domain. In
particular, this enables the detection procedures to search through the entire family
of Lévy densities in an efficient way.

These ideas may be extended to classes of psfs other than the classG. For example,
imaging problems where the psf is a weighted sum of Gaussians of different widths,
or a sum of Gaussians and Lorentzians, may be considered. More generally, problems
where ĥ(ξ, η) is circularly symmetric and can be expressed in functional form with
a few unknown parameters may be susceptible to the above approach through 1-D
Fourier analysis. The governing equation corresponding to (8.1) becomes

log |ĝ∗(ξ, 0)| ≈ log |ĥ(ξ, 0)|+ log |f̂e∗(ξ, 0)|, 0 ≤ |ξ| ≤ ω.(9.1)

If u(ξ) is an approximation to the gross behavior of log |f̂e∗(ξ, 0)|, nonlinear least

squares fitting of log |ĝ∗(ξ, 0)| on 0 ≤ |ξ| ≤ ω with v(ξ) = log |ĥ(ξ, 0)| + u(ξ) may

be used to find values for the unknown parameters in ĥ(ξ, 0). Such extensions will be
considered in future reports.

Nevertheless, important problems exist that remain inaccessible by this technique.
Such problems include speckle imaging in astronomy [22], where short-exposure im-
ages are degraded by atmospheric turbulence. While long-exposure turbulent distor-
tions have been successfully modeled by Lévy densities with β = 5/6 [18], or by
Gaussians, little is known about such instantaneous turbulent point spread functions.
Problems of this nature must await development of methods that can solve the blind
deconvolution problem in full generality.
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