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Abstract. Document images belong to a unique class of images where the information is embedded in the language
represented by a series of symbols on the page rather than in the visual objects themselves. Since these symbols tend
to appear repeatedly, a domain-specific image coding strategy can be designed to facilitate enhanced compression
and retrieval. In this paper we describe a coding methodology that not only exploits component-level redundancy
to reduce code length but also supports efficient data access. The approach identifies and organizes symbol patterns
which appear repeatedly. Similar components are represented by a single prototype stored in a library and the
location of each component instance is coded along with the residual between it and its prototype. A representation
is built which provides a natural information index allowing access to individual components. Compression results
are competitive and compressed-domain access is superior to competing methods. Applications to network-related
problems have been considered, and show promising results.

1. Introduction

Recent advances in processing, storage, and transmis-
sion technology have supported the growth of image
databases. The images contained in these databases
can, however, strain available resources and in almost
all cases some form of compression is required. In
recent years, lossy compression, progressive transmis-
sion, and source channel coding have provided solu-
tions to the immediate problem of reducing storage
and transmission costs. In the document domain, doc-
ument image databases are of special interest because
of the high cost and low quality of automatic docu-
ment image conversion (including OCR) and the fact
that many archival documents can simply not be ade-
quately represented in converted form.

The first document image coding techniques date
back to the early 1970s with run-length encoding sug-
gested by Huang [1] and symbol coding suggested by
Ascher and Nagy [2]. With the increased use of fac-
simile machines, the ITU-T (then CCITT) organization
finalized the G3 and G4 standards for use in digital

transmission soon after [3–5]. The underlying mech-
anism which achieves compression in these standards
is the run-length encoding scheme with some enhance-
ments for vertical redundancy removal. These tech-
niques remain the methods of choice for compressing
binary images. Recently, some work has been done
on more intelligent coders. The Joint Bi-level Image
Experts Group (JBIG) developed an ISO/IEC interna-
tional standard (also an ITU-T recommendation) [6]
JBIG which uses context modeling [7, 8] and at the
lowest levels uses a template model and adaptive arith-
metic coding to encode predictions. While the standard
can encode a hierarchical representation for progres-
sive representation, it is based on resolution reduction
and is rarely used.

For documents that will remain and be used in image
form, it appears advantageous to consider the char-
acteristics of the image as part of a comprehensive
solution rather than simply relying on run-length redun-
dancy. Pattern matching and substitution techniques
have recently attracted research since document im-
ages contain a rich population of symbols that repeat
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consistently. Witten et al. [9], Zhang and Danskin
[10] and Howard [11] emphasizes symbol repetition
and suggests methods that exploit such redundancy
in developing image compression. While some algo-
rithms have used these image characteristics to obtain
desirable (lossy and lossless) compression results, their
transmission and processing capabilities lag far behind
the state of the art in document representation. An ap-
propriate archival mechanism needs to integrate stor-
age, transmission, and processing capabilities.

Similar to the methodology used by Witten et al. [9]
and Zhang and Danskin [10], we use a pattern matching
and substitution approach [5, 12–17] as was originally
suggested by Ascher and Nagy [2]. This method first
extracts components from the document image, rep-
resents instances of a component by prototypes and
creates a prototype library. We define an image gen-
erated from only the prototype shapes as asymbolic
imageand the pixel difference between a rendering of
the symbolic image and the original image as theresid-
ual. We code the symbolic portion by specifying the
information about the prototype components and their
locations within the image. By providing location in-
formation, we allow direct access to components and
expedite later processing. We code the residual by or-
dering the residual bits in a way that not only provides
access to them on a per component basis but also pro-
vides progressive and lossy modes in a rate-distortion
sense.

In our representation we are first motivated by the
need to create an informational hierarchy such that the
most redundant and comprehensible information ap-
pears first followed by incremental portions as we step
up in the hierarchy. Similar to concepts presented by
Nohre [18], where a compression system is designed
to be used in image interpretation, our hierarchy or-
ganizes information at varying scales. Tasks that can
take advantage of this representation include variable
lossy compression, progressive transmission, and gen-
eral document image processing tasks, since each re-
quires access to the document at the component level.
Second, Most compression techniques try to minimize
storage requirements by removing redundancy and in
the case of lossy compression, this often results in
removing redundancy along with detail. Competitive
methods do not have a usable progressive transmission
mode which preserves detail. Third, although some
work has been done on the processing of document
images in the compressed domain [19–21], the out-
look for applying general processing tasks to standard

compression methods does not appear promising. Fi-
nally, Our method can be used for variable resource
allocation in terms of storage, transmission, and pro-
cessing resources. In limited resource cases, such a
representation will aid in all aspects of database oper-
ations.

In Section 2 we discuss some background items
needed to express our processing and retrieval require-
ments. In Section 3 we describe our approach to doc-
ument image processing tasks and in Section 4 we
describe our approach to retrieval problems.

2. Previous Work

Before describing the details of our approach, it is use-
ful to briefly review the general problem of image com-
pression as it applies to document images. We then
present the detailed methodology of our compression
system with some implementation notes.

2.1. Document Characteristics

Document images are scans of documents which are
in most cases adequately represented in binary and are
rich in textual content. Informally, we can define doc-
ument images as images that contain components that
resemble the symbols of a language. Documents like
those shown in Fig. 1 are often scanned at 300 dots/in.,
tend to be highly structured in terms of layout, and have
significant numbers of symbols repeated within the im-
age (i.e., a single or small number of fonts are used).

Since a document can be used in a large number of
ways, one important consideration is how the image is
affected by compression. For example, if we intend that
the document ultimately be read by humans, it is nec-
essary for compression schemes to preserve the shapes
of the components so that they are recognizable by
the reader after retrieval—something that may not be
possible when using resolution reduction compression
techniques. Symbol shape and reading order preserva-
tion should constitute the basis of any document image
representation.

2.2. Symbolic Compression

In the following sections we describe details of our
compression algorithm modules for prototype genera-
tion and residual coding.
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(a)

Figure 1. Examples of binary document images of the types usually found in a document image database. These are images from the University
of Washington document database [22], cropped (automatically) to the main body of the text.

(Continued on next page).
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(b)

Figure 1. (continued.)
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2.2.1. Prototype Generation.Prototype generation is
accomplished by segmenting image components and
clustering the resulting bitmaps For quality machine
print binary document images (i.e., limited numbers
of touching or broken characters), connected compo-
nent analysis does an adequate job of segmentation.
Since most digital library images are of this quality,
connected components have been successful for seg-
mentation. The analysis returns parameters describing
the bounding box, upper left corner and its height and
width, for each component.

For clustering, a pattern matching and substitution
technique is used. Without fully specifying the match-
ing functions for now, we match each observed com-
ponent by comparing it to the existing prototypes and
classifying the component as either a member of the
cluster represented by a prototype or as the seed of
a new cluster. Once new members occupy a proto-
type class, a new prototype is generated. The resulting
prototypes represent a clustering of the observed com-
ponents. Fine-tuning is possible in terms of frequency
of prototype calculation, number of prototype calcula-
tions, and the threshold used for new prototype seed.
Once clustering is complete, another pass through the
prototypes removes under-populated clusters.

In our algorithm, we start with a small threshold
value for a match using a distance-transform-based
match function. After visiting 10% of the input com-
ponents, we extrapolate a linear function for the ex-
pected number of clusters. If we extrapolate to create
more than 500 clusters, we stop the prototype gener-
ation function and restart it using a higher threshold
value. Otherwise, we only recalculate prototype cen-
ters (simple average of members) every time 10 new
members have been added to the cluster. Furthermore,
we calculate the cluster centers only 5 times. Once the
clustering is done, we remove underpopulated clusters,
determined by membership of less than 5 members,
and assign the members to an either close cluster or to
a NULL cluster.

Matching functions have been discussed by a num-
ber of researchers and have been summarized by Witten
et al. [9] and Kia [23]. The most basic matching func-
tion is a Hamming distance, where the number of dif-
fering pixels measures the dissimilarity between two
binary patterns. Most matching functions are deriva-
tives of this method where weights are applied to
the distribution of the unequal pixels with respect to
some underlying condition. Blob-like distribution of
the unequal pixels, complexity of the description of the

unequal pixels, and the structural contribution of the
unequal pixels with respect to the prototype and com-
ponent are some conditions that have been considered.
The overall consensus is that any matching function
that measures some similarity in pattern will work for
a wide range document images and that there will al-
ways exist ambiguous pairs. An appropriate algorithm
should perform gracefully under such conditions.

The effectiveness of pattern extraction and cluster-
ing has a cumulative effect on our method, since it
relies on connected component analysis and is sensi-
tive to connected and broken characters, a phenomenon
which is widely observed in degraded document im-
ages. Based on the level of degradation, the prototype
images capture the degraded features to form a set of
more ambiguous prototypes which in turn will affect
the residual information.

Figure 2 shows a set of prototype patterns that be-
long to a document that has a large number of connected
characters. It is obvious that in any document image
analysis task a higher level parsing is needed to segment
individual characters. Since these prototypes have con-
stituent components spread throughout the rest of the
prototypes, it is possible to decompose the bigger com-
ponents into smaller, more repetitive components. By
introducing segmentation cuts at strategic locations, it
is possible to create a prototype set which is more in-
dicative of the underlying pattern set [24]. A joint
segmentation and clustering algorithm has been used
to gather the prototype set shown in Fig. 3. While not
perfect, it is more indicative of the underlying character
set than the one in Fig. 2. The reduced set of prototype
images allows for more effective compressed-domain
processing to occur and yields improved compression
ratios for degraded images.

2.2.2. Residual Coding. Given a set of prototype
shapes, the difference between the prototype shape and
the component shape is the residual map and must be
represented to provide lossless rendering of the original
document image. The ordering of the residual pixels is
motivated by a degradation model [25–27], which hy-
pothesizes that pixels close to edges are more likely to
be corrupted than the pixels that are in the interior of the
character or in the background. Edge effect degrada-
tion is the most common form which eventually leads
to touching or broken characters. While most degraded
images are still readable, it suggests that near-edge ef-
fect degradation does not contribute toward readability
and may be either removed or be used as a low priority
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Figure 2. Prototype image set of a degraded document image.

Figure 3. Prototype image set of a degraded document image by performing a joint segmentation-clustering algorithm.

information content. This leaves far-edge effects to be
grouped together and be prioritized in an inverse order
than the near-edge pixels.

To implement this concept we rely on a distance
transform which records distance to the closest edge
for each pixel in the image. By ordering the residual
pixels by decreasing distance from an edge, pixels that
are more likely to be caused by degradation will be pre-
sented last, and pixels which are most likely relevant
to the structure of the symbol are presented first. It has
been shown [23] that grouping of pixels in terms of dis-
tance to edge has a desired compressibility result since
distribution of pixel values are similar as a function

of their distance to edge. Section 4.2 will also dis-
cuss the effect of image quality in prioritization-based
tasks such as progressive transmission. Together, they
provide complete analysis in terms of rate-distortion
trade-off.

Figure 4 shows a typical observed component, an
assigned prototype, the residual image, and the coded
residual stream using row order and distance order. The
example portrays a situation where the component and
the prototype are of the same recognizable symbol.
The distance-ordered residual stream has a determinis-
tic character where the distribution of the pixels varies
monotonically. This is due to grouping pixels of the
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Figure 4. An example of an in-class component and prototype set
where (a) is the prototype pattern, (b) is the observed component,
(c) is the residual image, and (d) is the distance transform of the
prototype. The residual stream is then shown in (e) row order and
(f) distance-transformed order.

Figure 5. An example of an out-of-class component and prototype
set where (a) is the prototype pattern, (b) is the observed component,
(c) is the residual image, and (d) is the distance transform of the
prototype. The residual stream is then shown in (e) row order and
(f) distance-transformed order.

similar distance close to each other. Pixels towards the
left of the residual code are far-from-edge pixels with
higher probabilities to contain 0’s. This shows the ba-
sis for higher compressibility. Context-based coding
using raster-scan order can also achieve similar results
but will not have desired ordering mechanism which
can be used in progressive transmission and similar
tasks. Figure 5 shows a typical set where the recog-
nizable class differs between the component and the
prototype. The distribution of the pixels in this case
is not monotonic; however, partial specification of this
stream has desirable distortion characteristics, as will
be shown in Section 4.2. In addition, the pixels which
represent the most significant difference between the
two symbols, the lip on the G, will be represented first.

Figure 6. Data representation organization.

2.2.3. Indexable Representation.Our data represen-
tation is summarized in Fig. 6. Intuitively, the required
information sources can be grouped into the prototype
library, component layout, and residual information
sections. Motivated by retrieval problems and the need
for document analysis algorithms to access individual
components, we propose a top-down hierarchy which
starts with prototype image map specification as the top
object. The layouts of components forms the next level
in the hierarchy below the prototypes. The document
image begins to convey the document’s content with
the use of the layout components and the prototypes.
Below the layout information the residual informat-
ion is provided to supply fine detail. Since the residu-
als often do not contribute features which facilitate
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correct recognition they are placed at the bottom of
the hierarchy.

The level of functionality that is designed into our
representation affects storage, transmission, and pro-
cessing tasks. By creating a prototype library and
recording the locations of components within the im-
age, we have in effect provided access to the image
components. Tasks such as skew detection and lay-
out analysis can process only the location information
while other tasks such as keyword searching and major
font detection can be performed using the prototype
shape, size, and location. Since on average only 20%
of the compressed representation is contained in the
prototype shape and location specification, this organi-
zation allows access to important information quickly.

Residual coding occupies the rest of the represen-
tation, and by recording an index into this section we
preserve the component access features. In essence we
can extract residual information of a specific compo-
nent without having to decompress the entire residual
section. Furthermore, by ordering the residual pixels in
distance-transformed order, we have incorporated de-
sirable lossy compression and progressive transmission
capabilities. Motivated by binary degradation models,
the intermediate representation is designed using a dis-
tortion measure that facilitates recognition of compo-
nents.

2.3. Implementation

The compression system has been implemented and
tested as a set of UNIX executables. The basic rou-
tines decompose TIFF images into our representation

Table 1. Comparison of coding techniques with respect to compression ratios and ability
to perform tasks such as progressive retrieval, variable lossy compression, compressed-
domain processing, and content-based analysis.

SYM G4 G3 JBIG MG LZW PB

Synthetic images 23.2 18.2 12.8 26.9 39 9.5 5.3

Scanned images 12.2 17.8 9.7 22.3 27 8.7 5.5

Progressive retrieval • ◦
Lossy compression • ◦ ◦
Compressed-domain processing • ◦
Content-based analysis • ◦
•: Full functionality;◦: partial functionality; SYM: our symbolic compression; G3, G4:

ITU-T’s standard; JBIG: ISO/IEC’s Joint Bi-Level Image Expert’s Group standard; MG:
method used in Managing Gigabytes; LZW: Lempel-Ziv algorithm; and PB: Packed Bits.

and recompose our representation into TIFF images.
The first step in decomposing an image into our rep-
resentation is connected component analysis. There
are a number of ways to determine the connected com-
ponents; we use a method based on scanning rows of
pixels. The results of this task are variables which
specify a bounding box for each connected compo-
nent. The second step is to cluster these components.
We use the pattern matching and substitution method
described earlier. In our implementation of the clus-
tering algorithm, we use two null prototypes which are
used to refer to small and large graphic components that
did not create well populated clusters. We also limit
the frequency and total number of prototype recalcu-
lations as specified in Section 2.2.1. Given the proto-
types we calculate the distance transform by detecting
the closest edge to every pixel. We then order the resid-
ual pixels in distance-transform order and index them
on a per component basis. We populate the appropri-
ate streams of information as mentioned earlier and
compress the streams using a static Huffman coding
technique. We are able to compress binary images of
2550× 3300 pixels in 26 s using a workstation based
on the Pentium processor operating at 200 MHz and
running the Linux operating system. Roughly 21 s of
this processing is attributed to clustering. We aver-
aged a compression ratio of 13 for 122 scanned images
and 23 for 20 synthetic images, using the University of
Washington database [22]. Table 1 shows a summary
of compression results and algorithmic features for our
method (SYM), Managing Gigabytes [9] (MG), ITU-T
standard Group 4 (G4), ITU-T standard Group 3 (G3),
ISO/IEC JBIG standard (JBIG), Lempel-Ziv (LZW),
and pack bits (PB). While the symbolic compression
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does not have the best compression ratios, it does have
the best overall data organization facilitating several
important concepts.

3. Document Image Processing

The purpose of our compression system is not only to
compress images but also to make them usable. In
this section we concentrate on describing processing
tasks that exploit our representation scheme, which is in
turn motivated by the characteristics of document im-
ages.

3.1. Class of Tasks

The tasks that are presented in the following sec-
tions are by no means the only possible tasks that
can take advantage of our representation. It is obvi-
ous that document images contain information within
their textual components (samples of rendered char-
acters of an alphabet). Even though most documents
contain graphics, images, and other annotated mate-
rial, they typically contain primarily text. The class
of problems which address these textual components
can exploit our representation. These tasks, in general,
access components, symbol shapes, and their layout

Figure 7. Portion of the code that requires decompression and processing.

to determine their intended target. By pre-processing
these features, we can typically reduce their processing
time.

3.2. Skew Estimation and Correction

Skew estimation and correction are important tasks for
most OCR systems. By using an algorithm based on
the Hough transform, we are able to estimate skew
and correct it using our representation, without fully
decompressing. We use only the position and size of
each component as shown in Fig. 7. We decompress
the prototype size, block membership, and component
layout streams and input the coordinates of the middle
of the bottom of each component to a Hough transform
to compute skew. For the 122 images in our database,
it takes an average of 1.5 s and 9152 bytes/image to
calculate skew to an accuracy of 1/640 vertical units.
On the same set of test documents the average error
was measured to be 0.1786◦ by taking the average dif-
ference between the measured and ground-truth skew
angle (provided in the database). For skew correction,
we ignore component level skew and modify the com-
ponent layout and residual map streams to move com-
ponents to their unskewed locations. We also reorder
components if they move from one block to another.
Figure 8 shows a sample of a deskewed image. Note
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(a)

(b)

Figure 8. Sample portion of an image (a) before and (b) after deskewed by only modifying prototype location.
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that local skew is still present in the individual char-
acters. For the 122 test images, it took an average of
1.88 s to deskew an image.

3.3. Keyword Search

Because of symbol and prototype access to the coded
image, it is also possible to perform keyword searching
in the compressed domain. A method, based on Spitz’s
work on shape coding [28], requires scan-line ordering
of components and matching of ordered components
to queried components. To implement this method us-
ing our representation, we decompress the prototype
size, prototype image, block membership and compo-
nent layout streams as shown in Fig. 9. The skew angle
of the document is first estimated, as described above,
and the bounding boxes are horizontally projected. The
projection is then scanned to determine the locations
of lines of text. We scan the lines from top to bottom
and record the components in each line. This method
picks disjoint components, such as the dots in the ‘i’
and ‘j’, very nicely. It is also very stable to errors in

Figure 9. Accessing symbol shapes and components in the compressed domain and matching based on an input query.

locations of objects and in scan direction. The result is a
scan-line ordered code which represents an image com-
ponent by several shapes. The shapes that we used in
our experiments were ascenders, descenders, xheight,
circular (existence of a whole in the component), and
concave from right. The mapping from image domain
to feature domain is relatively efficient since it only
operates on the prototype set and not on every image
component. The input ASCII query is then translated
into shape codes and compared to the scan-line or-
dered shape codes as shown in Fig. 9; 90% of matching
shapes are taken to be a match.

The query matching is scale independent due to the
normalization effect of shape coding. Determination
of the shapes mentioned above are solely dependent on
determination of scan-lines and main body text. While
these methods are prone to error in degraded text, it
benefits from good component segmentation and clus-
tering. Any improvement in these basis functions will
improve accuracy and robustness of the image query.

Figure 10 shows some search results on the 122
database images for the query “approach”. It took an
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Figure 10. Query results for the string “approach” on selected im-
ages from the University of Washington Database [22].

average of 1.6 s/image to obtain the results. There
are fundamental ambiguities associated with using our
small set of features; for example, we are treating char-
acters like “a” and “o” as belonging to the same fea-
ture class. However, the effects of these ambiguities
are greatly reduced when a string of features is used in
matching.

3.4. Other Tasks

Some tasks that have been identified but are not yet
implemented are major font detection, layout analy-
sis, language identification, and document classifica-
tion. Major font detection can prove useful to OCR
engines and in similar tasks. This can be done by scan-
ning the prototype library shapes and (if needed) some
of the actual components (requiring residual recombi-
nation). Layout analysis is very generic and can have
implications for a large number of tasks. Skew esti-
mation and correction is such a related task. For such
tasks, the layout of the document, the components, and
their organization lies entirely in the component layout
specification. This is a fundamental part of our rep-
resentation and will expedite any layout analysis task.
Some other examples of these tasks are column detec-
tion, reading order determination, and zone classifica-
tion. Language identification is desirable for a number
of reasons which will not be discussed here. It can be
done by analyzing the prototype shapes and their loca-
tions. The preprocessing of these portions of the data
can expedite the processing task. Document classifica-
tion is useful for some database problems. Location of
components within an image can provide a rich source
of information on how to classify the document (journal
article, memo, newspaper, ...).

4. Retrieval

Using our coding method we can demonstrate a scal-
able lossy representation and by the induced hierarchy
we are able to show a desirable progressive transmis-
sion mechanism. We may also assign priority to the

Figure 11. Network utilization for server-client transmissions.

hierarchy as shown in Fig. 11 for network traffic, a
variable measure of error correction in channel cod-
ing, and a mechanism to achieve rate control. While
rate control can be accomplished by manipulating the
prototype maps and component layout with their re-
presentation resolution, more freedom is available by
the additional coding of the residue due to its size and
granularity.

4.1. Class of Retrieval Problems

Similar to the class of applicable processing tasks, there
exists a class of retrieval problems, such as content
transmission and delivery, that can exploit our repre-
sentation. The basis of our argument for retrieval is
the same as before; symbol access expedites retrieval,
and furthermore the implied hierarchy of prototypes
over residuals and the hierarchy of the distance-ordered
residuals enhances retrieval. The underlying emphasis
in retrieval problems is the organization of useful data
by relative importance. We have definitely achieved
this in our representation where not only was compres-
sion achieved at various levels but the importance of
the information was also ordered.

4.2. Progressive Transmission

In transmitting images, an ordered stream of informa-
tion should be used to convey increasing amounts of in-
formation, so that the image can be rendered losslessly
if the entire stream is transmitted. In transmission of
textured regions, taking a block-wise DCT (Discrete
Cosine Transform) of the image and sending one coef-
ficient per block at each iteration provides a reasonable
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progressive representation of the image. In the case of
document images and the symbolic representation, we
first transmit all the prototype and symbolic informa-
tion, and we order the residual maps based on the dis-
tance transforms of the prototypes (or more precisely:
of their complements). Sending the residual maps in
this order, largest distance first, renders the document
quite readable at the start and provides additional detail
at each transmission iteration.

Lossy compression can be easily achieved by ter-
minating a progressive transmission code. The qual-
ity of image representation needs to be addressed in
terms of an appropriate rate-distortion relationship. It
is hard to define a suitable distortion measure; the
traditional signal-to-noise ratio and its derivatives are
not acceptable. This is because a constant power level
might represent images that have a varying amount of
image quality, in terms of readability, recognizability,
or other document-related measures. An appropriate
distortion function should reflect the recognition rate
of these lossy representations. Using OCR engine and
an OCR evaluation software, we are able to associate
recognition rate with entropy and get a rate-distortion
relationship.

We are able to step through rates by recording a
fractional amount of the residual information, since
the majority of the data (about 80%) is in the residual
section. We compare the distortion between a number
of residual ordering mechanisms. Figure 12 shows the
trade off between forward and backward row and dis-
tance ordering. The dashed line is an estimate of the

Figure 12. Rate-distortion trade-off of residual coding image by
performing a joint segmentation-clustering algorithm.∗ is forward
distance ordering and× is reverse distance ordering.+ is forward
row ordering and o is reverse row ordering. Dashed line is an ex-
pected predictive ordering.

rate-distortion trade-off if a predictive structural order-
ing were used [23] rather than distance ordering. An
important comment is needed to clarify the rate aspect
of these trade-offs. The value of rate which is used in
Fig. 12 is the first-order binary entropy value. If the
binary code does not have memory (correlation across
binary samples) the first-order entropy will be the true
entropy rate. While the row-ordered codes do not have
strong memory content, the distance order does. There-
fore, the rate calculations for the distance-ordered code
should be lower than those shown in Fig. 12.

4.3. Subdocument Retrieval

A common document browsing task requires retrieval
and decoding of a subregion of the document image.
This may be useful, for example, for expanding a region
such as a single article or picture from a thumbnail of
a compressed newspaper page. This can be done using
our representation by partially decoding the appropri-
ate streams. Specifically, we decompress the prototype
size, prototype image, block membership, component
layout index, and residual map index streams, and only
partially decompress the largest streams, the compo-
nent layout and residual map streams. Using the lay-
out index stream we decompress components in blocks
which overlap with the subimage, and according to the
overlap of each component with the subimage we de-
compress its residual map.

5. Conclusion

We have presented a document image representation
which achieves compression along with access to com-
ponents to allow for compressed-domain processing.
In achieving this representation we attempted to im-
prove retrieval of document images. It was found that
useful information, in the case of documents, is in the
form of components and that better component repre-
sentation is the key to better retrieval. The ultimate
image representation would integrate an ASCII repre-
sentation within the coded components. Residual cod-
ing is still necessary to allow lossy representation to
varying degrees.

We have demonstrated the effectiveness of our rep-
resentation for compressed-domain processing. Tasks
such as skew estimation, skew correction, and keyword
searching are easily implemented. There is also suffi-
cient evidence to support the claim that other document
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image analysis tasks such as major font detection, lay-
out analysis, and language identification can use our
representation to perform their operations in the com-
pressed domain. This is because most existing algo-
rithms depend on symbol shape and location, which is
sufficiently captured by our representation. It is very
seldom that residual information is needed for these
tasks, but even in such cases, our residual code sup-
ports indexing based on image components and is or-
dered hierarchically.

Hierarchical representation forms the basis of apply-
ing our approach to various transmission problems. An
implied hierarchy first orders the prototype symbols,
then their locations, and finally their residual informa-
tion. This hierarchy is not sufficient since the residue
constitutes the majority of the code. A distance-based
hierarchy is imposed on the residue which not only
improves overall residual compression but also con-
tributes to information transmission. A simple ordering
of residues contributed to lossy compression and pro-
gressive transmission of the code. The remaining task is
to define an appropriate cost function so that a network
broker can bid for an appropriate transmission channel.
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