The Refinement-Tree Partition for
Parallel Solution of Partial Differential
Equations

William F. Mitchell*
Mathematical and Computational Sciences Division
National Institute of Standards and Technology
Gaithersburg, MD 20899 TUSA

February 12, 1998

Abstract

Dynamic load balancing is considered in the context of adaptive multilevel
methods for partial differential equations on distributed memory muliiproces-
sore. An approach that periodically repartitions the grid is taken. The impor-
tant properties of a partitioning algorithm are presented and discussed in this
context. A partitioning algorithm based on the refinement tree of the adaptive
grid is presented and analyzed in terms of these properties. Theoretical and
numerical results are given.

1 Introduction

The numerical solution of partial differential equations (PDEz) is the most compu-
tationally intense part of solving mathematical models with many important appli-
cations. For this reason, much research has been performed to find faster methods
to solve PDEs at higher resolution. In recent years much of the attention has been
focused on methods for parallel computers to reduce the camputation time by taking
advantage of concurrent processing of data in different regions of the domain, and
to increase the resolution of the model by taking advantage of the larger memory
available in parallel computers. Tao effectively utilize a parallel computer, it is impaor-
tant that the data be distributed over the processors in a balanced manner, so that
each processor will complete its work load at approximately the same time, ie., no
processors will sit idle waiting for other processars to complete their work. For sim-
ple iterative solvers and uniform grids this partitioning of the data is fairly straight
forward.

"Captribution of MIST, not subject vo copyright. Preprint, to appear in NIST Journal of Research

gtart with very coarse mesh
repeat
adaptive mesh refinement
if the load is too far out of balance
repartition grid
redistribute data
end 1f
multigrid cycles
until termination criterion is met

Figure 1: Adaptive multilevel algorithm.

On sequential computers, multilevel adaptive methods, 1.e. methods that com-
bine adaptive grid refinement and full multigrid, have been shaown to have optimal
efficiency for many classes of PDEs [1, 2, 3, 4, 5, 6]. However, effective implementation
of these techniques on parallel computers is still not understood. Adaptive refinement
produces a nonuniform grid in which the grid points are concentrated in the areas
that need higher resolution. This nonuniformity causes problems in balancing the
computational load among the processors and complicates the communication pat-
terns between the processors. The full multigrid method is an optimal order salotion
method for the linear system of equations that results from the discretization of the
PDE. The technique involves cycling through a nested sequence of grids with vary-
ing degrees of coarseness, which results in irregular communication patterns between
the processors and a variable degree of parallelism. Considerable research has been
done to parallelize the individual components [see, for example, the proceedings of
the SIAM conferences on Parallel Processing for Scientific Computing), but the com-
bination of these results to form a parallel multilevel adaptive methad is still being
investigated [T, B, 9].

Among the barriers to efficient parallel implementation of these methods is the
balancing of the computational load ameng the processors in an environment where
the grid is dynamically changing throngh adaptive mesh refinement. It is not obvious
how to partition the data associated with a nonuniform grid generated by adaptive
refinement, and any method to determine such a partition must be very fast to avoid
dominating the time used by a fast multigrid solver. In this paper a fast partitioning
algorithm based on the refinement tree is presented and analyzed in terms of the
desirable properties and goals of partitioning algorithms.

We consider a parallelization of the methods used in MGGHAT [10], an adaptive
multilevel finite element program for elliptic PDEs in two dimensions. The general
structure of the algorithm 1z given in Fig. 1. This is a full multigrid methad which
beging with a very coarse mesh, and alternately performs phases of adaptive refine-
ment and multigrid cycles until some termination criterion is met; for example, an
estimate of the discretization error iz small encugh. In the parallel version, dynamic
load balancing is inserted after the refinement phase since the adaptive refinement

may produce more grid elements on some processors than others. The load balancing
phase can be skipped when the load remains reasonably well balanced.

This paper addresses dynamic load balancing in the context of this specific algo-
rithm, although most of the principles can be applied to other algorithms as well.
Further details of the sequential form of this algorithm can be found in Ref. [4]. It
is a finite element method for elliptic partial differential equations in two dimensions
using piecewise linear basis functions over triangles. Adaptive refinement is achieved
by the newest node bisection method with a hierarchical basis error estimate. The
multigrid method is a V-cycle with a Ganss-Siedel or Jacobi smoother, and restriction
and prolongation operators based on the hierarchical basis.

The parallelization is based on domain decomposition to give each processor a
region of the domain. The data distribution uses the FuDoP (Full Damain Partition)
approach [8, 11], in which each processor receives the grid for a subdomain plus
additional “shadow” elements to cover the whole domain. FuDoP can be viewed as
domain decomposition with a small averlap on each level of the multigrid sequence.

The computational environment for which the load balancing techniques are dis-
cussed consists of a SPMD (Single Program Multiple Data) message passing model for
distributed memary MIMD (Multiple Instruction Multiple Data) architectures with a
moderate number of processors connected by a high-latency low-bandwidth network.
An example of such an environment is a netwark of workstations using PVM [12]
ar MPI [13] for message passing. This type of computing environment is growing in
popularity as scientists with madest resources realize that they can effectively have a
low cost personal supercomputer by connecting a handful of commeodity workstations
ar PCs with off-the-shelf networking technology. This environment demands parallel
algorithms with less frequent communication steps than those developed for massively
parallel computers with faster specialized networks.

Dynamic load balancing in this context can be achieved by a global grid parti-
tioning algorithm, by a local migration method [14, 15], or by a hybrid of the twa
approaches. In this paper the first approach is considered. The refinement-tree par-
titioning algorithm [16] is employed whenever the load becomes too unbalanced.

In Sec. 2 the important properties of partitioning algorithms are discussed. In
particular, they are examined in the context outlined above. Section 3 presents
the refinement-tree partitioning algorithm. In Sec. 4 the refinement-tree partitioning
algorithm is analyzed, for the above context, in terms of the most important properties
from Sec. 2. Finally, in Sec. 5 the parallel implementation of the refinement-tree
partitioning algorithm is considered.

2 Important Properties of Partitioners

The ultimate goal of a partitioning algorithm is to partition the grid for distribution
aver the processors such that the total running time of the solver is minimized. The
actual running time can depend on many factors, most of which are out of the scope
of the partitioning algorithm, so this goal is usually approximated by two other goals:
1] balance the computational load, and 2] minimize the communication. In fact

there are several desirable properties for a partitioning algorithm that contribute
towards these goals [16]. The relative importance and relevance of these properties
depends on the environment in which the partition will be used and the algorithms
that will be applied to the partitioned data. Far example, in static load balancing
the partitioning algorithm is applied as a preprocessing step, so speed is not crucial
and minimization of the communication is more important. But in dynamic load
balancing, the partitioning algorithm is part of the salver, go it is important that the
algorithm be fast.

In this section, the partitioner properties listed in Ref. [16], plus two additional
properties, are considered in the context of adaptive multilevel methods for two di-
mensional elliptic PDEs with the full domain partition. They are presented in ap-
praximate arder of importance in this context, and begin with the statement of the
properties given in Ref. [16], emphasized by italics.

Speed - The algorithm should be very fast so the partitioning algorithm does not
dominate the ezecution fime of the FDE solver. Recall from Sec. 1 that the grid
may be repartitioned after each refinement phase of the algorithm. It would make
no sense to use a parallel computer far speed if the gains through parallelism are lost
to the partitioning algorithm. It is therefore imperative that the time used by the
partitioning algorithm be small relative to the sum of the times used by the refinement
and multigrid algorithms. 1t does not have to be the fastest algorithm available, but
it must make only a minar contribution to the total running time.

Parallel - It should be possible to implement the algorithm in perallel. In partic-
ular, the data in this context are distributed over the memories of the processors.
The algarithm must be able to cope with the distributed data with a minimum of
communication, becanse it would be too expensive to collect the data onto one pro-
cessar for use by a sequential partitioning algorithm. Mareover, the processars must
be simultaneously performing useful wark to aveid a sequential bottleneck.

Balance = The algorithm should produce equal sized partitions to balance the com-
putational lnad on the processors. This is one of the primary goals of the partitioning
algorithm. Note that “equal sized” does not necessarily mean that the partitions
contain the same number of grid elements. The metric used for measuring the size
of the partitions should reflect the amount of computation to be performed between
communication steps. In the case of multigrid with FuDoP, where communication
accurs after mach half V-cyele, the metric should take into account the grid at each
level, not just the finest grid. The partitioning algorithm should be Hexible enough
to allow alternative metrics, possibly throngh the use of weighted elements.

Nestedness - The algorithm should produce similar partifions for two grids when
one is a refinement of the other fo minimize the amount of data migration during
redistribulion. This property is very important in adaptive multilevel methods where
the solver is applied to a sequence of adaptively refined grids. After each repartition-
ing, which may occur after each refinement phase, the data must be redistributed
among the processors. If the new partition differs greatly from the old partition, the
amount of communication that occurs during redistribution can be overwhelming. It
is desirable for the difference between the old and new partitions to be a section of
elements near the partition boundaries, so that the effect is a migration of elements

to neighboring processars. A similar property applies to the context of adaptive grids
for time dependent problems.

C'rossings — The number of edges crossing from one partition to another should
be minimized to reduce the amount of interprocessor communication. This iz often
considered to be the most important property, especially in the context of static par-
titioning, because it determines the amount of data that must be communicated to
keep “shadaw” copies of data on the other processars current. However, in the context
presented in Sec. 1 where the solver consists of one or two multigrid cycles, it is less
important than the nestedness property because of the relative amounts of commu-
nication that would be generated if either was poorly done. The crossings property
is more important in contexts where many iterations of the solver are performed be-
tween repartitionings. It should, however, still be considered as one of the important
properties in the current context. With FuDoP, the measure associated with the
crossings property should be modified slightly. The amount of data communicated
depends on the total number of “shadow” data entities, not just on the number that
have connections crossing the partition boundaries. This can be approximated by
summing the number of crossings over all the multigrid levels.

Canneciedness - Each partition should be a connected set to provide locality com-
pactness of the subproblem cssigned fo a processor, and reduce interprocessor com-
munication. This is a desirable property, but not generally that important. If this
property holds, then it intuitively improves the properties of crossings and neighbars
(defined below). However it is not a necessary condition for those properties. In the
context of FuDoP it is a little more important because a fragmented partition will
produce a larger number of additional elements to cover the full domain.

Muliilevel - For the sequence of grids used by o muliigrid method, the balance and
crossings properties should hold for each of the grids. This would be important for
a parallel multigrid method that performs communication on each grid during the
multigrid cyecle. However, with FuloP the communication occurs after each half V-
cycle, so it is more important to consider the sequence of grids as a whole rather than
the individual grids.

Neighbors - The mazimum number of neighboring partitions should be minimized
to reduce the number of messages that must be seni. Generally, this is an important
property, especially in high latency environments where the message start-up time is
large. In the context of FuloP as it is currently formulated, this property is irrelevant
because there is full connectivity in the communication pattern between the processes.

3 Refinement-tree Partition

Several algorithms for partitioning nonuniform grids have been developed. Some of
these have been implemented in the Chaco software package [17], and others are
described elsewhere, for example [1B, 19, 16]. These methods can be divided into
two classes: slow nearly-optimal methods and fast suboptimal methods. The slow
methods produce partitions that are nearly optimal in terms of some property, usually
minimization of the number of crossings. These methods are appropriate for static

load balancing where a grid will be partitioned once, and that partition will be used
many times. The fast methods are more appropriate for dynamic load balancing
where one is willing to sacrifice some optimality for the sake of speed.

In this section the refinement-tree partitioning algorithm introduced in Ref. [16]
is presented. This method is based on the refinement tree that is generated during
the process of adaptive grid refinement. It is not as generally applicable as the other
fast algorithms, which use only information contained in the final grid, but in the
context of adaptive multilevel methods it is able to produce higher quality partitions
by taking advantage of the additional information about how the grid was generated.

The refinement-tree partitioning algorithm is a recursive bisection method. This
means that the core of the algorithm partitions the data into two sets, i.e. bisects the
data. The algorithm then bisects those two sets to produce four sets, and so forth
until the desired number of sets is produced. HRecursive bisection methods can only
be nsed when the desired number of sets is a power of 2, which is a common situation
on multiprocessors.

Ag presented, the algorithm depends on refinement being performed by bisection
of triangles [4] which produces a binary refinement tree. Slight modifications ta
the algorithm are required for other settings. For example, if refinement divides an
element into four parts instead of two, intermediate layers can be inserted in the
refinement tree to convert the quadtires to a binary tree.

The refinement tree of an adaptive triangular grid generated by bisection refine-
ment is a binary tree containing one node for each triangle that appears during the
refinement process. (1t may actually be a forest, but the individual trees can be con-
nected into a single tree by adding artificial nodes above the roots.) The two children
of a node correspond to the two triangles that are formed by bisecting the triangle
corresponding to the parent node. In Fig. 2, the numbering of the triangles in the
grid and the nodes in the tres indicates the relationship.

The nodes of the tree have two weights associated with them; a personal weight
and a subtree weight. The personal weight is a representation of the computational
work associated with the corresponding triangle. For example, a smaller weight can
be used for elements containing Dirichlet boundary equations which require less com-
putation than interior equations. Also note that the interior nodes, i.e. those that are
not leaves, correspond to triangles in the coarser grids. These nodes can be assigned
nonzera weights to represent the computation on the coarser grids of the multigrid
algorithm, which is not possible with partitioning algorithms that only consider the
finest grid. For simplicity, in this paper a weight of 1 1z assigned to the leaf nodes and
0 to the interior nodes, which produces a partition that equally divides the number of
triangles in the finest grid. This is a first order approximation to the computational
load. The subtree weight of a node iz the sum of the personal weights in the subtree
rooted at that node.

The algarithm for bisecting the grid into two equal sized sets is given in Fig. 3.
It beging by computing the subtres weight for sach nade. This can be performed in
(N N) operations for N triangles, using a depth first traversal of the tree.

Initially the two sets are empty and the weights of the sets are zero. The algorithm
traverses a path down the tree called the bisection path. At each two-child node in the

]

S
—
—

—

G
=C o
&
o—
S—

e

S
e

NN
N\
o—

Figure 2: Refinement trees.

algorithm bisect
compute subires vaightﬂ
bisect_subtree(roct)
end algorithm bisect

algorithm bisect_subtrea(node)
if noede is a leaf then
asgign node to the smaller sat
elseif node has ome child then
bisect_subtree(child)
else (node has two children)

gelect a set for each child
for each child, examine the sum of the subtree weight with the

accumulated weight of the selected zet
for the smaller of the iwe sums, assign the subiree rooied at
that child to the selected set, and add the subtree waight
to the weight of the set
bisect_subtree(other child)
endif
end algorithm bisect_subtree

Figure 3: Refinement-tree partition bisection algorithm.

path, one of the children and the subtree below it is assigned to one of the two sets,
the subtires weight is added to the weight of that set, and the other child becomes
the next node in the bisection path. This process is explained in detail in the next
paragraph. If a node in the bisection path has only one child (this cannot happen
with the initial bisection of the whole refinement tree, but can cccar when recursively
bisecting the resulting subtrees where one of the children may be omitted], then the
algorithm simply moves to that child. Eventually a leaf will be reached, at which
point it is placed in the smaller set and the bisection is complete.

The bulk of the work occurs at nodes that have two children. First a set is
selected for each child for possible assignment. The first time the selection is made,
it is arhitrary. After that, the triangle associated with one of the children will share a
side with the triangle associated with the sibling of the parent. The selection for that
child is the set to which the sibling of the parent has been assigned. The selection
for the other child is the other set. This selection gnarantees that the partitions
remain connected. Next, for each child the sum of the subtree weight of the child
plus the weight of the selected set is examined. The child with the smaller sum is
assigned to the selected set, along with the subtree below it, and the weight of the
set is increased by the subtree weight of the child. The other child becomes the next
node in the bisection path.

After the bisection is complete, two subtrees are formed. Each consists of the
nodes assigned to one of the sets, plus as much of the bisection path as iz needed to
connect the subtree. The bisection algorithm is applied to each of these subtrees to
partition the nodes into four sets. This process repeats until the desired number of
sets is achieved.

Figure 4 illustrates the bisection algorithm for a simple triangulation. Light and
dark grey are used to represent the two sets; the white nodes are on the bisection
path. The nodes are labeled with the subtree weights. The assignment of the triangles
to sets after each step is also illustrated.

4 Properties of the Refinement-Tree Partition

The refinement-tree partitioning algorithm was originally designed with the goal of
producing equal sized, connected partitions quickly. However, it performs quite well in
terms of the other properties of Sec. 2. In this section the most important properties
are examined for the refinement-tree partitioning algorithm in the context established
in Sec. 1, except for the parallelism property which is deferred to Sec. 5. Both theo-
retical and numerical results are presented. The numerical results are obtained from
Laplace’s equation on the unit square with a singularity in the boundary condition
on the top side of the domain, which generates a grid that is concentrated near the
singularity {see Fig. 5).

Speed. The process of summing the weights requires a depth first traversal of the
refinement tree, which can be done in O[N] operations where N is the number of
triangles. The remainder of the partitioning algorithm just traverses a path from the
root to a leaf of the tree. This process requires O(number of levels) operations,

Figure 4: Partitioning the triangles into two sets.

Table 1: CPl times for each phase in seconds.
Frocessors
2 4 B
refine 1649 986 a.01
partition 201 1.99 2.10
glve 1388 B.A3T7T 5h33

which is typically O(leg N). Thus the partitioning into two sets of size N/2 requires
N 4 log N) operations. A simple calculation shows that recursive application
of the algorithm to produoce p sets of size N/p requires O(N log p + p log N)
operations.

In numerical experiments [16], the time required by the refinement-tree parti-
tioning algorithm was comparable to the time used by fast, low-quality partition
algorithms like inertial bisection [17].

Ag pointed out in Sec. 2, the most important aspect of the speed of the algorithm
is that it be much faster than the refinement and multigrid algorithms that it will be
used with. Table 1 presents the results of numerical computations with the example
problem with approximately 60 000 vertices in the grid. The CPU time is shown for
the refinement, partition and multigrid phases. The computations were performed on
an [BM 5P2 ' by a Fortran 90 program using PVM for message passing.

These results show that the partition algorithm is faster than the refinement and

LCertain commercial equipment, instruments or materials are identifled in the paper to foater
underatanding. Such identification does not imply recormmendation of endorsement by the National
Institute of Standards and Techaology, nor does it imply that the materials or equipment ideatified
are fecesaarily the best available far the purpose.

solution algorithms. It may be observed that while the time used by refinement and
solution decreases with the number of processars, the time for partitioning is constant
in Table 1. However, this is just a consequence of the log p factor in the operation
count while p is small. The dominant part of the operation count for large N is
asymptotically <N log p. On two processors, each perform eNJ2 log 2 = eNJ2
operations. On four processors, the count is eN /4 log 4 = eN/2, which is the same.
On eight processars, the count is 32N /8 which is slightly smaller, but does not take
into account the communication overhead. Future numerical studies will investigate
the time for partitioning with larger numbers of processors.

Balance. The primary objective of a partitioning algorithm is to balance the
work load among the processors. In this paper it is assumed that a sufficiently goad
approximation to a balanced load 12 obtained by equally distributing the triangles of
the finest grid. This is achieved by assigning a personal weight of | to leaf nodes, and
0 to interior nodes.

It will be shown that the refinement-tres partitioning algorithm with these weights
will produce sets that differ in size by at most 1. Some notation is required. Let

v; be the ™ node in the bisection path, with v, the root,
w{v] be the subtres weight of node v,

r:tf be the child of v, that is selected for set 7, 5 = 0,1,

57 be the weight of set j hefore visiting v, § = 0, 1.

The following lemma states that at any point during the bisection algorithm, the
number of triangles that have not yet been assigned is greater than or equal to the
difference betwesn the current sizes of the two sets.

Lemma 1 With the refinement-tree partitioning algorithm using weights defined above,
if ¢ is assigned to set 0, then w(c) = |5'3|1 - 5'.['”| . and if ¢ is assigned to sef 1,
then w(cl) = |5, = S5l

Proof: This is proven by induction.

Let 2 = 0. 57 and 5] have weight 0. If & is assigned to set 0, then w(c)] < w{ey),
57 = w(qy), and 57 = 0. Then w(ey) = wieg) = [0 = w(])| = |57 = 57| The proof
of the second statement is similar.

Let ¢+ > 1 and assume the conclusion holds for ¢ = 1. Only the case where & is
assigned to set) is presented; the other case is similar. Since -c:,':I i the child that gets
assigned,

8¢ +w(e) < 5] +w(e]) (1)
5F|1=SE+W[£] (2]
. 311 = 5 (3)

There are two cases.

Case 1. 57 4 w(d) = 5.
Then 87 4 w(el] = 5! = 0 and equals its absolute valoe. From (1), §7 4 w(e) = 8 <

10

w(e!). The result follows by taking the absolute value of the left hand side and using
Eqs. (2] and (3).

Case 2. 57 + w() < &
Since w(d]] = 0, 5 = 57 > 0 and hence equals its absolute value. v, is in the bisection
path, so it is not a node assigned to a set. By induction, w(w) > |8] = &]| = 8] - &7,
By definition w(w) = w(e]) 4+ w(el), hence wiel) 4+ w(g) = 5} = 57, or wie]] >
5 = 8] —w(e]] = |5] = 5] —w(g])|. Again using (2) and (3), w(ef) = [57,, = 57,1 1

Theorem 1 The refinement-tree parlition algorithm with a weight of 1 on the leaf
nodes and [on the interior nodes will partition the triangles of the finest grid info
p =% sefs that differ in size by at most 1.

Proof: The first application bisects the tree into two parts. From Lemma 1, the
difference in the weights of the sets is at most the weight of the final node in the
bisection path. This is a leaf node, and has weight 1. Since the weight of a set is
equal to the number of leaf nodes in the set, which are in one-to-one correspondence
with the triangles in the finest grid, the number of triangles in the two partitions
differ by at most 1. When recursive bisection is applied to further partition these
sets, it is easily seen that the number of triangles in the resulting sets will differ by
at most 1. |}

Nestedness. The algorithm also seems (from example computations) to produce
very similar partitions for two grids when one grid is a refinement of the other.
Figure 5 illustrates the 4-set partition for a sequence of four refinement steps in one
example. Shades of grey represent the partitions. The following heuristic argument
may explain the similarity. When an adaptive grid is refined, one would expect most
of the refinement to cccur in the same region that previous refinement accurred. In
the refinement tree, this means that nodes that are heavy (i.e. have a large subtree
weight) will tend to get heavier. Since the decision of which child is actually assigned
to a set depends on which child is lighter, the same decision is likely to be made most
of the time in two refinement trees when ane represents an adaptive refinement of the
other.

C'rossings. In a previous numerical study [16], the number of crossings between
the partitions generated by the refinement-tree partitioning algorithm was compared
with other partitioning algorithms for three forms of adaptive grids. In that study
it produoced fewer crossings than the other fast suboptimal methods, and only about
10-20% more crossings than the slow, nearly optimal methods like spectral bisection
[17].

Ag stated in Sec. 2, the number of crossings is only a first order approximation
to the valume of communication in the context of adaptive multilevel methods with
the FuDoP distribution. A better estimate is obtained by examining the number of
shadow triangles since this determines the amount of data that will be periodically
updated through message passing. In particular, the number of shadow triangles
should be small compared to the total number of triangles to keep the amount of
communication small compared to the amount of computation. One would expect
the number of shadow triangles to grow like the square root of the total number of

11

Figure 5: Partitions for four nested grids.

Table 2: Ratin of shadow triangles to total triangles.

2 processors

4 processors

8 processors

Total triangles Ratio | Total triangles Hatio | Total triangles Hatio
5235 0.148 4125 0300 2451 0.T15

BEES 0.105 T206 0.227 4502 0530

13912 0.087 12014 0.167 BOT4 D418

21569 0.071 19661 0.162 1498% 0.309

34154 0.D56 32649 0.108 25243 0.248

52372 D042 SlIB4 (D039 41344 0194

BLO3S 0.038 79236 0.079 GT042 0,157

123527 0.031 125183 0.064 110297 0.130

12

triangles in two dimensional problems [8]. Table 2 contains the ratio of the number
of shadow triangles to the number of triangles in the grid for several grid sizes and 2,
4 and B processors for the example problem. The square root relationship is clearly
seer.

Cannectedness. The algorithm is guaranteed to produce connected partitions by
design.

5 Parallel Refinement-Tree Partition

As explained in Sec. 2 it is important that the partitioning algorithm can be executed
in parallel an the distributed data. It would be much too expensive, both in commu-
nication and idle processors, to send the refinement tree data to a single processor for
sequential partitioning.

It is tempting to achieve parallelism by taking advantage of the fact that the
partitionings of the subtrees during recursive bisection are independent. For example,
after partitioning the data into two sets, the partitioning of the two subtrees to get
four sets can be done in parallel. However, this requires extremely complicated logic
to pase control from one processor to another as required by the distribution of the
data, results in many processors being idle at any given time, and requires a high level
of communication to provide the final result to all processors. Instead, an approach
can be taken in which each processor computes the partition independently, once the
subtres weights are computed, with all processors arriving at the same answer.

The first part of the refinement-tree partitioning algorithm sums the personal
weights in the tree to compute the subtres weights. Since no processor has the
entire tree, this summation requires cooperation between the processors. First each
processor computes the sums as best it can through a depth first traversal of the
portion of the refinement tree stored on that processor. In this portion, some leaves
represent triangles in the finest prid, and the subires weights for those nodes are
known. The summation can proceed above these nodes. Other leaves are points at
which the local portion of the tree has been “pruned” with the subtree below that
point residing on a different processor, because the corresponding triangles do not
lie in the partition assigned to this processor. Here the processor does not know
the subtres weight, and summation above that node must be deferred. When the
partial summation is complete, processors exchange the weights at the nodes where
pruning has occurred. A second depth first traversal is performed to propagate the
summation above the communicated weights. Note that, to reduce computation, the
parts of the tree where the summation has already occurred are not traversed again.
It is possible that not all of the weights for the pruned nodes are available after the
first summation, so it may require a few iterations before all processors are able to
propagate the summation to the root of the tree.

This is illustrated in Fig. 6 for the case of the refinement tree of Fig. 4. The
part of the refinement tree contained on processar 1 is on the left, and the part on
processor 2 is on the right. Note that the root and some other nodes are contained
on both processors so that each has a full domain partition. The top pair of trees

13

Figure 6: Parallel computation of the subtres weghts.

14

show the state before the summation begins. The leaves that represent triangles of
the finest grid are labeled with the subtres weight '1°, those where pruning accurred
are labeled '?" because the subtree weight is unknown, and the interior nodes are
unlabeled becanse the subtree weight has not yet been computed. The middle pair of
trees shows the result of the first summation. The processors then communicate the
weight of the pruned nodes, which replaces the '?' with the subtree weight computed
by the other processor. The bottom pair of trees shows the result of the second
summation.

When the summation process is complete, all processors have the same subtree
weights for the nodes of the refinement tree. Therefore each processor can perform
the bisection of the refinement tree independently and arrives at the same assignment
of nodes to sets. For recursive bisection to partition the data inte more than two sets,
the entire process is repeated on each subtree defined by the partition as in Sec. 3.
This approach produces the same partitions as the sequential algorithm.

The parallel algorithm has an asymptotic speedup of p over the sequential algo-
rithm, provided p < N. The bisection part of the algorithm, which is done simul-
taneously by each processor and hence provides no speedup, requires Ofp lag N)
operations which is insignificant compared to the O[N log p) operations required by
the computation of the subtree weights. The computation of the subtree weights is
asymptotically equally divided among the processars, with sach requiring ﬂ[% lag p)
aperations, thus exhibiting a speedup of p.

6 Conclusion

A framewark for parallel adaptive multilevel methods on distributed memary mes-
sage passing multiprocessors was defined. This framework uses a grid partitioning
algorithm after the adaptive refinement phase to achieve dynamic load balancing. A
set of properties of partitioning algarithms was presented and examined in the above
context. It was determined that the most important properties are speed, paralleliz-
ability, balance and nestedness. A modified form of the number of crossings is also
important, and connectivity is desirable.

A partitioning algorithm based on the adaptive refinement tree was presented
and analyzed. The naodes of the tree can be weighted to optimize the balance under
different metrica. Weights were presented to optimally balance the number of triangles
in the partitions. It was proven that the algorithm produces partitions that are as
close to equal in size as possible. Ongoing research is considering other weightings to
optimize the balance in terms of the computations performed during a multigrid eyele.
An aperation count of I'J'I:N ln,g r+p lug N]; where N iz the aumber of I:ria.ngl:a
and p is the number of partitions, was established for the algorithm. Numerical
experiments using a prototype code demonstrated that the execution time of the
partitioning algorithm is less than the execution time of adaptive refinement and
multigrid, that the partitions of a sequence of nested grids are similar, and that the
amount of data to be Pcriudica.ll:.r communicated grows like 1.-""1!"_-' The algﬂrithm 18
guaranteed to produce connected partitions. A parallel version of the algorithm was

15

described. In this version, all communication oceurs during the weight summation
part of the algorithm; each processor computes the bisection of the tree independently.
Ongoing research is seeking to further reduce the communication.

References

[1] R. E. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differen-
tial Equations, Frontiers in Applied Mathematics Val. 15, SIAM, Philadelphia,
[1994).

[2] A. Brandt, Multi-level adaptive solutions te boundary wvalue problems,
Math. Comp. 31, 333-390 [1977).

[3] 5. F. McCormick, Multilevel Adaptive Methods for Partial Differential Equa-
tions, Frontiers in Applied Mathematics Vol. 6, SIAM, Philadelphia, (1989).

[4] W. F. Mitchell, Optimal multilevel iterative methods for adaptive grids, SIAM
J. Sei. Statist. Comput. 13, 146-167 (1992).

[5] M-C. Rivara, Design and Data Structure of Fully Adaptive, Multigrid, Finite-
Element Software, ACM Trans. Math. Software 10, 242-264 (1984).

[6] U. Ride, Mathematical and Computational Techniques for Multilevel Adaptive
Methods, Frontiers in Applied Mathematics Val. 13, SIAM, Philadelphia, (1993).

[7] P. Bastian and 5. Lang, Parallel Adaptive Multigrid Methods in Plane Linear
Ela.ﬂticil:].r l-’1:'-:|]:|ll:1:n£|;| Kum. Lan. Alg. with ﬁtp]:ll- 4, 153176 I:lﬂﬂ?].

[8] W. F. Mitchell, The Full Damain Partition Approach to Distributing Adaptive
Grids, Appl. Numer. Math. 26 (1-2), 265-275 (1997).

[@] L. Stals, Adaptive Multigrid in Parallel, in Proceedings of the 7 SIAM Confer-
ence on Parallel Processing for Scientific Camputing, SIAM, Philadelphia (1995)
I67-372.

[10] W. F. Mitchell MGGHAT: Elliptic PDE Software with Adaptive Refinement,
Multigrid and High Order Finite Elements, in Sixth Copper Mountain Confer-
ence on Multigrid Methods, N. D. Melson, T. A. Manteuffel, and 5. F. Me-
Cormick, eds., NASA (1993) 439-448.

[11] W. F. Mitchell, The Full Domain Partition Approach for Parallel Multigrid on
Adaptive Grids, in Proceedings of the ™" SIAM Conference on Parallel Process-
ing for Scientific Computing, SIAM, Philadelphia (1997).

[12] A. Geist, A. Beguelin, J. Dongarra, W. liang, R. Manchek, and V. Sunderam,
PVM: Parallel Virtnal Machine, A User’s Guide and Tutorial for Networked

Parallel Computing, MIT Press, Cambridge [1994].

16

[13] M. Snir, 5. W. Otto, §. Huss-Lederman, . W. Walker, and J. Dongarra, MPL:

The Complete Reference, MIT Press, Cambridge (1995).

[14] K. D. Devine, and J. E. Flaherty, Dynamic Load Balancing for Parallel Finite

Element Methods with Adaptive h- and p-Refinement, in Proceedings of the
7" SIAM Conference on Parallel Processing for Scientific Computing, SIAM,
Philadelphia (1995) 593-508.

[15] C. Walshaw and M. Berzins, Dynamic Load-Balancing for PDE Salvers on Adap-

[16]

[17]

[18]

[19]

tive Unstructured Meshes, Concurrency: Practice & Experience T (1), 17-28
(1995).

W. F. Mitchell, Refinement Tree Based Partitioning for Adaptive Grids, in Pro-
ceedings of the 7™ SIAM Conference on Parallel Processing for Scientific Com-
puting, SIAM, Philadelphia (1995) 587-592.

B. Hendrickson and R. Leland, The Chaca User's Guide Version 1.0, Technical
Repart SAND93-2339, Sandia National Laboratories, 1993.

M. T. Jones and P. E. Plassmann, Parallel Algorithms for Adaptive Mesh He-
finement, STAM J. Sei. Comput. 18 (3), 636-T08 (1997).

(3. Karypis and V. Kumar, A Fast and High Quality Multilevel Scheme for Parti-
tioning lrregular Graphs, Technical Report TR95-035, Department of Computer
Science, University of Minnesota, 1995.

About the author: William F. Miichell is & compuler scientist in the Math-

ematical and Computational Sciences Division of the NIST Information Technology
Laboratory. The Nationel Institute of Standards and Technolagy is an agency of the

Technology Administration, U.S. Department of Commerce.

17

