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Abstract. Documentimages belong to a unique class of images where the information is embedded in the languac
represented by a series of symbols on the page rather than in the visual objects themselves. Since these symbols:
to appear repeatedly, a domain-specific image coding strategy can be designed to facilitate enhanced compress
and retrieval. In this paper we describe a coding methodology that not only exploits component-level redundanc
to reduce code length but also supports efficient data access. The approach identifies and organizes symbol patte
which appear repeatedly. Similar components are represented by a single prototype stored in a library and t
location of each component instance is coded along with the residual between it and its prototype. A representati
is built which provides a natural information index allowing access to individual components. Compression result:
are competitive and compressed-domain access is superior to competing methods. Applications to network-relat
problems have been considered, and show promising results.

1. Introduction transmission soon after [3-5]. The underlying mech-
anism which achieves compression in these standards
Recent advances in processing, storage, and transmisis the run-length encoding scheme with some enhance-
sion technology have supported the growth of image ments for vertical redundancy removal. These tech-
databases. The images contained in these databasesiques remain the methods of choice for compressing
can, however, strain available resources and in almostbinary images. Recently, some work has been done
all cases some form of compression is required. In on more intelligent coders. The Joint Bi-level Image
recent years, lossy compression, progressive transmis-Experts Group (JBIG) developed an ISO/IEC interna-
sion, and source channel coding have provided solu- tional standard (also an ITU-T recommendation) [6]
tions to the immediate problem of reducing storage JBIG which uses context modeling [7, 8] and at the
and transmission costs. In the document domain, doc- lowest levels uses a template model and adaptive arith-
ument image databases are of special interest becausenetic coding to encode predictions. While the standard
of the high cost and low quality of automatic docu- can encode a hierarchical representation for progres-
ment image conversion (including OCR) and the fact sive representation, it is based on resolution reduction
that many archival documents can simply not be ade- and is rarely used.
quately represented in converted form. For documents that will remain and be used inimage
The first document image coding techniques date form, it appears advantageous to consider the char-
back to the early 1970s with run-length encoding sug- acteristics of the image as part of a comprehensive
gested by Huang [1] and symbol coding suggested by solution rather than simply relying on run-length redun-
Ascher and Nagy [2]. With the increased use of fac- dancy. Pattern matching and substitution techniques
simile machines, the ITU-T (then CCITT) organization have recently attracted research since document im-
finalized the G3 and G4 standards for use in digital ages contain a rich population of symbols that repeat
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consistently. Witten et al. [9], Zhang and Danskin compression methods does not appear promising. Fi-

[10] and Howard [11] emphasizes symbol repetition nally, Our method can be used for variable resource

and suggests methods that exploit such redundancyallocation in terms of storage, transmission, and pro-

in developing image compression. While some algo- cessing resources. In limited resource cases, such a

rithms have used these image characteristics to obtainrepresentation will aid in all aspects of database oper-

desirable (lossy and lossless) compression results, theirations.

transmission and processing capabilities lag far behind  In Section 2 we discuss some background items

the state of the art in document representation. An ap- needed to express our processing and retrieval require-

propriate archival mechanism needs to integrate stor- ments. In Section 3 we describe our approach to doc-

age, transmission, and processing capabilities. ument image processing tasks and in Section 4 we
Similar to the methodology used by Witten etal. [9] describe our approach to retrieval problems.

and Zhang and Danskin [10], we use a pattern matching

and substitution approach [5, 12—17] as was originally

suggested by Ascher and Nagy [2]. This method first 2. Previous Work

extracts components from the document image, rep-

resents instances of a component by prototypes andBefOI'e describing the details of our approach, itis use-

creates a prototype |ibrary_ We define an image gen- fulto brlefly review the general problem of image com-

erated from only the prototype shapes asyabolic pression as it applies to document images. We then

imageand the pixel difference between a rendering of Present the detailed methodology of our compression

the symbolic image and the original image asrdmd-  System with some implementation notes.

ual. We code the symbolic portion by specifying the

information about the prototype components and their

locations within the image. By providing location in-

formation, we allow direct access to components and

2.1. Document Characteristics

Document images are scans of documents which are

expedite later processing. We code the residual by or- . o
. : o . in most cases adequately represented in binary and are
dering the residual bits in a way that not only provides . . .
rich in textual content. Informally, we can define doc-

access to them on a per component basis but also pro- . . .
. . . : . ument images as images that contain components that
vides progressive and lossy modes in a rate-distortion

resemble the symbols of a language. Documents like
sense. T .
. ' : those shown in Fig. 1 are often scanned at 300 dots/in.,
In our representation we are first motivated by the

) . : tend to be highly structured in terms of layout, and have
need to create an informational hierarchy such that the . " . .
. . : significant numbers of symbols repeated within the im-
most redundant and comprehensible information ap-

. X . age (i.e., a single or small number of fonts are used).
pears first followed by incremental portions as we step . .
: : - Since a document can be used in a large number of
up in the hierarchy. Similar to concepts presented by ; . S . :
) ) : ways, one important consideration is how the image is
Nohre [18], where a compression system is designed ; : .
o : ) ) affected by compression. For example, if we intend that
to be used in image interpretation, our hierarchy or-

: ) . . the document ultimately be read by humans, it is nec-
ganizes information at varying scales. Tasks that can .
. LT : essary for compression schemes to preserve the shapes
take advantage of this representation include variable

. ) o of the components so that they are recognizable by
lossy compression, progressive transmission, and gen-

: . . the reader after retrieval—something that may not be
eral document image processing tasks, since each re-

. possible when using resolution reduction compression
quires access to the document at the component level. : .
. . ..~ ~“techniques. Symbol shape and reading order preserva-
Second, Most compression techniques try to minimize . : : .
. . . tion should constitute the basis of any document image
storage requirements by removing redundancy and in

: ) . representation.
the case of lossy compression, this often results in
removing redundancy along with detail. Competitive
methods do not have a usable progressive transmissior2.2. Symbolic Compression
mode which preserves detail. Third, although some
work has been done on the processing of documentIn the following sections we describe details of our
images in the compressed domain [19-21], the out- compression algorithm modules for prototype genera-
look for applying general processing tasks to standard tion and residual coding.
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A mathematical model for the hysteresis
in shape memory alloys

Yongzhong Huo

The Preisach Model for ferromagaets is generalized and adapted for the
description of the hysteretic behaviour of a polycrystalline specimen of shape-
memory alloys. The thermodynamical properties of the individual crystallites
are described by the Landau-Devonshire free energy which contains four
parameters. The corresponding quadruplets of parameters of a polycrystalline
body fill a region in a four-dimensional Preisach space. A thermodynamical
loading path will sweep surfaces across this region and change phases in the
process. The physical problem of the response of a specimen to applied loads
is thus converted into the geometrical problem of counting volumes between
moving surfaces. This conversion facilitates the numerical evaluation of the
effect of complicated loading paths.

Load-deformation curves and deformation-temperature curves are simulat-
ed that agree well with observed ones, at least qualitatively. Special attention
is given to the interior of the hysteresis loops. It turns out that inside the
loops the “state” of the body is not fully described by the phase fractions;
rather the past history will have a considerable effect.

1 Introduction

The phase transitions in a single-crystal specimen of shape-memory alloys mani-
fest themselves in abrupt changes of deformation during loading or during changes
of temperature. The Landau-Devonshire model provides an analytic description
of such transitions. It characterizes the material by four parameters.

In a polycrystalline specimen the jumps of deformation are smoothed out,
because each crystallite responds differently to changes in load and temperature;
one may say that each crystallite is characterized by different quadruplets of para-
meters. These quadruplets are points in a four-dimensional space, which we call
the Preisach space in recognition of a similar construction by Preisach [1] con-
cerning ferromagnets. The quadruplets of all crystallites in the specimen fill a

@

Figure1 Examples of binary documentimages of the types usually found in a documentimage database. These are images from the Univers
of Washington document database [22], cropped (automatically) to the main body of the text.
(Continued on next paye
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processor simulator and a detailed mem-
ory simulator for the Dash prototype.
Tango allows a parailel application to
run on a uniprocessor and generates a
parallel memory-reference stream. The
detailed memory simulator is tightly
coupled with Tango and provides feed-
back on the latency of individual mem-
ory operations.

On the Dash simulator, Water and
Mincut achieve reasonable speedup
through 64 processors. For Water, the
reason is that the application exhibits
good locality. As the number of clusters
increases from two to 16, cache hit rates
are relatively constant, and the percent
of cache misses handled by the local
cluster only decreases from 69 to 64
percent. Thus, miss penalties increase
only slightly with system size and do not
adversely affect processor utilizations.
For Mincut, good speedup results from
very good cache hit rates (98 percent for
shared references). The speedup falls
off for 64 processors due tolock conten-
tion in the application.

MP3D obviously does not exhibit good
speedup on the Dash prototype. This
particular encoding of the MP3D appli-
cation requires frequent interprocessor
communication, thus resulting in fre-
quent cache misses. On average, about
4 percent of the instructions executed in
MP3D generate a read miss for a shared
data item. When only one cluster is
being used, all these misses are serviced
locally. However, when we go to two
clusters, a large fraction of the cache
misses are serviced remotely. This more
than doubles the average miss latency,
thus nullifying the potential gain from
the added processors. Likewise, when
four clusters are used. the full benefit is
not realized because most misses are
now serviced by a remote dirty cache,
requiring a three-hop access.

Reasonable speedup is finally
achieved when going from 16 to 32 and
64 processors (77 percent and 86 per-
cent marginal efficiency. respectively).
but overall speedup is limited to 14.2.
Even on MP3D, however, caching is
beneficial. A 64-processor system with
the timing of Dash, but without the
caching of shared data, achieves only a
4.1 speedup over the cached uniproces-
sor. For Water and Mincut the improve-
ments from caching are even larger.

Figure 10 shows the speedup for the
three applications on the real Dash hard-
ware using one to 16 processors. The
applications were run under an early
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Figure 1L (continued)

version of the Dash OS. The results for
Water and Mincut correlate well with
the simulation results, but the MP3D
speedups are somewhat lower. The prob-
lem with MP3D appears to be that sim-
ulation results did not include private
data references. Since MP3D puts a
heavy load on the memory system, the
extra load of private misses adds to the
queuing delays and reduces the multi-
processor speedups.

We have run several other applica-
tions on our 16-processor prototype.
These include two hierarchical n-body
applications (using Barnes-Hut and
Greengard-Rokhlin algorithms), a ra-
diosity application from computer graph-
ics, a standard-cell routing application
from very large scale integration com-
puter-aided design, and several matrix-
oriented applications, including one
performing sparse Cholesky factoriza-
tion. There is also an improved version
of the MP3D application that exhibits
better locality and achieves almost lin-
ear speedup on the prototype.

Opver this initial set of 10 parallel ap-
plications, the harmonic mean of the
speedup on 16 processors in 10.5 Fur-
thermore, if old MP3D is left out, the
harmonic mean rises to over 12.8. Over-
all, our experience with the 16-proces-
sor machine has been very promising
and indicates that many applications
should be able to achieve over 40 times
speedup on the 64-processor system.

Related work

There are other proposed scalable
architectures that support a single ad-
dress space with coherent caches. A
comprehensive comparison of these
machines with Dash is not possible at
this time, because of the limited experi-
ence with this class of machines and the
lack of details on many of the critical
machine parameters. Nevertheless, a
general comparison illustrates some of
the design trade-offs that are possible.

Encore GigaMax and Stanford Para-
digm, The Encore GigaMax architec-
ture® and the Stanford Paradigm project
both use a hierarchy-of-buses approach
to achieve scalability. At the top level,
the Encore GigaMax is composed of
several clusters on a global bus. Each
cluster consists of several processor
modules, main memory, and a cluster
cache. The cluster cache holds a copy of

(b)

all remote locations cached locally and
also all local locations cached remote-
ly. Each processing module consists of
several processors with private caches
and a large, shared, second-level cache.
A hierarchical snoopy protocol keeps
the processor and cluster caches co-
herent.

The Paradigm machine is similar to
the GigaMax in its hierarchy of proces-
sors, caches, and buses. It is different,
however, in that the physical memory is
all located at the global level, and it
uses a hierarchical directory-based co-
herence protocol. The clusters contain-
ing cached data are identified by a bit-
vector directory at every level, instead
of using snooping cluster caches. Para-
digm also provides a lock bit per mem-
ory block that enhances performance
for synchronization and explicit com-
munication.

The hierarchical structure of these
machines is appealing in that they can
theoretically be extended indefinitely
by increasing the depth of the hierar-
chy. Unfortunately, the higher levels of
the tree cannot grow indefinitely in
bandwidth. If asingle global busis used,
it becomes a critical link. If muitiple
buses are used at the top, the protocols
become significantly more complex. Un-
less an application’s communication re-
quirements match the bus hierarchy or
its traffic-sharing requirements are
small, the global bus will be a bottle-
neck. Bothrequirements are restrictive
and limit the classes of applications that
can be efficiently run on these machines.

IEEE Scalable Coherent Interface.
The IEEE P1596 Scalable Coherent In-
terface (SCI) is an interface standard
that also strives to provide a scalable
system model based on distributed di-
rectory-based cache coherence.! It dif-
fers from Dash in that it is an interface
standard, not a complete system de-
sign. SCI only specifies the interfaces
that each processing node should im-
plement, leaving open the actual node
design and exact interconnection net-
work. SCI's role as an interface stan-
dard gives it somewhat different goals
from those of Dash, but systems based
on SCI are likely to have a system orga-
nization similar to Dash.

The major difference between SCI
and Dash lies in how and where the
directory information is maintained. In
SCI, the directoryis adistributedsharing
list maintained by the processor caches

77
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2.2.1. Prototype Generation. Prototype generationis  unequal pixels, and the structural contribution of the
accomplished by segmenting image components andunequal pixels with respect to the prototype and com-
clustering the resulting bitmaps For quality machine ponent are some conditions that have been considered.
print binary document images (i.e., limited numbers The overall consensus is that any matching function
of touching or broken characters), connected compo- that measures some similarity in pattern will work for
nent analysis does an adequate job of segmentation.a wide range document images and that there will al-
Since most digital library images are of this quality, ways exist ambiguous pairs. An appropriate algorithm
connected components have been successful for segshould perform gracefully under such conditions.
mentation. The analysis returns parameters describing The effectiveness of pattern extraction and cluster-
the bounding box, upper left corner and its height and ing has a cumulative effect on our method, since it
width, for each component. relies on connected component analysis and is sensi-
For clustering, a pattern matching and substitution tive to connected and broken characters, a phenomenon
technique is used. Without fully specifying the match- which is widely observed in degraded document im-
ing functions for now, we match each observed com- ages. Based on the level of degradation, the prototype
ponent by comparing it to the existing prototypes and images capture the degraded features to form a set of
classifying the component as either a member of the more ambiguous prototypes which in turn will affect
cluster represented by a prototype or as the seed ofthe residual information.
a new cluster. Once new members occupy a proto- Figure 2 shows a set of prototype patterns that be-
type class, a new prototype is generated. The resultinglongto adocumentthat has alarge number of connected
prototypes represent a clustering of the observed com-characters. It is obvious that in any document image
ponents. Fine-tuning is possible in terms of frequency analysistask a higherlevel parsingis needed to segment
of prototype calculation, number of prototype calcula- individual characters. Since these prototypes have con-
tions, and the threshold used for new prototype seed. stituent components spread throughout the rest of the
Once clustering is complete, another pass through the prototypes, itis possible to decompose the bigger com-
prototypes removes under-populated clusters. ponents into smaller, more repetitive components. By
In our algorithm, we start with a small threshold introducing segmentation cuts at strategic locations, it
value for a match using a distance-transform-based is possible to create a prototype set which is more in-
match function. After visiting 10% of the input com- dicative of the underlying pattern set [24]. A joint
ponents, we extrapolate a linear function for the ex- segmentation and clustering algorithm has been used
pected number of clusters. If we extrapolate to create to gather the prototype set shown in Fig. 3. While not
more than 500 clusters, we stop the prototype gener- perfect, itis more indicative of the underlying character
ation function and restart it using a higher threshold set than the one in Fig. 2. The reduced set of prototype
value. Otherwise, we only recalculate prototype cen- images allows for more effective compressed-domain
ters (simple average of members) every time 10 new processing to occur and yields improved compression
members have been added to the cluster. Furthermoreratios for degraded images.
we calculate the cluster centers only 5 times. Once the
clustering is done, we remove underpopulated clusters, 2.2.2. Residual Coding. Given a set of prototype
determined by membership of less than 5 members, shapes, the difference between the prototype shape and
and assign the members to an either close cluster or tothe component shape is the residual map and must be
a NULL cluster. represented to provide lossless rendering of the original
Matching functions have been discussed by a num- documentimage. The ordering of the residual pixels is
ber of researchers and have been summarized by Wittenmotivated by a degradation model [25-27], which hy-
et al. [9] and Kia [23]. The most basic matching func- pothesizes that pixels close to edges are more likely to
tion is a Hamming distance, where the number of dif- be corrupted than the pixels that are in the interior of the
fering pixels measures the dissimilarity between two character or in the background. Edge effect degrada-
binary patterns. Most matching functions are deriva- tion is the most common form which eventually leads
tives of this method where weights are applied to totouching or broken characters. While most degraded
the distribution of the unequal pixels with respect to images are still readable, it suggests that near-edge ef-
some underlying condition. Blob-like distribution of fect degradation does not contribute toward readability
the unequal pixels, complexity of the description of the and may be either removed or be used as a low priority
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Figure 2 Prototype image set of a degraded document image.
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Figure 3 Prototype image set of a degraded document image by performing a joint segmentation-clustering algorithm.

information content. This leaves far-edge effects to be of their distance to edge. Section 4.2 will also dis-
grouped together and be prioritized in an inverse order cuss the effect of image quality in prioritization-based
than the near-edge pixels. tasks such as progressive transmission. Together, they
To implement this concept we rely on a distance provide complete analysis in terms of rate-distortion
transform which records distance to the closest edge trade-off.
for each pixel in the image. By ordering the residual Figure 4 shows a typical observed component, an
pixels by decreasing distance from an edge, pixels that assigned prototype, the residual image, and the coded
are more likely to be caused by degradation will be pre- residual stream using row order and distance order. The
sented last, and pixels which are most likely relevant example portrays a situation where the component and
to the structure of the symbol are presented first. It has the prototype are of the same recognizable symbol.
been shown [23] that grouping of pixels in terms of dis- The distance-ordered residual stream has a determinis-
tance to edge has a desired compressibility result sincetic character where the distribution of the pixels varies
distribution of pixel values are similar as a function monotonically. This is due to grouping pixels of the
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Figure 4  An example of an in-class component and prototype set Figure 5 An example of an out-of-class component and prototype
where (a) is the prototype pattern, (b) is the observed component, set where (a) is the prototype pattern, (b) is the observed component,
(c) is the residual image, and (d) is the distance transform of the (c) is the residual image, and (d) is the distance transform of the
prototype. The residual stream is then shown in (e) row order and prototype. The residual stream is then shown in (e) row order and
(f) distance-transformed order. (f) distance-transformed order.

similar distance close to each other. Pixels towards the 2.2.3. Indexable Representation.Our data represen-
left of the residual code are far-from-edge pixels with tation is summarized in Fig. 6. Intuitively, the required
higher probabilities to contain 0's. This shows the ba- information sources can be grouped into the prototype
sis for higher compressibility. Context-based coding library, component layout, and residual information
using raster-scan order can also achieve similar resultssections. Motivated by retrieval problems and the need
but will not have desired ordering mechanism which for document analysis algorithms to access individual
can be used in progressive transmission and similar components, we propose a top-down hierarchy which
tasks. Figure 5 shows a typical set where the recog- starts with prototype image map specification as the top
nizable class differs between the component and the object. The layouts of components forms the next level
prototype. The distribution of the pixels in this case in the hierarchy below the prototypes. The document
is not monotonic; however, partial specification of this image begins to convey the document’s content with
stream has desirable distortion characteristics, as will the use of the layout components and the prototypes.
be shown in Section 4.2. In addition, the pixels which Below the layout information the residual informat-
represent the most significant difference between the ion is provided to supply fine detail. Since the residu-
two symbols, the lip on the G, will be represented first. als often do not contribute features which facilitate

General

. Streams
Representation DU Tasks
. Prototype Size Skew Det./Corr.
Stream Sizes Keyword Search
Q L tt,loLiPn Brgtatypeage Map Page Segmentation
Z wZ”M'swtﬁ‘y’l?n Language/Script ID
o Q ik rraind Subimage retrieval
Original Document é ies,l é 85k EC Partition Membership > &
Q-i bte I d
T ‘ | b elx | ’ Previenlikossy)
Symbolic

(105) @05} (529 Component Layout

(10,45) (20,51) (5045) N/
NV

[N
| | Thdex | | K
Lossless

> Reconstruction

Residual Map (
—

Residual

Figure 6 Data representation organization.



128 Kia and Doermann

correct recognition they are placed at the bottom of and recompose our representation into TIFF images.
the hierarchy. The first step in decomposing an image into our rep-
The level of functionality that is designed into our resentation is connected component analysis. There
representation affects storage, transmission, and pro-are a number of ways to determine the connected com-
cessing tasks. By creating a prototype library and ponents; we use a method based on scanning rows of
recording the locations of components within the im- pixels. The results of this task are variables which
age, we have in effect provided access to the image specify a bounding box for each connected compo-
components. Tasks such as skew detection and lay-nent. The second step is to cluster these components.
out analysis can process only the location information We use the pattern matching and substitution method
while other tasks such as keyword searching and major described earlier. In our implementation of the clus-
font detection can be performed using the prototype tering algorithm, we use two null prototypes which are
shape, size, and location. Since on average only 20%used to refer to small and large graphic components that
of the compressed representation is contained in thedid not create well populated clusters. We also limit
prototype shape and location specification, this organi- the frequency and total number of prototype recalcu-
zation allows access to important information quickly. lations as specified in Section 2.2.1. Given the proto-
Residual coding occupies the rest of the represen- types we calculate the distance transform by detecting
tation, and by recording an index into this section we the closest edge to every pixel. We then order the resid-
preserve the component access features. In essence weal pixels in distance-transform order and index them
can extract residual information of a specific compo- on a per component basis. We populate the appropri-
nent without having to decompress the entire residual ate streams of information as mentioned earlier and
section. Furthermore, by ordering the residual pixelsin compress the streams using a static Huffman coding
distance-transformed order, we have incorporated de-technique. We are able to compress binary images of
sirable lossy compression and progressive transmission2550x 3300 pixels in 26 s using a workstation based
capabilities. Motivated by binary degradation models, on the Pentium processor operating at 200 MHz and
the intermediate representation is designed using a dis-running the Linux operating system. Roughly 21 s of
tortion measure that facilitates recognition of compo- this processing is attributed to clustering. We aver-
nents. aged a compression ratio of 13 for 122 scanned images
and 23 for 20 synthetic images, using the University of
Washington database [22]. Table 1 shows a summary
2.3. Implementation of compression results and algorithmic features for our
method (SYM), Managing Gigabytes [9] (MG), ITU-T
The compression system has been implemented andstandard Group 4 (G4), ITU-T standard Group 3 (G3),
tested as a set of UNIX executables. The basic rou- ISO/IEC JBIG standard (JBIG), Lempel-Ziv (LZW),
tines decompose TIFF images into our representation and pack bits (PB). While the symbolic compression

Table 1 Comparison of coding techniques with respect to compression ratios and ability
to perform tasks such as progressive retrieval, variable lossy compression, compressed-
domain processing, and content-based analysis.

SYM G4 G3 JBIG MG LZwW PB

Synthetic images 232 182 128 269 39 9.5 5.3
Scanned images 122 178 9.7 223 27 8.7 55
Progressive retrieval . o

Lossy compression . o o
Compressed-domain processing e o

Content-based analysis . o

o: Full functionality; o: partial functionality; SYM: our symbolic compression; G3, G4:
ITU-T’s standard; JBIG: ISO/IEC’s Joint Bi-Level Image Expert's Group standard; MG:
method used in Managing Gigabytes; LZW: Lempel-Ziv algorithm; and PB: Packed Bits.
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does not have the best compression ratios, it does haveto determine their intended target. By pre-processing
the best overall data organization facilitating several these features, we can typically reduce their processing
important concepts. time.

3. Document Image Processing 3.2. Skew Estimation and Correction

The purpose of our compression system is not only to Skew estimation and correc.tion are impqrtant tasks for
compress images but also to make them usable. InMOSt OCR systems. By using an algorithm based on
this section we concentrate on describing processing 1€ Hough transform, we are able to estimate skew
tasks that exploit our representation scheme, which isin @1d COrTect it using our representation, without fully

turn motivated by the characteristics of document im- decompressing. We use only the position and size of
ages. each component as shown in Fig. 7. We decompress

the prototype size, block membership, and component

layout streams and input the coordinates of the middle
3.1. Class of Tasks of the bottom of each component to a Hough transform

to compute skew. For the 122 images in our database,
The tasks that are presented in the following sec- it takes an average of 1.5 s and 9152 bytes/image to
tions are by no means the only possible tasks that calculate skew to an accuracy of 1/640 vertical units.
can take advantage of our representation. It is obvi- On the same set of test documents the average error
ous that document images contain information within was measured to be 0.1786y taking the average dif-
their textual components (samples of rendered char- ference between the measured and ground-truth skew
acters of an alphabet). Even though most documentsangle (provided in the database). For skew correction,
contain graphics, images, and other annotated mate-we ignore component level skew and modify the com-
rial, they typically contain primarily text. The class ponent layout and residual map streams to move com-
of problems which address these textual components ponents to their unskewed locations. We also reorder
can exploit our representation. These tasks, in general,components if they move from one block to another.
access components, symbol shapes, and their layoutFigure 8 shows a sample of a deskewed image. Note

Gateral Streams

Representation

Prototype Size

Stream Sizes

Onl
Prototype Dec}émpressed
Section

Partition Membership

T

Symbolic
Component Layout

T

Residual

Figure 7. Portion of the code that requires decompression and processing.
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Figure 8 Sample portion of an image (a) before and (b) after deskewed by only modifying prototype location.
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that local skew is still present in the individual char- locations of objects and in scandirection. Theresultisa
acters. For the 122 test images, it took an average of scan-line ordered code which represents animage com-

1.88 s to deskew an image. ponent by several shapes. The shapes that we used in
our experiments were ascenders, descenders, xheight,
3.3. Keyword Search circular (existence of a whole in the component), and

concave from right. The mapping from image domain
Because of symbol and prototype access to the codedto feature domain is relatively efficient since it only
image, itis also possible to perform keyword searching operates on the prototype set and not on every image
in the compressed domain. A method, based on Spitz’'s component. The input ASCII query is then translated
work on shape coding [28], requires scan-line ordering into shape codes and compared to the scan-line or-
of components and matching of ordered components dered shape codes as shown in Fig. 9; 90% of matching
to queried components. To implement this method us- shapes are taken to be a match.
ing our representation, we decompress the prototype The query matching is scale independent due to the
size, prototype image, block membership and compo- normalization effect of shape coding. Determination
nent layout streams as shown in Fig. 9. The skew angle of the shapes mentioned above are solely dependent on
of the document is first estimated, as described above,determination of scan-lines and main body text. While
and the bounding boxes are horizontally projected. The these methods are prone to error in degraded text, it
projection is then scanned to determine the locations benefits from good component segmentation and clus-
of lines of text. We scan the lines from top to bottom tering. Any improvement in these basis functions will
and record the components in each line. This method improve accuracy and robustness of the image query.
picks disjoint components, such as the dots in the ‘i’ Figure 10 shows some search results on the 122
and ‘', very nicely. It is also very stable to errors in database images for the query “approach”. It took an

General
Representation
Stream Sizes
Prototype - Shape COde KeyS —*
Shape words —
T T
Symbolic | Scanline ordering 4*
AT T T
Residual

Character string
shape correlation ¢

Text Query Input Lookup table (X

|

Match Result

Figure 9 Accessing symbol shapes and components in the compressed domain and matching based on an input query.
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Figure 10 Query results for the string “approach” on selected im- Traffic:
ages from the University of Washington Database [22]. [ e 2
| e <
[ =) DT ] §
i i Priority assignment
average of 1.6 s/image to obtain the results. There o T
are fundamental ambiguities associated with using our Sl
small set of features; for example, we are treating char- :ET_‘
acters like “a” and “0” as belonging to the same fea- &

ture class. However, the effects of these ambiguities bit stream
are greatly reduced when a string of features is used in Figure 11 Network utilization for server-client transmissions.
matching.

hierarchy as shown in Fig. 11 for network traffic, a

3.4. Other Tasks variable measure of error correction in channel cod-
] » ing, and a mechanism to achieve rate control. While
Some tasks that have been |dent|f|.ed but are not yet 4ie control can be accomplished by manipulating the
implemented are major font detection, layout analy- prototype maps and component layout with their re-
sis, language identification, and document classifica- resentation resolution, more freedom is available by

tion. Major font detection can prove useful to OCR e additional coding of the residue due to its size and
engines and in similar tasks. This can be done by scan-granularity.

ning the prototype library shapes and (if needed) some

of the actual components (requiring residual recombi-

nation). Layout analysis is very generic and can have 4.1. Class of Retrieval Problems

implications for a large number of tasks. Skew esti-

mation and correction is such a related task. For such Similarto the class of applicable processing tasks, there
tasks, the layout of the document, the components, andexists a class of retrieval problems, such as content
their organization lies entirely in the component layout transmission and delivery, that can exploit our repre-
specification. This is a fundamental part of our rep- sentation. The basis of our argument for retrieval is
resentation and will expedite any layout analysis task. the same as before; symbol access expedites retrieval,
Some other examples of these tasks are column detec-and furthermore the implied hierarchy of prototypes
tion, reading order determination, and zone classifica- over residuals and the hierarchy of the distance-ordered
tion. Language identification is desirable for a number residuals enhances retrieval. The underlying emphasis
of reasons which will not be discussed here. It can be in retrieval problems is the organization of useful data
done by analyzing the prototype shapes and their loca- by relative importance. We have definitely achieved
tions. The preprocessing of these portions of the data this in our representation where not only was compres-
can expedite the processing task. Document classifica-sion achieved at various levels but the importance of
tion is useful for some database problems. Location of the information was also ordered.

components within an image can provide a rich source

ofinformation on howto classify the document (journal . o
article, memo, newspaper, ...). 4.2. Progressive Transmission

In transmitting images, an ordered stream of informa-
4. Retrieval tion should be used to convey increasing amounts of in-

formation, so that the image can be rendered losslessly
Using our coding method we can demonstrate a scal- if the entire stream is transmitted. In transmission of
able lossy representation and by the induced hierarchytextured regions, taking a block-wise DCT (Discrete
we are able to show a desirable progressive transmis-Cosine Transform) of the image and sending one coef-
sion mechanism. We may also assign priority to the ficient per block at each iteration provides a reasonable
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progressive representation of the image. In the case ofrate-distortion trade-off if a predictive structural order-
document images and the symbolic representation, weing were used [23] rather than distance ordering. An
first transmit all the prototype and symbolic informa- important comment is needed to clarify the rate aspect
tion, and we order the residual maps based on the dis-of these trade-offs. The value of rate which is used in
tance transforms of the prototypes (or more precisely: Fig. 12 is the first-order binary entropy value. If the
of their complements). Sending the residual maps in binary code does not have memory (correlation across
this order, largest distance first, renders the documentbinary samples) the first-order entropy will be the true
quite readable at the start and provides additional detail entropy rate. While the row-ordered codes do not have
at each transmission iteration. strong memory content, the distance order does. There-
Lossy compression can be easily achieved by ter- fore, the rate calculations for the distance-ordered code
minating a progressive transmission code. The qual- should be lower than those shown in Fig. 12.
ity of image representation needs to be addressed in
terms of an appropriate rate-distortion relationship. It
is hard to define a suitable distortion measure; the 4.3. Subdocument Retrieval
traditional signal-to-noise ratio and its derivatives are
not acceptable. This is because a constant power levelA common document browsing task requires retrieval
might represent images that have a varying amount of and decoding of a subregion of the document image.
image quality, in terms of readability, recognizability, ~This may be useful, forexample, for expanding aregion
or other document-related measures. An appropria‘[e such as a Single article or piCtUre from a thumbnail of
distortion function should reflect the recognition rate @compressed newspaper page. This can be done using
of these lossy representations. Using OCR engine andour representation by partially decoding the appropri-
an OCR evaluation software, we are able to associateate streams. Specifically, we decompress the prototype
recognition rate with entropy and get a rate-distortion Size, prototype image, block membership, component
relationship. layout index, and residual map index streams, and only
We are able to step through rates by recording a Partially decompress the largest streams, the compo-
fractional amount of the residual information, since nent layout and residual map streams. Using the lay-
the majority of the data (about 80%) is in the residual ©utindex stream we decompress components in blocks
section. We compare the distortion between a number Which overlap with the subimage, and according to the
of residual ordering mechanisms. Figure 12 shows the overlap of each component with the subimage we de-
trade off between forward and backward row and dis- compress its residual map.
tance ordering. The dashed line is an estimate of the

5. Conclusion

0.4

We have presented a document image representation
which achieves compression along with access to com-
ponents to allow for compressed-domain processing.
In achieving this representation we attempted to im-
prove retrieval of document images. It was found that
useful information, in the case of documents, is in the
form of components and that better component repre-
sentation is the key to better retrieval. The ultimate
image representation would integrate an ASCII repre-
sentation within the coded components. Residual cod-
\ = - — - — . ing is still necessary to allow lossy representation to
Rate (bits per residual pixel) varying degrees.
We have demonstrated the effectiveness of our rep-
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Figure 12 Rate-distortion trade-off of residual coding image by ogantation for compressed-domain processing. Tasks
performing a joint segmentation-clustering algorithsis forward

distance ordering and is reverse distance ordering- is forward such a§ skew es“mat_'on* skew correction, E_md keywor_d
row ordering and o is reverse row ordering. Dashed line is an ex- S€arching are easily implemented. There is also suffi-
pected predictive ordering. cient evidence to support the claim that other document
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image analysis tasks such as major font detection, lay- 7.
out analysis, and language identification can use our
representation to perform their operations in the com-
pressed domain. This is because most existing algo-
rithms depend on symbol shape and location, which is
sufficiently captured by our representation. It is very
seldom that residual information is needed for these 9
tasks, but even in such cases, our residual code sup-
ports indexing based on image components and is or-
dered hierarchically.

Hierarchical representation forms the basis of apply-
ing our approach to various transmission problems. An
implied hierarchy first orders the prototype symbols,
then their locations, and finally their residual informa-
tion. This hierarchy is not sufficient since the residue
constitutes the majority of the code. A distance-based
hierarchy is imposed on the residue which not only
improves overall residual compression but also con-
tributes to information transmission. A simple ordering
of residues contributed to lossy compression and pro-
gressive transmission of the code. The remaining task is
to define an appropriate cost function so that a network
broker can bid for an appropriate transmission channel. 1
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