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Solute trapping and solute drag in a phase-field model of rapid solidification
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Faculty of Mathematical Studies, University of Southampton, Southampton SO17 1BJ, United Kingdom

W. J. Boettinger and G. B. McFadden
National Institute of Standards and Technology, Gaithersburg, Maryland 20899

~Received 27 March 1998!

During rapid solidification, solute may be incorporated into the solid phase at a concentration significantly
different from that predicted by equilibrium thermodynamics. This process, known as solute trapping, leads to
a progressive reduction in the concentration change across the interface as the solidification rate increases.
Theoretical treatments of rapid solidification using traditional sharp-interface descriptions require the introduc-
tion of separately derived nonequilibrium models for the behavior of the interfacial temperature and solute
concentrations. In contrast, phase-field models employ a diffuse-interface description and eliminate the need to
specify interfacial conditions separately. While at low solidification rates equilibrium behavior is recovered, at
high solidification rates nonequilibrium effects naturally emerge from these models. In particular, in a previous
study we proposed a phase-field model of a binary alloy@A. A. Wheeleret al., Phys. Rev. E47, 1893~1993!#
in which we demonstrated solute trapping. Here we show that solute trapping is also possible in a simpler
diffuse interface model. We show that solute trapping occurs when the solute diffusion lengthDI /V is
comparable to the diffuse interface thickness. HereV is the interface velocity andDI characterizes the solute
diffusivity in the interfacial region. We characterize the dependence of the critical speed for solute trapping on
the equilibrium partition coefficientkE that shows good agreement with experiments by Aziz and co-workers
@see M. J. Aziz, Metall. Mater. Trans. A27, 671 ~1996!#. We also show that in the phase-field model, there is
a dissipation of energy in the interface region resulting in a solute drag, which we quantify by determining the
relationship between the interface temperature and velocity.@S1063-651X~98!13709-1#

PACS number~s!: 68.10.Jy, 82.65.Dp, 64.70.Dv
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I. INTRODUCTION

Sharp interface models of alloy solidification employ t
solution to the conventional diffusion equations for heat a
solute in the bulk phases. The matching of solutions at
solid-liquid interface is obtained~a! from the flux conditions
required for conservation and~b! through constitutive laws
for the interface temperature and the jump in concentra
across the interface as functions of velocity. The latter
obtained from separately derived models of the solute di
sion across the atomic layers associated with the interf
see, for example, the continuous growth~CG! model of Aziz
and Kaplan@1–3# as well as others@4–9#. The velocity de-
pendence of the jump in concentration is termed solute t
ping and provides a mechanism whereby the jump vanis
at high rates of solidification in a manner consistent w
experimental observations~partitionless solidification!.

While this modeling approach has met with considera
success, it is clear that at high rates of solidificationV
~around 1 m/s!, the diffusion lengthDL /V, whereDL is the
diffusion coefficient in the liquid, that is predicted by th
conventional diffusion equation is comparable to the int
face thickness for metals. At such length scales diffuse in
face theories~see, e.g., the work of Cahn and Allen@10,11#
and Cahn and Hilliard@12#! are often found to provide mor
reasonable descriptions of the diffusion process in
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around the interfacial region. The phase-field model p
sented in this paper provides a common framework for m
eling both the bulk phases and the interfacial region and
avoiding the requirement for separately derived constitut
laws for the interface conditions. The composition profi
through the interfacial region, as well as in the bulk phas
is obtained through this method.

Many of the ingredients of the phase-field approach
solute trapping can be found in the continuum interface m
els of Baker and Cahn@13–15# and Hillert and Sundman
@16# ~for solid state transformations!. They compute the ve-
locity dependence of the concentration profile across a m
ing diffuse phase boundary for a prescribed chemical po
tial profile. The latter also make a separate analysis of
free energy available for, and that dissipated by, the bou
ary motion. The energy dissipated is called solute drag
subject also treated by Cahn@17#. As we will see in this
paper, solute trapping and solute drag are included in
phase-field governing equations that arise naturally out
gradient flow thermodynamics.

The phase-field model for modeling solidification uses
scalar variablef ~the phase field! to describe the thermody
namic state~liquid or solid! of the various regions of a sys
tem. Interfacial regions between liquid and solid are iden
fied by smooth but highly localized transitions of the pha
field variable. For numerical calculations, the advantage
the phase-field formulation of solidification is that the inte
face is not tracked but is given implicitly by a contour of th
variablef. Phase-field models of solidification for pure m
terials have existed for many years@18–20#. With recent
iti
3436 © 1998 The American Physical Society
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advances in supercomputing this approach has allowed
computation of realistic complicated growth morpholog
such as dendritic growth@21–27#.

For alloys, a model for diffuse interface motion in a sy
tem with a miscibility gap in a solid solution phase has be
treated by Langer and Sekerka@28#. However, only recently
has the phase-field method been extended to binary syst
Application to alloy solidification was performed for an is
thermal binary alloy by Wheeler, Boettinger, and McFadd
@29# ~WBM1!, who also studied its properties in the sha
interface limit. Löwen, Bechhoefer, and Tuckerman@30# also
discuss the formal analogy between an isothermal binary
loy phase-field model and the nonisothermal phase-fi
model for a pure material. Caginalp and Xie@31# described a
phase-field model of a nonisothermal binary alloy. Th
studied a variety of different sharp interface limits and
covered versions of the equilibrium conditions at a sh
interface, none of which exhibited solute trapping. Lin a
Rogers@32# have also studied an order parameter model fo
binary liquid that is based on the general framework dev
oped by Fried and Gurtin@33,34# for order parameter model
that describe configurational forces@35#. Realistic simula-
tions of alloy dendritic growth have been performed by W
ren and Boettinger@36#. Phase-field models have also r
cently been developed for eutectic alloys, by a number
workers@37–41#.

The phase-field model of a binary alloy in WBM1
based on a single gradient energy term in the phase-
variable f and constant solute diffusivity. The phase fie
then varies through the interfacial region on a length scalle
that is associated with the gradient energy coefficiente. We
examined the sharp interface limit in whichle is much
smaller than the diffusion lengthDL /V and recovered the
conventional sharp-interface jump conditions based on lo
equilibrium assumptions. In particular, solute trapping w
not found to be possible in this limit. In subsequent wo
@42# ~WBM2!, we developed a phase-field model of solu
trapping in a binary alloy that included gradient energy ter
in f and the solute concentrationc. In the WBM2 model,
the phase field and solute field have independent len
scalesle and ld , respectively, in the interfacial region, tha
are associated with the corresponding gradient energy c
ficients e and d. We considered a limiting situationle! ld
and demonstrated that in the resulting model solute trapp
occurs when the diffusion lengthDL /V becomes comparabl
to ld . WBM1 and WBM2 both considered the case of equ
solid and liquid diffusivities.

In this paper we reconsider our first model~WBM1! and
show that solute trapping is indeed predicted, but in a diff
ent limit in which the interface thickness remains finite b
the interface velocity is large enough that the solute diffus
length is comparable tole ~first briefly reported in@43# and
described in detail in@44#!. In particular, solute trapping ca
be recovered without the necessity of introducing a so
gradient energy term. Because we now also include the
sibility of a variable diffusion coefficient through the inte
face, the relevant diffusion length isDI /V, whereDI is a
measure of the interface diffusivity. We are able to relate
results to the Aziz CG theory; in particular, we obtain
prediction for the dependence of the characteristic trapp
velocity on the equilibrium partition coefficient that is i
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good agreement with recent experiments@45#.
Conti @46,47# has extended the WMB2 model to includ

nonisothermal and time-dependent effects and found tha
transient solute segregation at the interface can differ sig
cantly from the predictions of the CG model. Fife an
Charach@48# have studied a number of different sharp inte
face limits for a class of phase-field models of a binary al
that include WBM2 as a special case. The solute trapp
they observe is related to the solute gradient energy a
WBM2. Plapp and Gouyet@49# have considered mean-fiel
equations derived from lattice gas models and examined
merically the isothermal dynamics of planar solidificatio
they observe oscillations of the growth velocity during s
lidification.

Conti @50# and Kim, Kim, and Suzuki@51# have also in-
dependently considered solute trapping in the context of
WBM1 model, with similar conclusions concerning th
mechanism of solute trapping based on numerical comp
tions. Conti has extended the model to include nonisother
effects and computed one-dimensional, time-dependent s
tions for planar growth that show good agreement with p
dictions of the CG model. Kim, Kim, and Suzuki derive a
approximate analysis for the effect of trapping at low velo
ties and obtain good agreement with low-velocity numeri
calculations.

The outline of this paper is as follows. In Sec. II w
describe the general characteristics of existing solute t
ping and solute drag models in our notation and comp
them in a general way to the phase-field approach. In Sec
we summarize the details of the phase-field model that
consider. Section IV presents numerical calculations for o
dimensional solutions of the phase-field equations that
hibit solute trapping at high solidification rates. Som
asymptotic results in the high-velocity limit are given in Se
V that reinforce the numerical results and provide expli
expressions for the characteristic velocity at which sol
trapping becomes important. A discussion is provided in S
VI and conclusions appear in Sec. VII.

II. OVERVIEW OF TRAPPING AND PHASE-FIELD
MODELS

A. Trapping models

Binary alloy solute trapping models are based on
analysis of diffusional jumps across the interface. For t
purpose the driving forces for diffusion and crystallizatio
are required. We consider free energy densities in the liq
and solid phases, which we denote byf L(cL ,T) and
f S(cS ,T), respectively, whereT, cL , and cS represent the
temperature and the concentrations~mole fractions! of spe-
ciesB in the liquid and solid phases at the liquid-solid inte
face.~For simplicity we assume a constant molar volumevm
in the system, which eliminates possible convective effe
such as those associated with a density change on solidi
tion. The free energies and their associated chemical po
tials are measured in units of energy per unit volume.!

The chemical potentials of speciesA andB in each phase
are given by

mA
L5 f L~cL ,T!2cL

] f L

]cL
~cL ,T!, ~1a!
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mB
L5 f L~cL ,T!1~12cL!

] f L

]cL
~cL ,T!, ~1b!

mA
S5 f S~cS ,T!2cS

] f S

]cS
~cS ,T!, ~1c!

mB
S5 f S~cS ,T!1~12cS!

] f S

]cS
~cS ,T!. ~1d!

Thermodynamic equilibrium at the interface is expressed
equality of the chemical potentialsmA

L5mA
S and mB

L5mB
S ,

which can be represented graphically by a common tang
construction inf -c space at fixedT. Equivalent conditions
are often expressed in terms of the interdiffusion potent
mL5mB

L2mA
L5] f L /]cL and mS5mB

S2mA
S5] f S /]cS in

each phase and the free energy change on solidificationDFS
defined by

DFS5 f S~cS ,T!2H f L~cL ,T!1~cS2cL!
] f L

]cL
~cL ,T!J

5~12cS!$mA
S~cS ,T!2mA

L~cL ,T!%

1cS$mB
S~cS ,T!2mB

L~cL ,T!%. ~2!

This expression represents the free energy change per
volume associated with removing material of compositioncS
from the liquid and adding it to the solid phase and is kno
as the tangent to curve rule@14#. Equivalent equilibrium con-
ditions are then given by

mL2mS50, DFS50. ~3!

In the dilute solution limit, the equationmL2mS50 re-
sults in the expressioncS5kEcL , which defines the equilib-
rium partition coefficientkE in terms of the free energies
and the equationDFS50 results in an expression for th
liquidus temperatureT5TM1mLcL , which defines the li-
quidus slopemL in terms of the free energies, whereTM is
the pure solvent melting point. Under nonequilibrium con
tions, nonzero values of the quantitymL2mS and the free-
energy change on solidificationDFS are interpreted as driv
ing forces for solute distribution and phase chan
respectively. These lead to response functions@14# that pro-
vide nonequilibrium relations betweencL ,cS ,T, and the in-
terface velocityV. The response functions define kinet
laws that reduce to the above equilibrium conditions~3!
whenV50.

1. Expressions for the partition coefficient

A simple example of a nonequilibrium model for solu
segregation can be obtained by assuming that the jum
interdiffusion potential actually occurs over a small interfa
width l, typically of atomic dimensions, to create a gradie
¹m'(mL2mS)/ l and a diffusion fluxJ of solute across the
interface, measured in the reference frame of the sample

J5
2M0

vm
cL~12cL!

~mL2mS!

l
; ~4!
y

nt

ls

nit

n

-

,

in

t
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here we have inserted a ‘‘thermodynamic factor’’ ofcL(1
2cL) in order to simplify the resulting expressions belo
while retaining generality by allowing for a possibl
concentration-dependent mobility coefficientM0 . For
steady-state growth at velocityV, the flux must also satisfy a
solute balance law

J5
V

vm
~cL2cS!, ~5!

wherevm is the molar volume. Combining these expressio
gives

mL2mS52V
~cL2cS!l

M0cL~12cL!
, ~6!

which in the dilute solution limit leads to a relation for th
partition coefficientk5cS /cL of the form

ln~k/kE!5
V

VD
~12k!, ~7!

whereVD5DI / l is a characteristic trapping velocity with a
interface diffusivity DI5M0RT/vm and R is the universal
gas constant. This expression exhibits the low-velocity lim
k'kE for V/VD!1 and the high-velocity limitk'1 for
V/VD@1.

Baker and Cahn@14# and Hillert and Sundman@16# ana-
lyze diffusion through the interface with continuum mode
that make assumptions about the details of the variation
the interdiffusion potentials and the diffusion coefficie
through the interface. In contrast, the CG model of Aziz
based on a model of forward and reverse fluxes across
interfacial region using chemical reaction theory such thaJ
is nonlinear in the quantitymL2mS. We note that lineariza-
tion of their expression forJ leads to a prefactor o
cS(12cL) in Eq. ~4!. In the CG model the partition coeffi
cient k depends on the interface velocity through an expr
sion of the form

k5
kE1V/VD

11V/VD
~8!

in the dilute solution limit forkE,1. HereVD represents the
characteristic interface velocity scale on which the sol
trapping occurs. The quantityVD is given byDI / l, whereDI
represents an interfacial diffusivity andl is the thickness of
the interface, equal to the atomic jump distance. Since, h
ever,DI is not subject to direct experimental determinatio
the value ofVD cannot be measured directly. Instead, valu
for VD are inferred by fitting the observed dependence ok
on V using the expression~8!. By studying trapping in a
number of alloys, Smith and Aziz@45# have found that the
trapping velocitiesVD depend on the particular alloy. In pa
ticular, VD was found to correlate most strongly with th
equilibrium partition coefficientkE ; VD was not found to
correlate strongly with either the liquid diffusivityDL or the
solid diffusivity DS . Smith and Aziz@45# also consider a
multistep CG formulation in which the interface consists o
finite number of discrete layers that, in the proper limit, r
sembles a diffuse interface.
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The Aziz CG model has been extended tokE.1 @52#.
The appropriate expression fork can also be derived usin
the formalism of Ref.@53# to give

1/k5
1/kE1V/VD

11V/VD
~9!

in the dilute solution limit. This form is similar to that of~8!,
but involves instead the reciprocals ofk andkE . The expres-
sions~8! and ~9! are based on a redistribution potential d
gram in which a barrier height is assumed to maintain a fi
distance above the higher of the two double-well minim
~see@53#!. Most of the available experimental data pertain
the casekE,1, although in this paper we shall also briefl
consider the casekE.1 for completeness.

Note that the CG expression~8! for kE,1 can be ex-
pressed in the form

k2kE5
V

VD
~12k!, ~10!

which exhibits the same high- and low-velocity limits as t
expression~7!. Indeed the two become identical whenkE
tends to unity.

2. Expressions for the interface temperature

Expressions for the interface temperature can be der
from models involving the change in free-energy dens
upon solidificationDFS . For example, a model that relate
the interface velocity to the driving forceDFS @54# is given
by

V5VcF12expS vmDFS

RT D G'2Vc

vmDFS

RT
, ~11!

whereVc is the maximum speed of crystal growth at infini
driving force. Such a model assumes that the entire fr
energy change upon solidification can be devoted to driv
the solidification. So-calledsolute dragmodels assume that
fraction of DFS is dissipated at the interface; the amou
dissipated is denoted byDFD . The driving force for solidi-
fication is then assumed to be provided by the remain
denoted byDFC5DFS2DFD , leading to an alternate ex
pression of the form

V5VcF12expS vmDFC

RT D G'2Vc

vm~DFS2DFD!

RT
.

~12!

Aziz and Kaplan@3# consider a specific model for the inte
face dissipation given by

DFD5~cL2cS!$@mA
S~cS ,T!2mA

L~cL ,T!#

2@mB
S~cS ,T!2mB

L~cL ,T!#%. ~13!

In both cases an expression for the interface temperatur
the form

T5TM1
mLc`

k S 12k1@k1~12k!a# ln~k/kE!

12kE
D2

V

m̃
~14!
d

d
y

e-
g

t

r,

of

can be derived in the dilute solution limit@54#. Herea51 if
solute drag is included anda50 if solute drag is negligible.
The parametera may also be interpreted as a measure of
concentration of the material transferred from the liquid
the solid state@54#. The equilibrium liquidus slope ismL and
the kinetic coefficientm̃ is given by

m̃5
Vc L

RTM
2

~15!

in these dilute models, whereL is the latent heat per mole o
the pure solvent.

It is useful to consider in more detail the solute drag. T
energy dissipated per unit volume per unit time due to dif
sion through the interfacial region is obtained by consider
the term

D5
1

vm
JW•¹W m ~16!

across the interface. For steady-state one-dimensional so
fication, the energy dissipated per unit volume solidified
given by @3,16#

P5
vm

V E
2`

`

J
dm

dx
dx. ~17!

DFD as given by Eq.~13! is an approximation to Eq.~17!
~see@3#!. Jönsson and Ågren@55# have proposed a model fo
DFD wherecL in the prefactor in Eq.~13! is replaced by the
mean ofcL and cS . This yields a value ofa51/2 in the
expression~14!. Hillert and Sundman evaluate the solu
drag directly using the solutions to their diffusion equatio
@16#. Gurtin and Voorhees@56# develop a general thermody
namic description of a sharp interface far from equilibriu
that includes discussion of forces, fluxes, and solute d
Liu @57# provides a compact summary of solute drag mod
for solidification.

B. Phase-field model

The WBM1 model@29# is based on the Helmholtz free
energy functional given by

F5E
V
F f ~f,c,T!1

e2

2
u¹fu2GdV, ~18!

whereV is the volume occupied by the system and the g
dient energy coefficiente is assumed to be constant. Th
phase-field variablef vanishes in the liquid phase and
unity in the solid phase. In the phase-field model for a bin
alloy, the free energy densityf (f,c,T) is based on the bulk
free energiesf L and f S and can be written in the form

f ~f,c,T!5p~f! f S~c,T!1$12p~f!% f L~c,T!

1
W~c!

4
g~f!, ~19!

where

g~f!5f2~12f!2, p~f!5f2~322f!; ~20!
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g(f) is a double well with minima atf50 andf51 and
p(f) satisfiesp(0)50 andp(1)51. W(c) represents a bar
rier height that is related to the surface energy and interf
thickness@29#. In either of the bulk phases,g(f) vanishes
and f (f,c,T) reduces to the bulk free-energy densityf L or
f S .

The governing equations are chosen to ensure that
Helmholtz free-energy functionalF is monotonically de-
creasing in time and to conserve the total solute within
system by setting

]f

]t
52M1

dF
df

, ~21!

]c

]t
5¹W •M2S c~12c!¹W

] f

]cD , ~22!

whereM1.0 andM2.0. The constantM1 is related to the
interface kinetic coefficient@see Eq.~44! below# and the sol-
ute mobility coefficientM2 is related to the solute diffusivity
D @see Eq.~45! below#.

We now cast these governing equations in a differ
form to enable a comparison with existing trapping mode
In a frame moving with velocityV, the steady-state one
dimensional phase-field equations have the form

2V

M1

df

dz
5e2

d2f

dz2
2

] f

]f
~f,c,T!, ~23!

2V

vm

dc

dz
52

dJ

dz
~24!

with a flux J defined in terms of the interdiffusion potenti
m5] f /]c by

vmJ52c~12c!M2

dm

dz
. ~25!

We assume the interfacial layer extends over the ran
2 l/2,z, l/2, where to a good approximation the solute fie
varies fromcS to cL and the phase field assumes its far-fie
values.

1. Driving force for solute redistribution

The solute equation~24! can be integrated once to yield

V

vm
~c2cS!5J, ~26!

where we have assumed that the flux vanishes in the s
wherec5cS . Using the definition~25!, this expression can
be manipulated to obtain

dm

dz
5

2vmJ

c~12c!M2
5

2V~c2cS!

c~12c!M2
~27!

and integrating over the layer gives

m~cL!2m~cS!52VE
2 l/2

1 l/2 ~c2cS!

c~12c!M2
dz. ~28!
ce

he

e

t
.

lid

This expression has the form of a response function an
gous to Eq.~6! that relates the driving force for solute redi
tribution m(cL)2m(cS) to the interface velocity, with a
concentration-dependent factor given by the integral over
interfacial region. Evaluation of Eq.~28! ultimately leads to
the velocity dependence of the partition coefficientk(V).

2. Driving force for phase change

Next we multiply the phase-field equation~23! by df/dz
and integrate to obtain

2V

M1
E

2 l/2

1 l/2

fz
2dz5

e

2
@fz

2#2 l/2
l/2 2E

2 l/2

1 l/2

f ffzdz. ~29!

We then integrate by parts twice to obtain

E
2 l/2

1 l/2

f ffzdz5@ f ~f,c!#2 l/2
l/2 2E

2 l/2

1 l/2

f cczdz5@ f ~f,c!#2 l/2
l/2

2E
2 l/2

1 l/2

f c~c2cS!zdz

5@ f 2~c2cS! f c#2 l/2
l/2 1E

2 l/2

1 l/2

~c2cS!mzdz,

~30!

where we have writtenm5] f /]c. The latter integral may be
rewritten using Eq.~26! to give

E
2 l/2

1 l/2

f ffzdz5@ f 2~c2cS! f c#2 l/2
l/2 1

vm

V E
2 l/2

1 l/2

Jmzdz.

~31!

If we set

a5E
2 l/2

1 l/2

fz
2dz'E

2`

`

fz
2dz'const ~32!

and

e

2
@fz

2#2 l/2
l/2 '0, ~33!

we obtain

aV

M1
52H DFS2

vm

V E
2 l/2

1 l/2

JmzdzJ , ~34!

where

DFS5 f ~cS!2@ f ~cL!1~cS2cL! f c~cL!# ~35!

is the free-energy change upon solidification. This expr
sion has the same form as Eq.~12!, with a dissipation term of
the form ~17!.

We anticipate therefore that analysis of solute trapp
with the phase-field model will closely parallel results o
tained by previous models. The approximations and/or
sumptions made in previous trapping models regarding
behavior of the interdiffusion potential across the interfa
arise in a natural way from the underlying formulation of t
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phase-field model. Similar expressions for the difference
chemical potentials across the interface and free-ene
change upon solidification have been derived for the WB
model independently by Kim, Kim, and Suzuki@51#. We
next describe the phase-field model in more detail.

III. IDENTIFICATION OF MATERIAL PARAMETERS

The Helmholtz free-energy volume densityf (f,c,T) in
Eq. ~19! can be written in the equivalent form

f ~f,c,T!5c fB~f,T!1~12c! f A~f,T!1
RT

vm
I ~c!,

~36!

where the functionI (c)5c ln c1(12c)ln(12c) is related to
the entropy of mixing. The functionsf A(f,T) and f B(f,T)
represent the free energies of the pure materialsA and B,
respectively, with corresponding freezing temperaturesTA
andTB , which we assume satisfyTB,TA . They are repre-
sented by double-well potentials with respect tof, as used
by Kobayashi@21#,

f j~f,T!5WjE
0

f

u@u21#@u21/22b j~T!#du

5
Wj

4
g~f!1

Wjb j~T!

6
p~f! ~37!

for j 5A,B, whereg(f) and p(f) are given in Eq.~20!.
Here WA and WB are constants and the temperatureT is a
parameter in this isothermal model. We assume thatTB,T
,TA and 21/2,bA(T),0,bB(T),1/2. The constants
WA and WB may be related to the surface energiessA and
sB and the interface thicknesseslA and lB for the pure com-
ponents@29#, e.g.,

sA5
eAWA/2

6
, lA5

e

AWA/2
~38!

or

e256sAlA , WA512sA / lA , ~39!

and the functionsbA(T) and bB(T) may be related to the
latent heats, e.g.,

WAbA~T!

6
5LA

~T2TA!

TA
, ~40!

whereLA is the latent heat per unit volume of the pure co
ponentA. Note that since we assume a constant value foe,
we have the constraintsAlA5sBlB ; in particular, assuming
in addition that any one of the equalitiesWA5WB , sA
5sB , or lA5 lB holds implies that the other two hold as we

For the case of pureA, the one-dimensional phase-fie
equation

1

M1

]f

]t
5e2

]2f

]z2
2 f f ~41!

has the traveling-wave solution
n
gy
1

-

f5
1

2F12tanhS z2Vt

2lA
D G ~42!

for a specific velocity given by

V52M1ebA~T!A2WA. ~43!

This has the formV5m̃A(TA2T), with a kinetic coefficient
m̃A given by

m̃A5
6M1LAlA

TA
. ~44!

The solute diffusion coefficientD has the form

D5M2

RT

vm
. ~45!

A constant value for the solute mobility coefficientM2 re-
sults in a solute diffusion coefficient that is constant throug
out the system.

To treat unequal diffusivities in the liquid and soli
phases@36#, the solute mobility coefficient must be assum
to depend onf, leading to an expression forD(f) that takes
the appropriate limiting values in each phase. One choic
obtained by linear interpolation of the bulk diffusivit
through the interface,

D~f!5DSr ~f!1DL@12r ~f!#, ~46!

wherer (f) is a suitable smooth function withr (0)50 and
r (1)51, for example,r (f)5f. Another possibility is to
linearly interpolate lnD through the interface, which is con
sistent with a linear interpolation of activation energies
Arrhenius expressions are assumed for the solid and liq
diffusivity. This produces the expression

D~f!5DLS DS

DL
D r ~f!

, ~47!

which we also examine below.
Our numerical and asymptotic results provide a verific

tion that the solute trapping occurs at a characteristic velo
VD;DI / lA , where the interfacial diffusivityDI is approxi-
mately given by the value ofD(f) at f51/2. This suggests
the consideration of a three-parameter model for the di
sivity in which D(1/2)5DI appears as a parameter indepe
dent ofDS andDL , as in

D~f!5DSr ~f!1DL@12r ~f!#

1$DI2@DL1DS#r ~1/2!%s~f!, ~48!

wheres(f) is a smooth function that vanishes forf50 and
f51 and is unity forf51/2; an example is given by th
basic double-well potentials(f)516g(f). We also include
numerical results forD(f) of this form.
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IV. NUMERICAL SOLUTION

We have numerically integrated the governing equatio

2V

M1

df

dz
5e2

d2f

dz2
2

] f

]f
~f,c,T!, ~49!

2V~c2cS!5c~12c!M2

d

dzF ] f

]c
~f,c,T!G . ~50!

We use a finite difference discretization of the derivatives
a large finite interval with Neumann boundary conditions
f and a mixed boundary condition forc that admits the
appropriate far-field decay for the solute field. The result
nonlinear equations are solved using Newton’s method;
tails are given in Ref.@44#. For the purposes of illustrating
the behavior of the phase-field model we used the mate
parameters given in Table I unless otherwise noted; th
values are similar to those employed in WBM1, but with t
same surface energy for each pure component. The far-
concentration was set toc`50.071 744 1, which corre
sponds to a solidus temperature of 1700 K. For these par
eters, the dilute limit of the ideal solution model yields
equilibrium partition coefficient ofkE50.7965 and an equi
librium liquidus slope ofmL52310.9 K.

A. Results for D„f… linear in f

In Fig. 1 we show representative computed concentra
profiles for several values of the interface velocityV, hold-
ing the other parameters fixed. We have used the expres
~46! for D(f), with DS /DL51025 andr (f)5f. In a sharp
interface model with equilibrium interface conditions, as t
velocity increases the maximum concentration in the liq
at the interface would be fixed at 0.09 and the length sc
DL /V of the solute profiles in the liquid would progressive
shorten. For the phase-field model, Fig. 1 shows that at
velocities the solute profile is similar to that given by t
sharp interface model. However, as the interface velocity
creases, not only does the solute decay length diminish,
the maximum value of the solute concentration decrease
well, indicating a reduction of the segregation of solute n
the interfacial region and therefore the presence of so
trapping. We observe that solute trapping occurs when
interface velocity is large enough thatVlA /DL becomes of
order unity. Since for this example the diffusion coefficie

TABLE I. Thermophysical properties used in calculations.

LA 2350 J cm23

LB 1725 J cm23

TA 1728 K
TB 1358 K
sA 2.831025 J cm22

sB 2.831025 J cm22

m̃A
242.8 cm s21 K21

DL 1025 cm2 s21

DS 10210 cm2 s21

lA 6.4831028 cm
lB 6.4831028 cm
s
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at the interface positionf51/2 is given by the arithmetic
mean ofDL and DS , which is approximatelyDL/2 in this
case, this result is consistent with the expectation that tr
ping will occur on a velocity scaleDI / lA .

In contrast to the solute profiles shown in Fig. 1 the c
responding phase-field profiles are almost identical over
range of velocities. This is because the velocity-depend
term on the left-hand side of Eq.~49! is negligible for the
range of interface velocities employed in Fig. 1 because
the relatively large magnitude ofM1 . Indeed, this is why it
is reasonable to viewa in Eq. ~32! as nearly constant.

For our diffuse interface model withkE,1 we adopt the
definition

k5
c`

cmax
~51!

for the nonequilibrium partition coefficient, wherecmax is the
maximum value of the concentration.~When kE.1 an
analogous definition is obtained by replacingcmax by the
minimum concentrationcmin .) This definition reproduces the
correct limiting behavior in the limit of small growth rates, i
which casec`5cS andcmax5cL correspond to the appropri
ate equilibrium values for the solid and liquid concentratio
It also exhibits the appropriate high-velocity limitk→1 as
the concentration becomes uniform withcmax5c` . This
definition fork assumes that the maximum value of the co
centration profile is the appropriate analog to the liquid
terfacial concentration in a sharp interface model. If sign
cant interface adsorption were to occur, it may be difficult
separate this effect from the effect of bulk solute segrega
at the moving interface. In that case this definition of t
partition coefficient may be inadequate and an alterna
definition must be employed. Our assumption thatsA5sB is
intended to circumvent such ambiguities by reducing
driving force for adsorption at the interface. We will retu
to this question below.

FIG. 1. Computed solute profiles for six different values of t
interface velocityV obtained by using the linear model Eq.~46! for
D(f) with DS /DL51025. The values of VlA /DL are 8.58
31023, 8.5831022, 0.429, 0.859, 2.58, and 8.58. The curves a
ordered so that the interface velocityV increases from the top curv
to the bottom curve.
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PRE 58 3443SOLUTE TRAPPING AND SOLUTE DRAG IN A PHASE- . . .
As can be seen in Fig. 1,k increases towards unity as th
interface velocity increases. To quantify this depende
more directly, we have conducted a series of computation
whichk was computed in this way for various velocities. T
results are shown as the data points in Fig. 2. Also shown
the solid curve in Fig. 2 is the expression given by the C
model,

k5
kE1V/VD

11V/VD
, ~52!

where VDlA /DL50.232 is the normalized critical velocit
predicted by a large-velocity asymptotic expansion descri
below. The CG model, coupled with the asymptotic expr
sion for VD , is seen to give an excellent description of t
numerical results for solidification velocities ranging over s
orders of magnitude. A least-squares fit of the numerical d
using the CG form withVD as a fitting parameter gives
value of VDlA /DL50.244, which is visually indistinguish
able from the large-velocity result shown in Fig. 2.

In Fig. 3 the data points show the dependence of the c
puted interface temperature on the interface velocity. T
three curves show the temperature predicted by the
model as given in Eq.~14!, with, from top to bottom,a50
~no solute drag!, a524/35, anda51 ~solute drag!. The
other parameters used in the CG model are the equilibr
values ofkE50.7965 andmL52310.9 K, and the value o
VD50.232DL / lA determined from the asymptotic analys
The intermediate value ofa524/35 results from the
asymptotic analysis of the large-velocity limit described b
low and is seen to give an excellent comparison with
numerical results for this case.~The asymptotic result for the
temperature field assumes thatDS /DL51. The good agree
ment between this asymptotic result and the numerical d
for DS /DL51025 suggests insensitivity of the temperatu
to this ratio.! At low velocities the temperature tends to th
solidus temperature of 1700 K. At intermediate velocities
temperature increases, tending toward theT0 temperature of
1703 K. Before theT0 temperature is reached, the effect

FIG. 2. Open squares denote the values of the partition co
cient k5c` /cmax versus the normalized interface velocityVlA /DL

obtained from our numerical computations by using the lin
model ~46! for D(f) with DS /DL51025. The solid curve shows
the corresponding dependence ofk on the interface velocity that is
predicted by the CG model as given by Eq.~52! with VDlA /DL

50.232 given by the large-velocity asymptotic limit in the expre
sion ~63!.
e
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interface kinetics becomes significant and the tempera
decreases rapidly for larger velocities.

B. Results for logD„f… linear in f

We next consider a diffusivityD(f) given by the expres-
sion ~47! with DS /DL51025 andr (f)5f. Computed con-
centration profiles for several values of the interface veloc
V are shown in Fig. 4. In contrast to the results shown in F
1, the solute profiles in Fig. 4 show that in this case trapp
occurs at significantly lower values of the interface veloci
in fact, the trapping occurs before the characteristic len
DL /V of the solute boundary layer has become compara

fi-

r

-

FIG. 3. Data points denote the temperature~in K! obtained from
our calculations for different values of growth velocityV by using
the linear model Eq.~46! for D(f) with DS /DL51025. The upper
curve shows the temperature given by Eq.~14! without solute drag
(a50), the lower curve shows the temperature given by this
pression with solute drag (a51), and the middle curve shows th
temperature given by this expression with the asymptotic va
(a524/35).

FIG. 4. Computed solute profiles for six different values of t
interface velocityV obtained by using the logarithmic model~47!
for D(f) with DS /DL51025. The values ofVlA /DL are 8.58
31023, 8.5831022, 0.429, 0.859, 2.58, and 8.58. The curves a
ordered so that the interface velocityV increases from the top curv
to the bottom curve.
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to the interface thickness. Since for this example the dif
sion coefficient at the interface positionf51/2 is given by
the geometric mean (DLDS)1/2 of the liquid and solid diffu-
sivities, this result remains consistent with the expectat
that trapping will occur on a velocity scaleDI / lA , which in
this case is a much lower velocity due to the influence
DS!DL .

In Fig. 5 the data points show the computed partiti
coefficients for this case. The solid curve in Fig. 5 is t
result of the CG model, whereVDlA /DL51.94231022 is
the normalized critical velocity predicted by the larg
velocity asymptotic expansion described below. The C
model, coupled with the asymptotic expression forVD , is
found to give an adequate description of the numerical
sults for large solidification velocities, but there is significa
qualitative disagreement for lower velocities. A least-squa
fit of the numerical data using the CG form withVD as a
fitting parameter gives a value ofVDlA /DL54.46731023

and is shown as the dashed curve in Fig. 5. The least-squ
value provides an overall improvement in the fit over t
whole range of velocities, although the agreement is s
rather unsatisfactory.

In Fig. 6 we show the dependence of the interface te
perature on the interface velocity and compare it with
temperature predicted by the CG model both with and w
out solute drag. We have used the least-squares valueVD
54.46731023DL / lA , which gives better agreement than t
asymptotic value forVD , although here, as in Fig. 5, th
agreement is rather poor. The CG results do not appea
give good agreement with the numerical results for a dif
sivity of the form ~47!.

C. Results for DI independent ofDL and DS

The results shown in Figs. 1 and 4 suggest that the o
of trapping behavior occurs at characteristic velocities t
scale with the ratio of the interface diffusivityDI to the
interface widthlA . In the preceding sectionsDI depends on

FIG. 5. Open squares denote the values of the partition co
cient k5c` /cmax versus the normalized interface velocityVlA /DL

obtained from our numerical computations by using the logarith
model ~47! for D(f) with DS /DL51025. The solid curve shows
the corresponding dependence ofk on the interface velocity that is
predicted by the CG model as given by Eq.~52! with VDlA /DL

51.94231022 given by the large-velocity asymptotic limit in th
expression~63!. The dashed curved represents the same CG f
but with a least-squares fit valueVDlA /DL54.46731023.
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DL andDS . However, this is not necessarily so. In Fig. 7 w
show the effects of varying the interface diffusivityDI fol-
lowing the form given in Eq.~48! with fixed values of the
bulk diffusivitiesDL5DS51025 cm2 s21. The calculations
are performed for a fixed velocity given byV50.86DL / lA ,
which is chosen so that significant trapping occurs for
ratio DI /DL51 ~dashed curve!. The solute segregation
across the interface is observed to be quite sensitive to
value ofDI ; asDI increases, the characteristic trapping v
locity DI / lA becomes larger and the solute profile tends
ward its equilibrium form. ForDI /DL,1, the trapping ef-
fects become more pronounced as trapping is predicte
occur at lower speeds.

fi-

c

m

FIG. 6. Data points denote the temperature~in K! obtained from
our calculations for different values of growth velocityV by using
the logarithmic model~47! for D(f) with DS /DL51025. The up-
per curve shows the temperature given by Eq.~14! without solute
drag (a50), the lower curve shows the temperature given by t
expression with solute drag (a51), and the middle curve show
the temperature given by this expression with the asymptotic va
(a524/35).

FIG. 7. Solute profiles at a fixed growth velocityVlA /DL

50.86 for various values of the interface diffusivity. The diffusivi
is given by Eq.~48! with r (f)5f ands(f)516f2(12f)2. The
ratio of bulk diffusivities is fixed atDL /DS51. The values of the
ratio DI /DL are, from the top curve to the bottom curve,DI /DL

510, 5, 2, 1~dashed curve!, and 1/2, respectively.
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D. Results for sAÞsB

The CG model predicts that the partition coefficientk
varies monotonically withV, which is consistent with the
calculations shown in Figs. 2 and 5 and available experim
tal data. However, Baker@13,15# describes the possibility o
a nonmonotonic dependence of the partition coefficient
velocity. He considers a model that assumes that the n
ideal part of the chemical potential m85m
2(RT/vm)ln@c/(12c)# varies through the interfacial regio
in a prescribed manner. A nonmonotonic dependence
k(V) is predicted ifm8(x) assumes a maximum or minimum
in the interface region. This follows a suggestion by Chern
@5# that solute trapping might be associated with a state
low solute energy near the interface, which leads to a so
diffusion flux in the liquid towards the interface, prior t
incorporation of solute into the solid phase. In our model
have

m853H sB

lB
2

sA

lA
J g~f!1H LB~T2TB!

TB
2

LA~T2TA!

TA
J p~f!

~53!

and nonmonotonic behavior ofm8 occurs if the contribution
from the first term, proportional to the nonmonotonic fun
tion g(f), is large enough. In the calculations discussed
far, we have takensA5sB and lA5 lB @and soWA5WB by
Eq. ~39!#. The first term is then absent, resulting in a mon
tonic profile form8. We now consider the effects of varyin
the ratiosA /sB . To avoid complications with our definition
of the segregation coefficientk5c` /cmax when cmax is af-
fected by positive interface adsorption effects~see Sec. VI!,
which would be expected to occur forsB /sA,1, we con-
sider instead the opposite case withsB /sA.1.

In Fig. 8 we show the partition coefficientk5c` /cmax
versus the normalized interface velocityVlA /DL obtained
from our numerical computations for various ratios of t
surface tensionssB /sA>1. The calculations are performe
with D(f) constant to simplify the interpretation of the r
sults by eliminating the competing effects of diffusivi

FIG. 8. Partition coefficientk5c` /cmax versus the normalized
interface velocityVlA /DL obtained from our numerical computa
tions for various ratios of the surface tensionssB /sA with DS

5DL51025 cm2 s21. From top to bottom the curves hav
sB /sA51, 3, and 4, respectively.
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variation across the interface. AssB /sA increases from
unity, the equilibrium solute profile corresponding to a s
tionary interface develops a minimum in concentration in
interfacial region since this produces a lower surface ene
while still retaining the equilibrium concentrations of th
bulk phases. This minimum persists under finite rates of
lidification and the nonequilibrium solute profiles then e
hibit both a maximum~due to solute rejection! and a mini-
mum ~due to negative interface adsorption! in concentration
near the interfacial region. For a fixed velocity, as the ra
sB /sA increases the maximum concentration increases,
becomes large enough that the associated partition co
cient can be less than the equilibrium value,k,kE , as
shown in the figure forsB /sA54.

V. LARGE- V ASYMPTOTICS

In order to help interpret the numerical results presen
above in which solute trapping is significant, we now d
scribe results of an asymptotic expansion of the solution
the large-velocity limit. We focus on the range of velociti
for which trapping effects are significant and the effects
attachment kinetics are small; details are given in the App
dix. Here we summarize the results in the dilute soluti
limit c`!1. The phase-field solution is given to leading o
der by

f~z!5f~0!~z!1O~1/V!, ~54!

wheref (0) is the planar solution

f~0!~z!5
1

2F12tanhS z

2lA
D G . ~55!

The concentration is then given by

c~z!5c`1
3

8
c`FD~f~0!~z!!

VlA
G

3 ln~1/kE!sech4S z

2lA
D1O~1/V2! ~56!

and the temperature is given by

T5T02V/m̃A1
9

35
mLc`F DI

VlA
G ln2~1/kE!

~12kE!
1O~1/V2!,

~57!

where theT0 temperature is given by

T05TA1mLc`

ln~1/kE!

~12kE!
. ~58!

In deriving the expression for the temperature field we ha
assumed that the diffusivity is constant and denoted byDI
(DI5DL5DS); for a general diffusivityD(f), theO(1/V)
temperature correction is given by a solvability conditi
that is difficult to evaluate in closed form.
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A. Solute trapping

From the definition~51! of the partition coefficient for
kE,1, we find that in the large-velocity limitk may be rep-
resented as

k512
3

8FD„f~0!~zm!…

VlA
G ln~1/kE!sech4S zm

2lA
D1O~1/V2!,

~59!

where we have used the expression~56! to evaluate the
maximum value of the solute concentration, which is
sumed to occur atz5zm , with c(zm)5cmax. The appropri-
ate value forzm depends on the specific form that is assum
for D(f). If the diffusivity is constant, then the maximum
occurs atzm50, leading to the expression

k512
3

8F DI

VlA
G ln~1/kE!1O~1/V2!, ~60!

whereDI denotes the constant value of the diffusivity. Th
expression is also appropriate if the assumed form of a n
constant diffusivityD(f) still gives rise to a maximum in
c(z) at zm50; in this case,DI5D(1/2) denotes the value o
the diffusivity at f51/2. For example, this expression a
plies for the case~46! with a function r (f) that has
r 8(1/2)50, which makesdc/dz vanish atz50. This expres-
sion also applies to the case~48! with DI5D(1/2); in this
case, the resulting expression is independent ofDL andDS .

The Aziz trapping function forkE,1,

k5
kE1V/VD

11V/VD
, ~61!

can be approximated by

k'12~12kE!FVD

V G1OS FVD

V G2D ~62!

for VD /V!1. Comparing Eqs.~60! and ~62! gives that

VD5
3

8FDI

lA
G ln~1/kE!

~12kE!
. ~63!

Comparing the large-velocity expansions for the phase-fi
model and the Aziz trapping function thus gives a predict
that the trapping velocityVD depends not only on the inter
face diffusivity and thickness but also upon the equilibriu
partition coefficient, a trend noted experimentally by Sm
and Aziz @45#.

With the choicer (f)5f in Eq. ~46! for D(f), the solute
maximum generally occurs forzmÞ0 and the resulting ex
pression forVD is more complicated. The result may be e
pressed in the form

VD5
3

8
@12~ t!!2#2

3FDL@~11t!!/2#1DS@~12t!!/2#

lA
G ln~1/kE!

~12kE!
,

~64!
-

d

n-

ld
n

where

t!5
2

5

11D

12DF211A11
5

4S 12D

11D D 2G ~65!

is the value of tanh(z/2lA) for z5zm and D5DS /DL . The
expression~64! has the same general form as the express
~63!, with DI given by a weighted arithmetic mean ofDS and
DL . For the limiting case that the solute diffusivities of bo
phases are equal,D→1, we find thatt!→0 andzm→0, and
the expression~64! reduces to the expression~63!. In the
more realistic case when the solid diffusivity is much le
that liquid diffusivity, D!1, the interface diffusivity may be
approximated by settingD50, in which caseVD assumes the
form

VD5
648

3125

DLln~1/kE!

lA~12kE!
'0.207

DLln~1/kE!

lA~12kE!
. ~66!

The expressions~64! and ~66! both produce the value
VDlA /DL50.232 that is used in Fig. 2 to compare the n
merical computations with the Aziz trapping function.

For the choicer (f)5f in Eq. ~47! for D(f), the extre-
mum may be found from Eq.~56!, resulting in the expression

VD5
3

8
@12~ t!!2#2FADL

~11t!!DS
~12t!!

lA
G ln~1/kE!

~12kE!
, ~67!

where now

t!5
4

ln D
1A11S 4

ln D D 2

. ~68!

The expression~67! has the same general form as the expr
sion ~63!, with DI given by a weighted geometric mean
DS and DL . This expression is used to produce the va
VDlA /DL51.94231022 that is used in Fig. 5 to compare th
numerical computations with the Aziz trapping function f
this case.

The two expressions forVD both involve weighted aver-
ages ofDS and DL , which are determined by the specifi
form of D(f) that is assumed through the interface regio
This need not be the case; in particular, the use of a m
complicated model forD(f) such as given by Eq.~48!
would produce an expression forVD that is independent o
DS andDL .

The expression forVD given by Eq.~63! holds for kE
,1. A similar analysis may be conducted forkE>1, in
which case we find that

VD5
3

8

DI ln~kE!

lA~121/kE!
~kE>1!. ~69!

ThusVD is predicted to increase askE deviates from unity in
either direction.

Finally, in Fig. 9 we compare the experimental data
VD obtained by Aziz and co-workers~see@58#! for both sili-
con and aluminum alloys to the quantity lnkE /(kE21). The
correlation indicates that our theory is in qualitative agre
ment with the experimental results, correctly predicting
increase inVD with decreasing equilibrium partition coeffi
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cient. The considerable scatter apparent in the plot may
due to the unknown values ofDI .

B. Solute drag

Here we limit our attention to the casekE,1 and DS
5DL . The interface temperature in the dilute limit given b
Eq. ~57! may be expressed as

T5T02V/m̃A1
24

35

VD

V
mLc`ln~1/kE!1•••, ~70!

where we have used the expression forVD in Eq. ~63!. The
temperature in Eq.~14! that is predicted by the CG mode
may be expanded for largeV/VD to yield that

T5T02V/m̃A1a
VD

V
mLc`ln~1/kE!1••• ~71!

in the dilute limit. Comparing these two expressions for t
interface temperature, we find thata524/35, the value used
in Figs. 3 and 6 to compare the numerical computations w
the predictions of the Aziz CG model. This nonzero value
a confirms that solute drag is present in the phase-fi
model, as is consistent with the analysis of Sec. II B 2.
general, we would expect the specific value obtained fora to
depend on the choice forD(f).

VI. DISCUSSION

The formulation of a phase transformation using a sin
free-energy function and self-consistent postulates abou
kinetics has distinct advantages. Among them, the con
versy regarding the necessity to include or exclude so
drag is resolved quite naturally. Early models that trea
solute drag~e.g., that of Cahn@17#! were applied to grain
growth in impure solids. Here a separate driving force
grain growth was assumed to exist~e.g., induced by curva

FIG. 9. Experimental values forVD ~see@58#! plotted versus the
quantity lnkE /(kE21). The line is a linear fit through the origin.
be

e

h
r
ld
n

e
he
o-
te
d

r

ture differences! and one sought to determine how much
that driving force remained available for the motion of t
grain boundary. Calculation of the solute diffusion proce
and the dissipation of energy were thus performed to de
mine the reduction of the driving force. In the solidificatio
literature a similar postulate has been made about the e
tence of a separate driving force for solidification@Eq. ~2!#.
Hence the solute drag is normally computed separately
used to erode the driving energy. The results of Eqs.~34! and
~35! show the natural reduction of the driving force by th
dissipation.

We have investigated the effect of different assumptio
regarding the variation of the diffusion mobility through th
interfacial region by varying the form of the functionD(f).
These differences change the velocity at which solute tr
ping becomes important and also presumably changes
amount of dissipation in the interfacial region due to t
diffusion processes. Indeed, we determined that a linear
terpolation for D between the liquid value and the sol
value across the interface produces predictions quite sim
to those of Aziz, a model that has been subject to signific
experimental validation.

We have not investigated the sensitivity of the results
the form of the double well to any significant degree. W
have, however, shown that changing the relative heights
the double-well potential~by changingsA and sB) of the
two pure components can lead to a nonmonotonick(V) func-
tion. In general, the use of different double-well potentials
Eq. ~37! as well as a nonideal solution model would like
alter the quantitative predictions of our analysis. The fo
~37! that we have chosen for the free-energy function allo
the one-dimensional traveling wave solution~42! for all ve-
locities @59#. Replacing the cubic functionp(f)5f2(3
22f) used in Eq. ~37! by the quintic function p(f)
5f3(10215f16f2) as in the treatment of Wanget al.
@60# relieves the restrictionsub(T)u,1/2, but also produces a
one-dimensional traveling wave whose shape is no lon
independent of velocity; this may require changes in the
terpretation ofm̃ andVD .

In addition to the more usual case wherekE,1, we briefly
investigated the case wherekE.1. The appropriate form~9!
of the Aziz formulation for this case was compared with t
present model. It was established thatVD should be smalles
for alloys with kE near unity and increase for alloys withkE
much less than or much greater than unity. A functional fo
was predicted for thekE dependence ofVD , which seems to
correlate well with experiments~Fig. 9!.

We have some concerns about our definition of the n
equilibrium partition coefficient as we extract informatio
about the prediction of the phase-field model. ForkE,1, our
definition of k(V) is based on identifying the liquid concen
tration at the interfacecL with the solute maximumcmax of
the entire solute profile. Alternate definitions were tried, su
as equating the total amount of solute abovec` in the inter-
facial region and in the bulk liquid to the total solute abo
c` for an exponential profile at a sharp interface freezing
the same speed. This was found to be unsatisfactory bec
this alternate definition does not reproduce the correct li
k→1 for large velocities, as can be seen from the form of
asymptotic expansion forc(z) in our model. The concern
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about our definition was clearly manifest when we examin
situations where significant interface adsorption is pres
For example, for a stationary interface at equilibrium, po
tive surface adsorption leads to a value ofcmax larger than
the equilibrium value ofcL present in the bulk of the liquid
so that the definition~51! leads to an inappropriate value fo
k in this simple case. We therefore confined our attention
cases of negative interface adsorption withkE,1, where the
identification ofcL with cmax at least does not lead to obv
ous inconsistencies.

We have also performed melting simulations to exam
whether very small values of the solid diffusivityDS lead to
significantly smaller values ofVD . The results are identica
to those observed for the solidification case in that the sim
lation results forVD are found to depend on the values
D(f) in the interfacial region and not necessarily on t
bulk values of DL and DS . This is also clear from the
asymptotic analysis results: The large-velocity analysis ho
for either solidification or melting and similar conclusion
are obtained for both cases. For example, with the lin
form ~46! for D(f), computed values forVD are found to
scale with the arithmetic mean (DL1DS)/2 of the bulk dif-
fusivities and withDS!DL the numerical values ofVD for
both solidification and melting are roughlyDL/2. However,
in general, the predicted values forVD are sensitive to the
assumed form forD(f). Aziz and co-workers~see @58#!
have observed that the experimental values ofVD ~for solidi-
fication! do not correlate strongly with eitherDL or DS .
These findings are consistent with our results for models
D(f) in which DI is uncorrelated toDL or DS .

VII. CONCLUSIONS

Solutions to phase-field governing equations for alloy
lidification with a finite interface thickness that neglect t
gradient energy due to concentration exhibit solute trapp
and dissipation due to solute drag.

In particular, it is shown that~a! the governing equation
for the concentration recovers the sharp interface notion
the jump in interdiffusion potential across the interface d
pends on the velocity, leading to the velocity dependenc
the partition coefficient, and~b! the governing equation fo
the phase field recovers the notion that the velocity depe
on the driving force for solidification following the tangen
to-curve rule with dissipation due to solute drag, leading
the velocity dependence of the interface temperature.

Numerical results as well as high-velocity asymptotic
sults for the velocity dependence of temperatureT(V) and
solute partitioningk(V) were explored for a particular choic
of double-well potential, an ideal solution, linear depende
of the diffusion coefficient on the phase field, and simi
barrier heights for the pure components, i.e.,WA and WB .
Under these conditions the results agree closely with the
model of Aziz and Kaplan for a particular choice of the
values for~a! the critical speed for trappingVD that depends
on kE , viz., proportional to lnkE /(kE21) for kE,1 and ap-
proximately proportional to the arithmetic mean of the liqu
and solid diffusion coefficients~such a trend for the depen
dence ofVD on kE has been seen experimentally by Sm
and Aziz!, and ~b! the amount of dissipation due to solu
draga of approximately 24/35. Numerical calculations pe
d
t.
-

o

e
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s
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f
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g

at
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of

ds
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G

formed with a linear dependence of the logarithm of the d
fusion coefficient on the phase field did not agree with
CG model of Aziz and Kaplan.

Depending on the choice of double-well potential, vi
the barrier heights of the two components, more comp
behavior of thek(V) relation is predicted by the phase-fie
model, including nonmonotonic behavior similar to that e
hibited by the Baker-Cahn and Hillert-Sundman models.
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APPENDIX

In the limit of high solidification rates it is possible t
obtain approximate expressions for the interface tempera
and solute profiles. In order to understand the numerical
sults presented above in which solute trapping is signific
but the effects of kinetics are comparatively minor, we co
sider an asymptotic solution in the limit of large velocitie
where V is identified as being of a magnitude so th
DL / lA!V!m̃AT0 . Hence we consider the simplified set
equations in which the effects of interface attachment kin
ics are eliminated by setting 1/M150. This removes the term
V/m̃A from the leading-order expression for the interfa
temperature and simplifies the subsequent analysis. For
plicity we also consider the casesA5sB ; the more genera
analysis for the casesAÞsB is given in @44#. We find that
the resulting large velocity analysis with 1/M150 is a useful
limit for understanding the solute trapping that is observ
experimentally in metals for velocities on the order of met
per second.

We perform an asymptotic expansion for large velocit
by expanding the variables in the form

f5f~0!1
1

V
f~1!1•••, ~A1a!

c5c~0!1
1

V
c~1!1•••, ~A1b!

T5T~0!1
1

V
T~1!1•••, ~A1c!

substituting these expansions into the governing equati
and solving the resulting equations order by order. The p
cedure is summarized in dimensional form, although the
tual expansion is best performed in dimensionless variab

At leading order the solute equation gives thatc(0)5c` .
The leading-order phase-field equation then becomes

e2
d2f~0!

dz2
5 f f~f~0!,c` ,T~0!!, ~A2!

which admits the planar solution
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f~0!5
1

2F12tanhS z

2lA
D G , ~A3!

wherelA is the interface width given in Eq.~38! and

T~0!5T05
c`LB1~12c`!LA

@c`LB /TB1~12c`!LA /TA#
~A4!

is the temperature at which the bulk free energies of
liquid and solid phases are equal.

At first order the solute equation gives that

c~1!5
2c`~12c`!

RT0 /vm
D~f~0!!

d

dz̃
@ f c~f~0!,c` ,T0!#,

~A5!

from which we find that

c~1!5
3

8FLB~T02TB!

TB
2

LA~T02TA!

TA
G

3
c`~12c`!D~f~0!!

lART0 /vm
sech4S z

2lA
D . ~A6!

The first-order phase-field equation has the form

e2
d2f~1!

dz2
2 f ff~f~0!,c` ,T0!f~1!

5 f fc~f~0!,c` ,T0!c~1!1 f fT~f~0!,c` ,T0!T~1!,

~A7!

which has a solvability condition

05E
2`

`

f fc~f~0!,c` ,T0!c~1!fz
~0!dz

1T~1!E
2`

`

f fT~f~0!,c` ,T0!fz
~0!dz ~A8!

that allows the determination ofT(1). We have
,

r,
.

e

E
2`

`

f fT~f~0!,c` ,T0!fz
~0!dz52Fc`

LB

TB
1~12c`!

LB

TB
G
~A9!

and

E
2`

`

f fc~f~0!,c` ,T0!c~1!fz
~0!dz

5E
2`

`

c~1!
d

dz
@ f c~f~0!,c` ,T0!#dz

5
2RT0 /vm

c`~12c`!
E

2`

`

@c~1!~z!#2
dz

D~f~0!!
. ~A10!

The latter integral is difficult to evaluate in closed form f
general diffusivitiesD(f (0)); for the case of constant diffu
sivitiesD(f (0))5DI , however, the integral can be evaluat
to yield the following expression for the first-order temper
ture correction:

T~1!5
29

35

c`~12c`!DI / lA
~RT0 /vm!@c`LB /TB1~12c`!LA /TA#

3FLB~T02TB!

TB
2

LA~T02TA!

TA
G2

. ~A11!

To obtain the limiting forms of these expressions that
given in Sec. V, we make use of the results

ln~1/kE!5
LB~TA2TB!

RTATB /vm
, ~A12!

mL5
RTA

2~kE21!

vmLA
, ~A13!

T05TA1
mLc` ln~1/kE!

12kE
, ~A14!

which hold in the dilute solution limit.
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