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AbstractÐIn previous work, approximate solutions were found for paraboloids having perturbations with
four-fold axial symmetry in order to model dendritic growth in cubic materials. These solutions provide
self-consistent corrections through second order in a shape parameter e to the Peclet number vs supercool-
ing relation of the Ivantsov solution. The parameter e is proportional to the amplitude of the four-fold cor-
rection to the dendrite shape, as measured from the Ivantsov paraboloid of revolution. The equilibrium
shape for anisotropic surface free energy to second order in the anisotropy is calculated. The value of e is
determined by comparing the dendrite tip shape with the portion of the equilibrium shape near the growth
direction, [001], for anisotropic surface free energy of the form g � g0�1� 4e4�n41�n42�n43��, where the ni are
components of the unit normal of the crystal surface. This comparison results in e � ÿ2e4 ÿ 24e 24 �O�e34�,
independent of the Peclet number. From the experimental value of e4, it is found that e1ÿ 0:01220:004,
in good agreement with the measured value e1ÿ 0:008 of LaCombe et al. (Phys. Rev. E, 1995, 52, 2778)
Published by Elsevier Science Ltd on behalf of Acta Metallurgica Inc.
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1. INTRODUCTION

In a previous paper [1] we calculated the correction
to the relationship between the Peclet number P

and the dimensionless supercooling, S, for a non-
axisymmetric isothermal dendrite growing from a
pure supercooled melt. For four-fold axial sym-

metry, the dendrite shape in cylindrical coordinates
�r, f, z� is of the form
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where the shape parameter e represents the ampli-
tude of the four-fold perturbation to the axisym-

metric paraboloid, and r is the radius of curvature
of the dendrite tip. Speci®cally, P � Vr=2k and
S � cV�TM ÿ T1�=LV, where V is the dendrite
growth speed, k is the thermal di�usivity of the

melt, cV is the heat capacity per unit volume, LV is
the latent heat per unit volume, TM is the melting
point, and T1 is the far-®eld temperature of the

supercooled melt. The corresponding correction to
the P±S relation is found to have the form

S � PePE1�P � � e 2

2
S �2��P � �O�e3�: �2�

The speci®c dependence of the coe�cients a and b,
and the correction S (2), on Peclet number are
worked out in detail in Ref. [1]. Here, the function
E1 is the exponential integral [2]. For e � 0 this

yields the well-known result of Ivantsov [3]. Other
researchers have also noted that the ®rst-order term
proportional to r4 cos 4f is consistent with an iso-

thermal solution that has been employed in micro-
scopic solvability theory [4±7].
Based on the experimental measurements of

LaCombe et al. [8], for succinonitrile (SCN) at
P10:004, we estimated a value of e1ÿ 0:008, with
the convention that f � 0 corresponds to the [100]
direction. The corresponding correction to S was

about a 9% increase, in general agreement with the
experimental results [8±11].
In this paper, we estimate the shape parameter e

theoretically on the basis of a simple idea, namely,
that the shape of the isothermal but anisotropic
dendrite tip is approximately the same as a portion

of the equilibrium shape of an isothermal body
with anisotropic surface free energy. We recognize
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that the equilibrium shape is a closed convex body
in a strictly isothermal environment, whereas our

dendrite model [1] corresponds to a semi-in®nite
body with an isothermal surface that is growing
from a non-isothermal melt. We note, however,

that an isothermal body, either the Ivantsov parabo-
loid or a perturbed paraboloid with a four-fold
axial symmetry, is used to determine the underlying

relationship between the Peclet number and the
supercooling for all existing theoretical analyses of
dendritic growth. A non-isothermal dendrite surface

is only taken into account, either by invoking a
marginal stability hypothesis or by conducting a
microscopic solvability analysis, in order to separate
the product of tip radius and growth velocity that

occurs in the Peclet number. In the present analysis,
we do not attempt to calculate the tip radius and
growth velocity separately, but only the relationship

of the shape anisotropy to the anisotropy of the
surface free energy. We emphasize that a shape
with variable curvature but with anisotropic surface

free energy can still be isothermal, e.g. the equili-
brium shape itself or, approximately, a dendrite tip.
Therefore, we expect the dendrite tip shape to be

similar to the portion of the equilibrium shape near
the growth direction, which is [001] for SCN.
For a cubic crystal, such as SCN, we assume a

surface free energy g� Ãn � of the form

g � g0�1� 4e4�n41 � n42 � n43�� �3�

where g0 and e4 are constants, and Ãn � �n1, n2, n3�
is the unit normal of the crystal surface. This corre-
sponds to the leading order expansion of g in
spherical harmonics compatible with cubic sym-

metry; the next non-vanishing term is of sixth
degree in Ãn : In the subsequent analysis, we will
assume that je4jW1; therefore we compute the equi-

librium shape through second order in e4, resulting
in a general formula [see equation (12)] that is of
interest in a broader context.
Microscopic solvability has indicated the import-

ance of surface free energy anisotropy in dendritic
growth. However, the three-dimensional analysis of
Brener and co-workers [6, 7] predicts that the shape

anisotropy of the dendrite is independent of the ani-
sotropy of surface free energy, with a value that is
twice the experimental value for SCN. Thus, micro-

scopic solvability theory predicts that the dendrite
shape anisotropy e would be the same for SCN
�e4 � 0:0055 [12, 13]) and pivalic acid �e4 � 0:025
[13]) even though the latter has nearly ®ve times lar-
ger anisotropy of surface free energy and displays
dendrite morphologies that are distinctly more cru-
ciform in shape (see, e.g. Fig. 12 of Ref. [14]).

2. ANALYSIS

2.1. Equilibrium shape

It is well known that for small anisotropy, the
equilibrium shape is geometrically similar to a polar

plot of the surface free energy to ®rst order in the
anisotropy [13, 15±17]. We proceed to calculate the
equilibrium shape to second order in the aniso-

tropy. A general anisotropic free energy g can be
written in the form

g� Ãn �=g0 � 1� 4e4Q� Ãn �: �4�

Equation (3) is a special case of equation (4) in

which Q is given by

Q4� Ãn �Mn41 � n42 � n43: �5�

We use the xx vector formalism of Cahn and
Ho�man [15] by extending the function g� Ãn � to a
function de®ned in three-dimensional space by

means of the prescription ~g�A�MAg�A=A�, where
A � jAj: Thus

~g�A�=g0 � A� 4e4A ~Q�A� �6�

where ~Q�A� � Q�A=A�: Thus ~Q�A� is a homo-
geneous function of degree zero in the variables Ai

for i � 1, 2, 3, which by Euler's theorem leads toP
i Ai�@ ~Q=@Ai � � 0, a relation that will be used to

simplify subsequent results.
The components of the xx vector, which are

known to be proportional to the cartesian coordi-
nates xi of the equilibrium shape, are given by

x i
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where R is a scale factor. The square of the spheri-

cal polar radius rs is then given by
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where the Euler theorem has been used. Expanding
to second order in e4 gives

rs

R
� 1� 4e4 ~Q� 8e 24

X
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A
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! 2

�O�e34�: �9�

This expression for rs is still in terms of the coordi-
nates of the normal vector ni � Ai=A whereas we
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would like to have it in terms of the direction
cosines ai � x i=rs of the radius vector rs. In order

to get a result for rs that is accurate to second order
in e4 we need to relate ai to ni to ®rst order in e4
and then substitute into equation (9). Thus

ai � x i

rs

� Ai

A
� 4e4A

@ ~Q

@Ai
�O�e 24 � �10�

and

~Q�A� � ~Q�A Ãaaa � �
X
i

@ ~Q

@Ai
�Ai ÿ Aai � � . . .

� Q� Ãaaa � ÿ 4e4
X
i

 
A
@ ~Q

@Ai

! 2

�O�e 24 �: �11�

Substitution into equation (9) then gives

rs

R
� 1� 4e4Q� Ãaaa � ÿ 8e 24

X
i

 
A
@ ~Q

@Ai

! 2

�O�e34� �12�

where it is to be understood that Ai=A � ni is to be
replaced by ai in the e 24 term after the di�erentiation

is performed. Comparing equation (12) with
equation (9), we note that the e�ect of expressing r
in terms of Ãaaa rather than Ãn is to change the sign of
the order e 24 term.

For the particular choice Q� Ãn � � Q4� Ãn � given by
equation (5), we ®nd

24X
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A
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! 2
35

Ãn� Ãaaa

� 16�Q6� Ãaaa � ÿQ 2
4 � Ãaaa �� �13�

where

Q6� Ãaaa �Ma61 � a62 � a63: �14�

Thus for g� Ãn � given by equation (4) we have

rs

R
� 1� 4e4Q4� Ãaaa � ÿ 128e 24 �Q6� Ãaaa � ÿQ 2

4 � Ãaaa ��

�O�e34�: �15�

In terms of the spherical polar angles Y and F of
the normal vector Ãn , equation (3) takes the form

g�Y, F�=g0 � 1� e4�4 cos4 Y� sin4 Y�3

� cos 4F�� �16�

and the corresponding form of equation (15) is

rs=R � 1� e4�4 cos4 y� �3� cos 4f�sin4 y�

ÿ 8e 24 f�ÿ4 cos3 y sin y� �3

� cos 4f�sin3 y cos y� 2 � sin 2 4f sin6 yg

�O�e34�: �17�

where y and f are the spherical polar angles of the
radius vector rs, or of Ãaaa :

2.2. Dendrite tip shape

In order to compare with our dendrite shape, we
must transform equation (17) to cylindrical coordi-

nates, which we do by substituting rs � �p r 2 � z 2�,
cos y � z= �p r 2 � z 2� and sin y � r= �p r 2 � z 2� and
expanding in powers of e4 to obtain

z � z0�r� � e4z1�r, f� � e 24 z2�r, f� �O�e34� �18�

where

z0�r�
R
�

����������������������
1ÿ �r=R� 2

q
�19�

z1�r, f�
R

� 4ÿ 8�r=R� 2 � 7�r=R�4 � �r=R�4 cos 4f����������������������
1ÿ �r=R� 2

q
�20�

z2�r, f�
R

� ÿ�r=R� 2
2�1ÿ �r=R� 2�3=2 f�144ÿ 864�r=R� 2

� 1816�r=R�4 ÿ 1528�r=R�6

� 441�r=R�8� � �ÿ96�r=R� 2

� 360�r=R�4 ÿ 384�r=R�6

� 126�r=R�8�cos 4f� �ÿ8�r=R�6

� 9�r=R�8�cos 2 4fg: �21�

Near the [001] direction, jr=zjW1 so we can

expand again to obtain

z

R
� 1� 4e4 ÿ 1

2
�r=R� 2�1� 12e4 � 144e 24 �

ÿ 1

8
�r=R�4�1ÿ 36e4 ÿ 2592e 24 � ÿ

1

16
�r=R�6

� �1ÿ 28e4 � 6320e 24 � � �r=R�4�e4

� 48e 24 �cos 4f� 1

2
�r=R�6�e4

ÿ 216e 24 �cos 4f�O�je4 j3, �r=R�8�: �22�

We introduce a scaling factor of the tip radius r
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and rewrite this expression in the abbreviated form

z
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where we have omitted all but the two most import-
ant terms on the right-hand side. Matching the

coe�cients of r 2 in equations (1) and (23) to relate
the tip radius r to our scale factor R gives

r
R
� 1

1� 12e4 � 144e 24
: �24�

Using this expression in equating the coe�cients in

the terms r4 cos 4f in equations (1) and (23), we
obtain the result

ÿ e
2
� e4 � 12e 24 �O�e34�: �25�

We note that there are additional terms in

equation (22) that have no counterpart in equation
(1). These terms arise because the equilibrium shape
is a closed convex body, whereas the dendrite is a

semi-in®nite body. The closure of this equilibrium
shape is described properly by equation (17), but is
lost once one resorts to the expansion in equation
(22).

2.3. Numerical results

We compare the approximate analytical results
relating e and e4 with numerical calculations for the
exact equilibrium shape as described by the xx form-

alism given in equation (7). For a given value of
r � r0, we ®nd the relation Y � Y�F� such that
r�Y�F�, F� � r0: We then obtain a parametric rep-

resentation of the tip region of the form z � z�F�
and f � f�F�, where tan f � y�Y�F�,F�=x�Y�F�,F�
de®nes the cylindrical angle f. A periodic cubic
spline is then used to obtain the relation z � z�f� at
equally spaced angles in f, and the resulting func-

tion is Fourier analyzed to give

z �
X
n

zn�r0�cos nf �26�

where the Fourier coe�cients zn are functions of
the prescribed value of r0. The four-fold coe�cient
is expected to have leading behavior

z4�r0� � a4r
4
0 � . . ., so we de®ne the quantity

ÿec

2
� �z4�r0�=r��r0=r�4

�27�

and compute ec as a function of the anisotropy
coe�cient e4 in equation (3) for various values of
r0/r. In Fig. 1 the solid curve shows the resulting

shape parameter ÿec=2 as a function of the surface
tension anisotropy e4 for r0=r � 0:01, which is su�-
ciently small that the results are independent of r0.
The dashed line is the linear approximation

ÿe=2 � e4, whereas the dot-dashed curve is the
quadratic approximation ÿe=2 � e4 � 12e 24 :

3. DISCUSSION

The anisotropy of the surface free energy for
SCN has been measured by Glicksman and Singh
[12] and Muschol et al. [13], resulting in
e4 � 0:005520:0015, which from equation (25)

yields e � ÿ0:01220:004: This compares favorably
with the direct measurements of LaCombe et al. [8]
which result in e1ÿ 0:008: Note, however, that the

experimental determination of e is based on
measurements of the dendrite shape for distances of
up to ten tip radii from the tip, whereas our com-

parison to the equilibrium shape is only valid within
a fraction of a tip radius from the tip. Another
theoretical estimate of e has been made by Brener

and co-workers [6, 7] based on microscopic solvabil-
ity theory, and, in our notation, results in
jej � 1=4810:02, which is about a factor of two lar-
ger than the experimental value. Their result is inde-

pendent of e4. By means of numerical computations
based on a phase-®eld model, Karma and Rappel
[18] calculated a shape anisotropy for S � 0:45 and

an e�ective surface free energy anisotropy of
0.0066, resulting in jej � 0:019, close to the value of
Brener and co-workers, and therefore still much lar-

ger than the experimental value. For a ®xed super-
cooling of S � 0:45, Karma and Rappel ®nd that
jej increases from 0.019 to 0.063 as the e�ective sur-

face tension anisotropy ee increases from 0.0066 to
0.0470 (see Table VIII in Ref. [18]).
It therefore appears that our simple assumption

that the tip anisotropy can be calculated from an
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Fig. 1. The shape parameter e as a function of the surface
tension anisotropy e4. The dashed line is the linear ap-
proximation ÿe=2 � e4, the dot-dashed curve is the quad-
ratic approximation ÿe=2 � e4 � 12e 24 , and the solid curve

is based on a numerical calculation.
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isothermal equilibrium shape is in better agreement
with experiment than that calculated from solvabil-

ity theory, at least for the single data point avail-
able so far for which both shape measurements and
the surface energy anisotropy are available. On the
other hand, the present theory does not include any

assumption about the value of the actual tip tem-
perature, so it leads only to a corrected value for
the Peclet number vs supercooling. Unlike solvabil-

ity theory, it makes no prediction about the separ-
ate values of tip radius and growth velocity.
A value of e4 � 0:025 has been measured for

pivalic acid [13]. This anisotropy is about ®ve times
larger than that of SCN. As seen in Fig. 1, the sec-
ond order expansion gives ÿe � 0:065 for this value

of e4, while the numerical result ÿe � 0:071 is
slightly above that value. No measurements of the
actual shape anisotropy are yet available.
Note that the value of e given by equation (25) is

independent of the Peclet number P. This is sup-
ported by preliminary measurements by LaCombe
[19] over a limited range of supercoolings.

Accordingly, in Fig. 2 we plot the value of S from
equation (2) for e � ÿ0:008: For the smaller values
of P in the ®gure, our corrections to S are too large

for our expansion in e to be valid, resulting in a
nearly vertical curve near P � 0:001: In the range
0:004 < P < 0:01, our results resemble the exper-
imental values measured by Koss et al., which also

lie slightly below the Ivantsov curve (see Fig. 10 of
Ref. [11]). For P much below 0.004, the experimen-
tal data actually lie above the Ivantsov curve, poss-

ibly due to the e�ects of ®nite container size and/or

convection [20, 21]. Thus, the e�ects of non-axisym-
metry vs those due to ®nite container sizes and/or

convection tend to a�ect S in an opposing manner.
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