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Sheared foam as a supercooled liquid?
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PACS. 64.70.Pf – Glass transitions.
PACS. 83.50.Ax – Steady shear flows.
PACS. 83.70.Hq – Heterogeneous liquids: suspensions, dispersions, emulsions, pastes, slurries,

foams, block copolymers, etc.

Abstract. – We conduct numerical simulations on a simple model of a two-dimensional
steady-state sheared foam, and define a quantity Γ that measures stress fluctuations in the
constant-area system. This quantity reduces to the temperature in an equilibrium system. We
find that the relation between the viscosity and Γ is the same as that between viscosity and
temperature in a very different system, namely a supercooled liquid. This is the first evidence
of a common phenomenon linking these two systems.

A liquid foam consists of gas or liquid bubbles suspended in an immiscible liquid at a
packing fraction that exceeds random close-packing. A quiescent foam has a nonzero static
shear modulus, because the thermal energy is negligible compared to the energy barrier re-
quired to change the relative positions of bubbles. When a foam is sheared, however, it can
be characterized by a well-defined viscosity. As the shear rate is lowered towards zero, the
viscosity diverges. This behavior is reminiscent of a supercooled liquid, where the viscosity
increases rapidly as the temperature is lowered towards the glass transition [1]. These two
systems are completely different: a sheared foam is a driven, athermal system at steady state,
while a supercooled liquid is a quiescent thermal system. However, in both cases, the systems
are jamming (i.e. the systems are spontaneously restricting themselves to a small part of
phase space). Other driven, athermal systems such as granular materials [2] also jam. We
therefore ask: does the common phenomenon of jamming lead to any common behavior in
driven, athermal systems and in quiescent, thermal systems?

Foam is a particularly simple athermal system that jams, because it can be driven ho-
mogeneously by steady shear flow. As foam is sheared, there are fluctuations caused by
rearrangement events where bubbles change their relative positions [3–5]. In an equilibrium
system, temperature is a measure of the size of fluctuations relative to how easy it is to create
a fluctuation (a response function). This property of temperature is embodied in the lin-
ear response relation that connects fluctuations in the stress on the boundary normal to the
y-direction, σyy, to the yy compression modulus [6, 7]

h
∂〈σyy〉

∂h
=

1
ρkBT

〈
(σyy − 〈σyy〉)2

〉
, (1)
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where h is the fixed height of the system in the y-direction and ρ is its density. One way to
compare the non-equilibrium sheared foam to a supercooled liquid would be to compare the
functional form of the divergence of viscosity vs. temperature in the supercooled liquid to the
form of viscosity vs. shear strain rate in the foam. However, strain rate and temperature are
very different variables and cannot be compared directly.

We conduct simulations on a simple model of foam [8], and measure a quantity Γ that
characterizes stress fluctuations due to rearrangement events in a two-dimensional, constant-
area system that is steadily sheared in the x-direction with the shear gradient in the y-
direction. In our non-equilibrium, steady-state system, we define Γ by analogy to eq. (1), so
that it corresponds to the temperature in a non-driven, equilibrium system [9]:

Γ =

〈
(σyy − 〈σyy〉)2

〉
h

ρh∂〈σyy〉/∂h
. (2)

Note that Γ depends on shear rate and should not be interpreted as an effective temperature
since there is no reason to believe that the equilibrium relation eq. (1) holds for our system.
However, Γ does provide a measure of the size of fluctuations relative to how easy it is to
create a fluctuation in our system, just as temperature does for an equilibrium system. In
this sense, Γ provides a reasonable measure of the ability of the system to overcome energy
barriers.

We measure Γ and the viscosity η as a function of shear rate. Our central result is that we
find that the relation between viscosity and Γ is the same as the relation between viscosity
and temperature in a supercooled liquid. This remarkable finding is the first quantitative
evidence that a common mechanism may underlie jamming in a driven, athermal system and
supercooled liquids.

Our simulations are carried out on a model introduced by Durian [8]. In two dimensions
this model treats bubbles as circles interacting via two types of interactions. The first inter-
action is purely repulsive and originates physically in the energy cost to distort bubbles. If
the distance between the centers of two bubbles is less than the sum of their radii, they will
distort to avoid overlap. This gives rise to a harmonic repulsive force [10, 11]. The model
therefore assumes that bubbles always remain circles, but includes the elastic energy of a
compressed spring between two overlapping bubbles. The second interaction is a frictional
force proportional to the velocity difference between neighboring bubbles. By modeling the
dissipation in the thin liquid films and Plateau borders as a dynamic friction, we neglect lubri-
cation effects that could be important in determining the stress/strain-rate relations for real
foams [12]. However, this simple model already gives rise to remarkably complex behavior.
Moreover, the regime in which the viscosity is high (the low shear rate regime) corresponds to
the regime where elastic effects dominate viscous ones, so the specific dissipation mechanism
may be unimportant there.

In the discussion that follows, we will scale all energies (such as Γ ) by kr2, where k is a
characteristic spring constant and r is the average bubble radius. The strain rate γ̇ is scaled
by a characteristic time τ = b/k, where b is the friction coefficient. Thus, γ̇ is the Deborah
number, or equivalently for this system, the capillary number.

Given the two types of forces on bubbles, we can solve the equations of motion [8] nu-
merically and propagate the bubble positions forward in time, as in a molecular-dynamics
simulation. Our simulations are conducted on polydisperse bubbles whose radii are drawn
from a flat distribution of a specified width, and whose spring constants vary inversely with
radius. We use square samples, with periodic boundary conditions in the x-direction and
confining walls (separated by the fixed distance h) in the y-direction. The bubbles along the
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Fig. 1 – The quantity Γ (open squares, right axis) and the viscosity η (solid circles, left axis) as
functions of the dimensionless shear rate γ̇ (Deborah number). Neither one obeys simple power law
behavior. Γ approaches a constant and η diverges in the limit γ̇ → 0. All quantities are dimensionless
as explained in the text.

confining walls are glued to them, and the system is sheared by moving one of the two walls
at fixed velocity in the x-direction. We then measure the force per length in the y-direction
on the wall (this is −σyy) and the force per length in the x-direction required to keep the
wall moving at fixed velocity (this is σxy, the xy-component of the stress). These fluctuate in
time as the system is sheared. The viscosity is defined by η = 〈σxy〉/γ̇, where γ̇ is the strain
rate. In order to measure ∂〈σyy〉/∂h, we perturb the y-separation, h, of the confining walls
and measure the average value of σyy during shear. We study fairly small systems, ranging
in size from 63 to 621 bubbles. To obtain adequate statistics, averages (indicated by angle
brackets) were taken over configurations as well as over time. Thus, each data point shown
in figs. 1-3 corresponds to an average over 10000 time steps covering a total strain of at least
10, and at least 9 different initial configurations. We find that at sufficiently long times, the
time average does approach the configurational average, but it proves more efficient to use a
combination of configurational and time averaging.

In fig. 1, we show the viscosity, η, and Γ as functions of the strain rate, γ̇. We have
measured these quantities over 5 decades of strain rate for a 238-bubble system at a packing
fraction of φ = 0.95 (the close-packing fraction is roughly 0.84). Note that η, which diverges
as γ̇ → 0, is not a pure power law as a function of γ̇; it requires two different power laws and
an additive constant to fit the data over the range shown. In the infinite shear rate limit, η
approaches a constant, η∞, which can be calculated analytically by assuming perfectly laminar
flow and integrating the viscous forces over the time that bubbles overlap.

Figure 1 also shows that Γ appears to level off at low strain rates. Although we cannot
deduce the limiting behavior of Γ directly from the data, we know that it should approach a
nonzero constant, Γ0, in the limit γ̇ → 0, by the following argument. As γ̇ approaches zero,
the system reduces to a simple network of springs, so the elastic constant ∂〈σyy〉/∂h must
approach a finite, nonzero constant. The stress fluctuations

〈
(σyy −〈σyy〉)2

〉
h

also approach a
finite, nonzero constant, because as γ̇ → 0 (i.e. the quasistatic limit), the system still explores
its configuration space and the stress fluctuates, however slowly. (In the quasistatic limit the
system is sheared infinitesimally and allowed to equilibrate before being sheared again.) At
γ̇ = 0, of course, there are no stress fluctuations. In this sense, γ̇ → 0 is a singular limit.
Since both ∂〈σyy〉/∂h and

〈
(σyy − 〈σyy〉)2

〉
h

are nonzero and finite in the quasistatic limit, it
follows that the ratio Γ defined in eq. (2) must approach a finite, nonzero constant, Γ0. We
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Fig. 2 – (a) An Arrhenius plot of ln η vs. 1/Γ from our simulations (solid squares) at φ = 0.95. The
dashed line is a fit to the Arrhenius form, η/η∞ = exp[A1/Γ ], at high values of Γ . The solid line is
a fit to the Vogel-Fulcher form, which is often used to fit data on supercooled liquids. The deviation
from the dashed line indicates super-Arrhenius behavior. (b) Power law fits to the high-Γ (solid) and
low-Γ (dashed) data. The solid curve corresponds to an exponent of 0.9 and the dashed curve to an
exponent of 2.5. The latter exponent is consistent with mode-coupling theory, which is unsurprising
given our limited dynamic range.

find that Γ0 is comparable to the average elastic energy per bubble. However, our dynamic
range is limited compared to that of experiments, so we cannot estimate the value of Γ0 with
much reliability.

Our aim is to determine whether jamming leads to common behavior in sheared foams
and supercooled liquids. The most striking feature of jamming in a supercooled liquid is the
stupendous rise in the viscosity with decreasing temperature. We have measured a quantity Γ
that characterizes stress fluctuations in our driven system in the same way that temperature
measures stress fluctuations in an equilibrium system. We therefore study the behavior of η
as a function of Γ . This is shown in the solid symbols of fig. 2(a), where we have plotted ln η
vs. 1/Γ [13]. A straight line on this plot would correspond to Arrhenius behavior. At high
Γ , the behavior is indeed Arrhenius, as shown by the fit to the dashed line, which has the
form η/η∞ = exp[A1/Γ ], with A1 = 1.6 × 10−6. The Arrhenius form implies that A1 should
characterize the height of energy barriers to bubble rearrangements in the foam. In our case,
we can measure the height of these barriers by measuring the elastic energy per bubble as a
function of strain as the system is sheared very slowly. As bubbles overlap (distort) the elastic
energy rises, and when they rearrange the elastic energy drops. Thus, the distribution of
energy rises measures the heights of barriers that the bubbles cross as the system is strained.
The resulting distribution of barrier heights per bubble is shown in fig. 3. At low shear
rates, the elastic energy rise distribution approaches a well-defined quasistatic limit [14]. The
distribution is quite broad, with a power law region that is cut off at the high-barrier end. The
average barrier height is 〈δE〉 = 5.3× 10−6, which is quite close to our measured value of A1.
Note that A1 represents some unknown moment of the distribution and that the distribution
is fairly broad, so it is not surprising that the two numbers are not exactly the same.

Clearly, the observed behavior is not Arrhenius over the entire range of Γ . Figure 2(a)
shows that the behavior is super-Arrhenius at low Γ , in that the viscosity increases more
rapidly than predicted by the Arrhenius law. The solid line is a fit to the Vogel-Fulcher form,
η/η∞ = exp[A/(Γ − Γ0)], with A = 9 × 10−7 and Γ0 = 2.5 × 10−7. This is the same form
that is often used to fit glass transition data [15]. The ratio A/Γ0 ≈ 3.6 is a measure of
fragility, and corresponds to an extremely fragile glass-forming system [13]. Note that the
Vogel-Fulcher form does not fit particularly well at the high-Γ end; this is also typical of
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Fig. 3 – The distribution of energy barriers (measured on a per-bubble basis) crossed by the system
as it is strained in the low-shear-rate limit. The average of this distribution (marked by an arrow)
provides an estimate of the characteristic energy barrier height that is independent of the Arrhenius
parameter A1.

Fig. 4 – Arrhenius plot of our data for different system sizes, where N is the total number of bubbles.
Here, φ = 0.9. The two larger systems yield nearly the same results, but there is a discernible trend
towards more Arrhenius behavior with increasing size. Even in the infinite system size limit, however,
the behavior must be super-Arrhenius, as discussed in the text.

supercooled liquids, where the Arrhenius form is often used to fit the high-temperature data,
and the Vogel-Fulcher form is used to fit the lower-temperature data. Many other functional
forms have also been used successfully for supercooled liquids [17]; these forms work equally
well for our system.

Skeptics have asked whether our data can be fit by a power law, η ∝ 1/(Γ −Γc)α. We find
that a single power law does not fit the data well over the entire range. However, the high-Γ
and low-Γ data can be fit reasonably well by two different power laws, as shown in fig. 2b.
The high-Γ fit corresponds to an exponent of α = 0.9 and diverges at 1/Γc = 2.3 × 106; this
evidently underestimates the value of 1/Γc. The low-Γ fit, which covers a viscosity range of
nearly 3 decades, corresponds to an exponent of α = 2.5 and diverges at 1/Γc = 2.8 × 106.
The latter exponent is in good agreement with the prediction of mode-coupling theory [18].
Viscosity measurements near the colloidal glass transition, which cover a similar dynamic
range, are consistent with a similar power law [19]. Data for supercooled liquids also can be
fit by a comparable exponent over the same dynamic range [18], but this power law fit predicts
a divergence well above the glass transition temperature so it is known to fail badly at higher
viscosities.

It is not possible to provide a definite answer to whether our data should be interpreted
in terms of a power law or super-Arrhenius form. The same difficulty plagues studies of
the colloidal glass transition [19], which cover a similar dynamic range, as well as studies of
supercooled liquids, which cover 10 more decades of dynamic range. However, given that a
single power law does not fit our data well over the whole range, and that the Arrhenius form
at high Γ agrees with an independent measurement of the barrier height, we believe that it is
more natural to interpret our data as super-Arrhenius rather than power law.

Since our data are taken for a small system (238 bubbles), it is important to study the
system size dependence of the observed trend. This is shown in fig. 4 for three different system
sizes at a packing fraction of φ = 0.9. The 63-bubble system is clearly too small, and shows a
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very different dependence of η on Γ . There is also a difference between the results for 224 and
621 bubbles. It is small compared to the error bars but there is a systematic trend towards
more Arrhenius behavior with increasing system size. Thus one might wonder if the behavior
is Arrhenius for infinite systems. We argue that it must still be super-Arrhenius in that limit,
because the viscosity diverges as γ̇ → 0, but Γ approaches Γ0, a nonzero constant. We note,
however, that even if the behavior were Arrhenius, it would still be nontrivial and remarkable.

We find that the super-Arrhenius behavior depends only weakly on packing fraction. We
have studied 3 different packing fractions: φ = 0.85, just above close-packing, φ = 0.90 and
φ = 0.95. At the lowest packing fraction, the behavior is nearly Arrhenius. Above φ = 0.85,
the behavior is fairly insensitive to φ, but Γ0 increases somewhat with φ. This trend, as well
as the much weaker dependence of viscosity on φ than on Γ , is consistent with experiments
on supercooled liquids at constant density [20].

Finally, we have studied the effect of frustration on the super-Arrhenius behavior. A
monodisperse system will crystallize under shear. We can therefore increase frustration by
increasing the polydispersity. The results presented so far are for a flat distribution of width
w = 0.8, so that the bubbles range from 1−w = 0.2 to 1 + w = 1.8 times the average radius.
We have also studied the case w = 0.2. We find that the curvature on an Arrhenius plot (with
Γ on the abscissa instead of Γ/Γ0) is greater for the less-frustrated system (w = 0.2); this
reflects the increase of Γ0 with decreasing w. This trend cannot be compared to experimental
results for supercooled liquids, since there is no way to measure frustration for those systems.
However, we note that a recent theoretical picture of the glass transition does predict the
same trend [21].

In this paper, we have suggested a measure of fluctuations in an athermal system under
steady-state shear, Γ defined in eq. (2), which reduces to kBT in an equilibrium system.
We have shown that the viscosity of a model foam obeys the same relation with Γ that
the viscosity of a supercooled liquid obeys with temperature. While there is no a priori
reason that fluctuations in a sheared foam should be described by an effective temperature,
we note that this assumption appears implicitly in a recent approach to the rheology of soft
glassy materials [22], which introduces a temperature variable into systems that are definitely
athermal. The concept of a “granular temperature” has also been used extensively to describe
driven granular flows [23]. Finally, there is numerical evidence that applying shear may be
similar to raising the temperature in supercooled liquids. Molecular-dynamics simulations on
a model supercooled liquid, namely a bidisperse repulsive Lennard-Jones system, study kinetic
heterogeneities in the steady-state sheared supercooled liquid [24]. These simulations show
that the kinetic heterogeneities in the sheared system are the same as those in an unsheared
system at a higher temperature.

One reason that the concept of an effective temperature may be of some use to driven
athermal systems is that the systems explore many different configurations. A different type
of flow could explore a different set of bubble-packing configurations, but perhaps a limited
amount of ergodicity is enough for statistical mechanics to be useful, within limits that must
be determined. We note also that a steady-state driven system obeys a type of fluctuation-
dissipation relation in the sense that the average flow gives rise to fluctuations, but the average
flow and fluctuations must be determined self-consistently subject to the constraint that the
total energy dissipated must be the same as the energy fed into the system. Clearly, a
systematic study of the applicability of the concept of a temperature to driven systems is
needed. We are currently investigating whether other definitions of an effective temperature
yield results for our model that are consistent with the one proposed here. If there is indeed
a common phenomenon of jamming underlying driven, athermal systems and supercooled
liquids, however, it may not be necessary for the concept of temperature to be valid; it
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is possible that any reasonable measure of fluctuations in the driven system will lead to
qualitatively similar behavior.

∗ ∗ ∗

We thank D. J. Durian, D. Kivelson, J. S. Langer, D. Levine, S. R. Nagel,

J. P. Sethna and G. Tarjus for stimulating discussions. The support of the National
Science Foundation under Grant. Nos. PHY94-07194 (SAL and AJL) and CHE-9624090 (AJL)
is gratefully acknowledged.

REFERENCES

[1] Ediger M. D., Angell C. A. and Nagel S. R., J. Phys. Chem., 100 (1996) 13200.
[2] Jaeger H. M., Nagel S. R. and Behringer R. P., Rev. Mod. Phys., 68 (1996) 1259.
[3] Weaire D. and Rivier N., Cont. Phys., 25 (1984) 59.
[4] Gopal A. D. and Durian D. J., Phys. Rev. Lett., 75 (1995) 2610.
[5] Dennin M. and Knobler C. M., Phys. Rev. Lett., 78 (1997) 2485.
[6] Landau L. D. and Lifschitz E. M., Statistical Physics (Pergamon Press, New York) 1980.
[7] See eq. (67) in Schofield P., Proc. Phys. Soc. (London), 88 (1966) 149.
[8] Durian D. J., Phys. Rev. Lett., 75 (1995) 4780; Phys. Rev. E, 55 (1997) 1739.
[9] It might appear more straightforward to define Γ using the velocity fluctuation distribution.

However, the velocity distribution in an equilibrium system defines the ratio of the temperature
to a mass, and in our system, the bubbles are massless. This is why we have chosen a definition
of Γ that reduces simply to the temperature in an equilibrium system.

[10] Morse D. C. and Witten T. A., Europhys. Lett., 22 (1993) 549.
[11] In three dimensions, there is a logarithmic correction [10]. For the effects of this correction on

static properties, see Lacasse M. D., Grest G. S., Levine D., Mason T. G. and Weitz D.

A., Phys. Rev. Lett., 76 (1996) 3448; Lacasse M. D., Grest G. S. and Levine D., Phys. Rev.
E, 54 (1996) 5436.

[12] Li X. F. and Pozrikidis C., J. Fluid. Mech., 286 (1995) 379.
[13] Angell C. A., J. Non-Cryst. Solids, 131 (1991) 13.
[14] Tewari S., Schiemann D., Durian D. J., Knobler C. M., Langer S. A. and Liu A. J.,

preprint (1999).
[15] We have also compared our results directly to experiments on supercooled di-n-butylphtha-

late [16]. We adjust our scale for Γ so that our ratio Γ/Γ0 corresponds to their T/Tg. We then
find that our data collapses with theirs. However, their dynamic range is 10 orders of magnitude
higher!

[16] Menon N., Nagel S. R. and Venerus D. C., Phys. Rev. Lett., 73 (1994) 963.
[17] Kivelson D., Tarjus G., Zhao X. and Kivelson S. A., Phys. Rev. E, 53 (1996) 751.
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