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Design of Experiments Approach to Verification and Uncertainty 

Estimation of Simulations based on Finite Element Method (*) 
 

 

Abstract 

 

A fundamental mathematical modeling and computational tool in engineering and applied 

sciences is the finite element method (FEM).  The formulation of every such problem begins 

with the building of a mathematical model with carefully chosen simplifying assumptions that 

allow an engineer or scientist to obtain an approximate FEM-based solution without sacrificing 

the essential features of the physics of the problem.  Consequently, one needs to deal with many 

types of uncertainty inherent in such an approximate solution process.  Using a public-domain 

statistical analysis software package named DATAPLOT
1
, we present a metrological approach to 

the verification and uncertainty estimation of FEM-based simulations by treating each simulation 

as a "virtual experiment."   Similar to a physical experiment, the uncertainty of a virtual 

experiment is addressed by accounting for its physical (modeling), mathematical (discretization), 

and computational (implementation) errors through the use of a rigorous statistical method 

known as the design of experiments (DOE).  An introduction of the methodology is presented in 

the form of five specific topics: (a) the fundamentals of DOE, (b) the assumptions of model 

building, (c) setting objectives for an experiment, (d) selecting process input variables (factors) 

and output responses, and (e) weighing the objectives of the virtual experiment versus the 

number of factors identified in order to arrive at a choice of an experimental design.  The method 

is then specialized for FEM applications by choosing a specific objective and a subclass of 

experimental designs known as the fractional factorial design.  Two examples of this FEM-

specific approach are included: (1) The free vibration of an isotropic elastic cantilever beam with 

a known theoretical solution, and  (2) The calculation of the first resonance frequency of the 

elastic bending of a single-crystal silicon cantilever beam without known solutions.  In each 

example, the FEM-simulated result is accompanied by a prediction 95% confidence interval.  

Significance and limitations of this metrological approach to advancing FEM as a precision 

simulation tool for improving engineering design appear at the end of this paper. 

 

(*) Contribution of the National Institute of Standards & Technology.  Not subject to copyright. 

 

Introduction 

 

 A fundamental mathematical modeling and computational tool in science and engineering 

today is the finite element method (see, e.g., Hughes
2
, and Zienkiewicz

3
).  The method, abbrev. 

FEM, originated from aerospace applications in the 1960s where large scale fuselage, wings, tail 

assembly, and engines needed a new tool to relate their complex geometry, materials properties, 

loadings and uncertainties to performance within a reasonable margin of safety.  The method was 

adopted by the nuclear power industry in the '70s and the automobile manufacturers in the '80s to 

improve design and ensure safety of critical components and systems.  Since then, a large 

number of proprietary, commerically-available
4,5,6

, and public domain
7
 FEM software packages  

has appeared with applications not only in all branches of engineering but also as a modeling and 

simulation tool in basic and applied sciences such as biology
8,9

, biomechanics
10,11

, microelectro-

mechanical systems (MEMS)
12

, and nanotechnology
13

. 



The problem with any given FEM software package is that it seldom delivers simulations with an 

estimate of uncertainty due to variability in geometry, material properties, loadings, and software 

implementation.  For engineering applications, the lack of uncertainty estimates is generally 

accepted since decisions are made with judgment and code-prescribed safety factors.  For 

advanced engineering and scientific research, where input parameters are not well characterized 

and the fundamental governing equations are not even known in some cases and thus the objects 

of investigation, such lack in FEM simulations falls short for making them credible prior to a 

process of verification for mathematical and computational correctness and validation  against 

physical reality.   

 

During the last two decades, advances in model and simulation verification and validation 

(abbrev. V&V) dealing with (a) uncertain input and uncertainty in modeling (see, e.g., Ayyub
14

, 

1998; Lord and Wright
15

, 2003; and Hlavacek
16

, 2004), (b) V&V (see, e.g., Oberkampf
17

, 1994; 

Roache
18

, 1998; Oberkampf, Trucano, and Hirsch
19

, 2002; Babuska and Oden
20

, 2004; and Fong, 

et al
21

, 2005), and (c) validation in the context of metrology (see, e.g., Butler, et al
22

, 1999; and 

Fong, et al
23

, 2006), have appeared in the literature.  Government agencies and professional 

societies have also added their concern and made major contributions in the form of directives
24

, 

guides
25,26,27

, and reviews
28

.  Significant advances in V&V of FEM simulations have also been 

reported (see, e.g., Haldar, Guran, and Ayyub
29

, 1997; Haldar and Mahadevan
30

, 2000; Yang, et 

al
31

, 2002; and Fong, et al
32

). 

 

Unfortunately, the problem is hard and progress has been slow for two reasons, one being 

obvious and the other not so obvious from a technical standpoint.  The lack of adequate funding 

is the obvious one, but, surprisingly, the lack of a statistical perspective is the other as noted 

below in a 2002 review of the state of the art of V&V by Oberkampf, Trucano, and Hirsch
19

: 

 

"... In the United States, the Defense Modeling and Simulation Office (DMSO) of 

the Department of Defense (DOD) has been the leader in the development of 

fundamental concepts and terminology for V&V. 

 

"... Of the work conducted by DMSO
24,25

, Cohen
28

 observed : 'Given the critical 

importance of model validation ... , it is surprising that the constituent parts are 

not provided in the DOD directive
24

 concerning validation.  A statistical 

perspective is almost entirely missing in these directives.'  We believe this 

observation properly reflects the state of the art in V&V, not just the directives 

of DMSO.  That is, the state of the art has not developed to the place where one 

can clearly point out all of the actual methods, procedures, and process steps that 

must be undertaken for V&V." [Italics added by the authors of this paper.] 

 

The purpose of this paper is, therefore, two fold: (1) To introduce a statistical perspective to the 

general problem of V&V with a metrological approach, and (2) to specialize this approach to a 

subclass of the V&V problem, namely, the FEM-based simulations, with a goal of estimating a 

prediction 95% confidence interval for any response variable of a finite element model.  This 

metrology-based approach consists of two old ideas and two new tools as shown below: 

 



Idea No. 1. Each FEM-based simulation is treated as a "virtual experiment." 

Since the expression of uncertainty in a physical experiment is well 

known in the metrology literature
33,34

, where the result of a 

measurement is considered complete only when accompanied by a 

quantitative statement of its uncertainty, we extend this idea and its 

associated error definitions to all FEM-based simulations. 

 

Idea No. 2 As a virtual experiment, every FEM-based simulation is required to have 

an associated experimental design, with which a goal of estimating a 

prediction 95% confidence interval for any response variable is attainable.  

Again, the statistical theory of design of experiments, abbrev. DOE, has 

been known for a long time (see, e.g., Natrella
35

, 1963; John
36

, 1971; Box, 

Hunter and Hunter
37

, 1978; and Montgomery
38

, 2000).  

 

Tool No. 1 A public-domain electronic handbook on statistical methods
39

, that first 

appeared in 2003 with a clear exposition on DOE, and numerous examples 

and case studies for introductory and in-depth learning.  Based on that 

handbook, we present a brief summary of the basic ideas of DOE before 

we use the second tool to estimate the confidence interval. 

 

Tool No. 2 A public-domain statistical software package named DATAPLOT
1
. 

 

To present this new approach, we divide the paper into four parts.  Part I is a statement of the  

problem and a rationale of our solution approach.  In Part II, we introduce DOE through a brief 

exposition based on Croarkin, et al
39

 by discussing each of the following five topics: 

 

Topic A.  Fundamentals of DOE. 

Topic B.  Assumptions of model building. 

Topic C.  Setting objectives for an experiment. 

Topic D.  Selecting process input variables (factors) and output responses. 

Topic E.  Weighing objectives of the experiment versus the number of factors in 

 order to arrive at a choice of an appropriate experimental design. 

 

In Part III, we choose, for FEM applications, a specific objective and a subclass of experimental 

designs known as the fractional factorial design for two-level experiments (see, e.g., Box, 

Hunter, and Hunter
37,

 pp. 374-433).  Finally, in Part IV, we give two examples to illustrate this 

DOE approach:  (1) The FEM simulation of the free vibration of an isotropic elastic cantilever 

beam, of which a theoretical solution is known
40,41

.  (2) The calculation of the first resonance 

frequency of the elastic bending of a single-crystal silicon cantilever beam using FEM, for which 

no known solution exists
32

.    Significance and limitations of this approach to verification and 

uncertainty estimation of FEM-based simulations are discussed at the end of this paper. 

 

Part I.   Nature of the Problem and the Solution Approach 

 

To characterize the nature of the problem, we examine three major classes of errors, whenever a 

user of a FEM software package attempts to formulate a model and obtain a computer-generated 



numerical simulation.  The three classes are: physical (modeling), mathematical (discretization), 

and computational (implementation), as amplified below: 

 

Class A. Physical (modeling) errors due to the inexactness of input 

parameters, and, in some cases, unknown governing equations. 

 

This class of errors reflects a fundamental difficulty in all branches of 

continuum physics, where the number of response variables (or degrees of 

freedom) exceeds the number of governing equations given by the laws of 

conservation of linear and angular momenta and the first and second laws 

of thermodynamics.  To complete a well-posed mathematical model, the 

missing equations are postulated by engineers or scientists with 

coefficients based on experimental evidence, and can be broken down into 

three categories: (a) constitutive laws, linear or nonlinear, of material 

properties that relate one set of response variables (e.g., displacements) to 

another set (e.g., stresses), (b) atomic and molecular interaction laws that 

relate motion variables to forces, and (c) friction coefficients that relate 

interfacial motion to tangential and normal forces.  Any attempt to obtain 

a numerical solution by FEM with a less-than-fully-understood set of 

governing equations and boundary conditions is subject to errors only a 

FEM user is intimately familiar with. 

 

Class B.    Mathematical (discretization) errors due to subdivisions in space, choice 

of steps in time, order of approximations, and iterative schemes for 

nonlinear problems.   

 

 All FEM simulations begin with a discretization scheme, or the so-called 

mesh design, which is user-dependent.  For a fixed mesh design, the 

simulation delivers an approximate solution with a discretization error on 

top of the Class A (Physical) error due to an assumed governing system of 

equations, a set of input parameters such as the geometrical data, the 

material property and physical constants, and the discretization of the 

initial and boundary conditions.  In theory, as the mesh design becomes 

progressively more refined, the results should converge to a "correct" 

solution.  In practice, during a process (again user dependent) of grid 

convergence through mesh refinement, the finite precision of a real 

number in a computer sets a limit,  beyond which the round-off error 

overwhelms the discretization error.  For different mesh designs and, in 

case of nonlinear problems, different iterative schemes, the paths of grid 

convergence for FEM simulations of a given problem generally do not 

lead to identical results. 

 

It is worth mentioning that, by definition, any measure of Class B error is 

equal to or greater than Class A error, because no computation can 

proceed without first formulating a discretized model from a continuum 

one with a built-in Class A error.  However, most FEM users ignore Class 



A error or assume it to be zero for a fixed model, and proceed to make 

Class B error estimates using numerical analysis techniques (see, e.g., 

Zienkiewicz and Taylor
3 
[Chap. 14, pp. 365-400]).  For convenience, we 

shall adopt this convention and make estimates of Class B error for a fixed 

model assuming Class A error associated with that model to be zero. 

 

Class B*. Mathematical (geometric nonlinearity) errors due to large deformation. 

 

For the sake of completeness, it is important to include another class of 

errors that is geometric in nature.  In modeling physical experiments in 

biotechnology, chemical physics, fluid-structural interactions, and 

structural instability (buckling), where the motion is generally large and a 

linearized model is no longer adequate, the problem becomes nonlinear, 

and the traditional representation of a particle in either Lagrangian or 

Euler formulation needs to be augmented by very costly iterative schemes.  

FEM simulations using different iterative schemes for different Lagran-

gian/Euler formulation yield non-identical and sometimes non-convergent 

results.  However, for this expository paper on DOE with examples of 

very small displacements, we will ignore this class for brevity. 

 

Class C.   Computational (implementation) errors due to the non-uniqueness 

of FEM software system engineering.   

 

 As computing power increased, so did the complexity of the FEM 

software systems, which today often involve millions of lines of 

code.  Those complex codes, developed over many years by large 

teams, routinely deliver simulations without a global "guarantee" 

of correctness, and the users must devote considerable resources to 

plan and conduct ad-hoc numerical experiments before using the 

software with confidence.  The fact that lessons learned during 

those ad-hoc experiments are seldom documented and calibrated 

with benchmarks gives rise to a trustworthy issue, i.e., different 

FEM software gives different results of simulations for the same 

mesh design and mathematical model of a specific physical reality. 

 

Generally speaking, when the material property constitutive equations of a mathematical model 

are postulated for lack of sufficient experimental evidence such as the thermal-mechanical time-

dependent deformation of a nuclear reactor fuel rod, the Class A (physical) error estimates lead 

to uncertainties of a much larger magnitude than either B or C.  We will illustrate this with a 

preview of our Example 1 in this section and later in Part IV a proof of that assertion.    

 

As stated earlier, Example 1 is the FEM simulation of the free vibration of an isotropic elastic 

cantilever beam, of which a theoretical solution exists in the literature
40,41

.  As shown in Fig. 1, 

the formula for the first resonance frequency, Freq-1, of an isotropic elastic cantilever beam of 

length  L , when specialized to a rectangular beam cross-section of thickness  t , is given by the 

following simple formula: 



 

  (Freq-1)Isotropic   =   
1

2r
 (1.875)

2 
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t
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Fig. 1.   Simple beam-vibration analysis:  (Top) Basic properties of simple beam, i.e., Young’s 

modulus,  E , moment of inertia,  I ,  mass per unit length, m  , and length of the beam, L , and 

(bottom) the theoretical solution for the resonance frequency of the first vibration mode.  After 

Clough and Penzien
41

, p. 380, Fig. E18-1.   Note: If we assume a beam with a rectangular cross 

section of width  w, and thickness  t , and if the mass density per unit volume is given by  t"."the 

term  I / m    becomes   t 
2
 / (12 t) , which is independent of  the width   w. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  A plot of the first bending resonance frequency (kHz) versus Mesh Size,  m,  in a FEM 

(ANSYS v.11.0) simulation of the free vibration of an isotropic elastic cantilever beam.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  A plot of the first bending resonance frequency (kHz) versus Mesh Size,  m,  in a FEM 

(ABAQUS v.6.7) simulation of the free vibration of an isotropic elastic cantilever beam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  A plot of the least square fit of the four-mesh ABAQUS result using an inverse quadratic 

model,  y = a + b/x + c/x
2
 .  Note that the frequency at m = infinity is given by the parameter  a. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  From a re-plot of Fig. 4, we show that the estimated frequency from a least square fit of 

the model fails to match the theoretical solution.  Note that in the red box, we represent the 

uncertainty of an estimated mean by the 95% half-interval in brackets following the mean. 

 

We now present results of two FEM simulations, one using ANSYS v.11.0 (Fig. 2), and the 

other, ABAQUS (Fig. 3).  We used the standard 8-node hexahedron (brick) element for a 4-mesh 

grid convergence test, and found both results quite satisfactory but numerically different.  This 

illustrates the existence of Class C error due to software implementation.  In Fig. 4, we show the 

result of a least square fit of an inverse quadratic model,  y = a + b/x + c/x
2 
, for the 4-mesh 

ABAQUS simulation data, where the parameter,  a , is the estimated frequency as mesh size 

approaches infinity (corresponding to a change from a discrete to a continuum body).  In Fig. 5, 

we replotted the results of Fig. 4 to show that the asymptotic value of the FEM-simulated result 

failed to match the theoretical solution.  This illustrates the existence of Class B error due to a 

combination of mesh design choice and finite machine round-off.  In Part IV, Example 1, we will 

complete the investigation by quantifying the errors of all three classes defined earlier. 

 

The definition of three classes of FEM simulation errors and the preview of Example 1 lead us to 

a statement of our solution approach.  Basically, our ideas No. 1 (virtual experiment) and No. 2 

(each simulation having a DOE) provide a basis to address errors of all three classes, because in 

a statistical design of experiments, we are free to identify as many input variables (factors) and 

output responses as we wish.  To address Class A errors, we will identify as many inexact input 

parameters as "appropriate", so long as we have a "good" idea of their variability.  To address 

Class B errors, we will take into consideration the mesh design, time increment, and mesh 

refinement for grid convergence when we list additional factors.  To address Class C errors, we 

will consider different FEM packages and their element types also as factors in an experimental 



design.  We will, of course, end up with a large number of factors, but by using fractional 

factorial design of two-level experiments, we can reduce the number of computer runs to a 

manageable size in order to estimate uncertainty as a prediction 95% confidence interval. 

 

Part II.   Topic A:  Fundamentals of DOE (see Croarkin, et al
39

, Chap. 5, Sect. 5.1, pp. 9-20) 

  

In an experiment, we change one or more process variables (factors) in order to observe the 

effect the changes have on one or more response variables.  DOE is an efficient procedure for 

planning experiments so that the data obtained can be analyzed to yield valid and objective 

conclusions. 

 

DOE begins with determining the objectives of an experiment and selecting the process factors 

for the study.  An Experimental Design is the laying out of a detailed experimental plan in 

advance of doing the experiment.  Well chosen experimental designs maximize the amount of 

"information" that can be obtained for a given amount of experimental effort. 

 

The statistical theory underlying DOE begins with the concept of process models.  A process 

model of the 'black box' type is formulated with several discrete or continuous input factors that 

can be controlled, and one or more measured output responses.  The output responses are 

assumed continuous.  Real or virtual experimental data are used to derive an empirical 

(approximate) model linking the outputs and inputs.  These empirical models generally contain 

first-order (linear) and second-order (quadratic) terms. 

 

The most common empirical models fit to the experimental data take either a first- or second-

order form.  A first-order model with three factors,  X1,   X2 and  X3, can be written as 

 

 Y  =  d2""-"d3X1 + d2X2 + d3X3  + d12X1X2  +  d13X1X3  + d23X2X3  +  errors  (2) 

 

Here,  Y  is the response for given levels of the main effects  X1,  X2  and  X3,  and the  X1X2  , 

X1X3 , X2X3  terms are included to account for a possible interaction effect between  X1  and X2 , 

X1  and X3 , X2  and X3 , respectively.  The constant  d0  is the response of  Y  when both main 

effects are  0.  In Example 1, we use a linear model with three factors and one response variable, 

and a complete representation of that model contains just 8 terms on the right hand side of eq. 

(2), i.e., a constant term, three main effects terms, three two-way interaction terms and one three-

way interaction term.  In Example 2, we use a linear model with five factors and one response 

variable, and total number of terms on the right hand side of eq. (2) is  2
5
 , or 32. 

 

A second-order (quadratic) model (typically used in response surface DOE's with suspected 

curvature
42

) does not include the three-way interaction term but adds three more terms to the 

first-order model (2), namely 

 

  

 

Note:  Clearly, a full model could include many cross-product (or interaction) terms involving 

squared  X's.  However, in general these terms are not needed and most DOE software defaults to 

leaving them out of the model. 



This concludes Section 5.1.1 of Croarkin, et al
39

 on "What is experimental design?"  The reader 

is invited to read Croarkin, et al
39

 for the two follow-up sections, namely, Section 5.1.2 on "What 

are the uses of DOE?" and Section 5.1.3 on "What are the steps of DOE?" 

 

Topic B:  Assumptions of model building (see Croarkin, et al
39

, Chap. 5, Sect. 5.2, pp. 21-34) 

 

In all model building we make assumptions, and we also require certain conditions to be 

approximately met for purposes of estimation.  In Section 5.2 of Croarkin, et al
39

, we look at 

some of the engineering and mathematical assumptions we typically make.  These are: 

 

 (a) Are the measurement systems capable for all of your responses? 

 

 (b) Is your process stable? 

 

 (c) Are your responses likely to be approximated well by simple polynomial models? 

 

 (d)  Are the residuals (the difference between the model predictions and the actual  

  observations) well behaved? 

 

Again, the reader is invited to read Croarkin, et al
39

 for more on this topic. 

 

 Topic C:  Setting objectives for an experiment (see Croarkin, et al
39

, Chap. 5, Sect. 5.3.1) 

 

The objectives of an experiment are best determined by a team discussion.  All of the objectives 

should be written down, even the "unspoken" ones.  There are four broad categories of 

experimental designs, with various objectives for each.  These are: 

 

 Table 1.   4 Categories of Experimental Designs and 8 Objectives for an Experiment 

 

Design    Objective 

 

Comparative   To choose between alternatives, with narrrow scope, suitable for   

     designs   an initial comparison. 

   To choose between alternatives, with broad scope, suitable for a   

    confirmatory comparison. 

 

Screening designs To identify which factors/effects are important. 

 

Response Surface To maximize or minimize a response. 

      designs  To reduce variation by locating a region where it is easier to manage.  

    To make a process robust (note: this objective may often be   

    accomplished with screening designs rather than with   

    response surface designs). 

 

Regression  To estimate a precise model, quantifying the dependence of  

     modeling   response variable(s) on process inputs. 



Topic D:  Selecting variables (factors and responses) (see Ref. 39, Sect. 5.3.2, pp. 39-41) 

 

Process variables include both inputs (factors) and outputs (responses).  The selection of these 

variables is best done as a team effort.  The team should 

 

 (a) Include all important factors (based on engineering judgment). 

 

 (b) Be bold, but not foolish, in choosing the low and high factor levels. 

 

 (c) Check the factor settings for impractical or impossible combinations, such as very 

  low pressure and very high gas flows. 

 

 (d) Include all relevant responses. 

 

 (e) Avoid using only responses that combine two or more measurements of the  

  process.  For example, if interested in selectivity (the ratio of two etch rates),  

  measure both rates, not just the ratio. 

 

We have to choose the range of the settings for input factors, and it is wise to give this some 

thought beforehand rather than just try extreme values.  In some cases, extreme values will give 

runs that are not feasible; in other cases, extreme ranges might move one out of a smooth area of 

the response surface into some jagged region, or close to an asymptote. 

 

The most popular experimental designs are two-level designs.  Why only two levels?  There are a 

number of good reasons why two is the most common choice amongst engineers; one reason is 

that it is ideal for screening designs, simple and economical; it also gives most of the information 

required to go to a multilevel response surface experiment if one is needed. 

 

The standard layout for a 2-level design uses +1 and -1 notation to denote the "high level" and 

the "low level" respectively, for each factor.  For example, the matrix below 

 

    Factor 1 (X1)  Factor 2 (X2) 

 

  Trial 1    -1    -1 

  Trial 2   +1    -1 

  Trial 3    -1   +1 

  Trial 4   +1    -1 

 

describes an experiment in which 4 trials (or runs) were conducted with each factor set to high or 

low during a run according to whether the matrix had a  +1  or  -1  set for the factor during that 

trial.  If the experiment had more than 2 factors, there would be an additional column in the 

matrix for each additional factor.  Note: An alternative convention is to shorten the matrix 

notation for a two-level design by just recording the plus and minus signs, leaving out the "1's". 

 

 To introduce the concept of a center point, we include in this topic a graphical representation of a 

two-level, full factorial design for three factors, namely, the 2
3
 design (see Fig. 6).  This implies 



eight runs (not counting replications or center point runs).  The arrows show the direction of 

increase of the factors.  The numbers '1' through '8' at the corners of the design box reference the 

"Standard Order" of runs (also referred to as the "Yates Order"). 

 

 

 

  

 

 

 

 

 

 

Fig. 6.  A 2
3
 two-level, full factorial design; factors  X1, X2, X3. 

 

As mentioned earlier, we adopt the convention of  +1 and  -1 for the factor settings of a two-level 

design.  When we include a center point during the experiment, we mean a point located in the 

middle of the design cube, and the convention is to denote a center point by the value "0".  For a 

more detailed exposition of the two-level design, the reader is invited to read the remaining 

pages of Ref. 39, Chap. 5, Section 5.3.2, pp. 39-41. 

 

Topic E:  Weighing objectives vs. number of factors (see Ref. 39, Sect. 5.3.3, pp. 42-44) 

 

The choice of an experimental design depends on the objectives of the experiment and the 

number of factors to be investigated.  Ref. 39, Section 5.3.3, pp. 42-44, gives a detailed 

discussion of this very important topic, including a concise table of guidelines when one weighs 

the objectives versus the number of factors (see Table 2): 

 

        Table 2. Design Selection Guideline
39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2 refers to a number of designs that are well-known as a subset of a much larger set of 

designs available in the literature as enumerated below: 

 

Design Type 1. Completely randomized designs. 

 

Design Type 2. Randomized block designs, which include Latin squares, Graeco-Latin  

   squares, and Hyper-Graeco-Latin squares. 

 

Design Type 3. Full factorial designs, which include two-level full factorial designs,  

   three-level full factorial designs, and a discussion of the blocking of full  

   factorial designs. 

 

Design Type 4. Fractional factorial designs. 

 

Design Type 5. Plackett-Burman designs. 

 

Design Type 6. Response surface (second-order) designs, which include central composite 

   designs, Box-Behnken designs, and blocking a response surface design. 

 

Design Type 7. Adding center points. 

 

Design Type 8. Three-level, mixed level and fractional factorial designs. 

 

Design Type 9. D-Optimal designs. 

 

Design Type 10. Taguchi designs. 

 

Design Type 11. John's ¾ fractional factorial designs. 

 

Design Type 12. Small composite designs. 

 

Design Type 13. Mixture designs, which include simplex-lattice designs, simplex-centroid  

   designs, and constrained mixture designs. 

 

We refer the reader to Ref. 39, Chapter 5, for a detailed study of those types.  It is a good idea to 

choose a design that requires somewhat fewer runs than the budget permits, so that center point 

runs can be added to check for curvature in a 2-level screening design and backup resources are 

available to redo runs that have processing mishaps. 

 

Part III.   Application of a DOE Approach to FEM Simulations. 

 

For an application of the DOE approach to FEM simulations, we choose the screening objective 

and a two-level fractional factorial design that is applicable to any number of factors larger than 

1 (see Table 2).  The availability of (a) a public-domain statistical analysis software package 

named DATAPLOT
1
, and (b) the documentation of an exploratory data analysis (EDA) approach 

of DATAPLOT for analyzing the data in 10 steps from a designed experiment (see Croarkin, et 



al
39

, Chap. 5, Section 5.5.9, pp. 313-412), made it possible for us to implement a specific 

application of the proposed DOE approach to FEM-based simulations. 

 

Let us introduce the so-called EDA approach of DATAPLOT to a screening problem in 

experimental design and its 10-step algorithm.  In general, there are two characteristics of  a 

screening problem: (a) There are many factors to consider.  (b) Each of these factors may be 

either continuous or discrete.  The desired output from the analysis of a screening problem is: 

 

 1. A ranked list (by order of importance) of factors. 

 2. The best settings for each of the factors. 

 3. A good model. 

 4. Insight. 

 

The essentials of the screen problem are: 

 

 1. There are  k  factors with  n  observations. 

 2. The generic model is 

 

   Y   =   f (X1, X2, ..., Xk)      (3) 

 

In particular, the EDA approach implemented in DATAPLOT is applied to  2
k 
 full factorial and 

2
k-p 

fractional factorial designs.  Let us introduce a 10-step EDA process for analyzing the data 

from  2
k 
 full factorial and  2

k-p
 fractional factorial designs as follows: (Note:  For consistency 

with Ref. [39] in which DOE was replaced by DEX as an abbreviation for design of experiments, 

we list below the titles of each step with a joint abbreviation, DOE/DEX .) 

 

 Step 1.  Ordered data plot. 

Step 2.  DOE/DEX scatter plot. 

Step 3.  DOE/DEX mean plot. 

Step 4.  Interaction effects matrix plot. 

Step 5.  Block plot. 

Step 6.  DOE/DEX Youden plot. 

Step 7.  |Effects| plot. 

Step 8.  Half-normal probability plot. 

Step 9.  Cumulative residual standard deviation plot. 

Step 10. DOE/DEX contour plot of two dominant factors. 

 

Each of these plots will be presented with the following format: 

 

      1.  Purpose of the plot. 

      2.  Output of the plot. 

      3.  Definition of the plot. 

      4.  Motivation for the plot. 

      5.  An example of the plot. 

      6.  A discussion of how to interpret the plot. 

      7.  Conclusions we can draw from the plot for the example data. 



Part IV.   Two Examples 

 

Example 1.   Free Vibration of an Isotropic Elastic Cantilever Beam 

 

For a free vibration problem of an isotropic elastic cantilever beam, let us denote the length of 

the beam by  L.  Assuming the beam has a rectangular cross-section of width  w, and thickness  t, 

we denote the two material property constants of the beam by  E, itsYoung's modulus, and  p.  
Poisson's ratio.  Let the density of the beam be deonted by  t"0"As shown in Part I, eq. (1), it is 

known
40,41

 that the first bending resonance frequency of such beam depends only on four of its 

six parameters, namely,  L,  t,  E, and  t . 

 

Motivated by an application in atomic force microscopy where a cantilever beam is made of 

silicon, and adopting the SI units of  mm, ton, s, N, and MPa, we assign the values of the four 

parameters as follows: L = 0.232,  t = 0.007,  E = 169,158, and  t"= 2.329e-09.  Let  Y  be the 

response variable of the problem, i.e., the resonance frequency of the first bending mode of the 

free vibration of the cantilever beam, we apply eq. (1) to compute that  Y = 179.026 kHz. 

 

For this example of FEM simulations, we shall use two commercially-available packages, 

namely, ABAQUS
4
, version 6.7, and ANSYS

5
, version 11.0.  For each package, we shall use an 

8-node brick (hexahedron) as the basic element.  Considering a Cartesian coordinate system 

where the length, thickness, and width of the beam are oriented in the x, y, and z directions, 

respectively, and assuming the beam is uniformly subdivided into brick elements, we define Nx, 

Ny,  Nz  as the number of subdivisions in x, y, and z directions, respectively.   Let  m  be a positive 

integer that denotes the size of a mesh design, and for this example, we shall adopt a specific 

design such that  Nx = 5m, Ny = m, and Nz = 2m.  Thus the total number of elements for this 

class of design is 10 m
3
.  As  m  increases, the mesh is progressively refined such that the 

discretized finite element model approaches a continuum as  m  approaches infinity.  As shown 

in Table 3 showing the FEM results presented earlier in Part I, Figs. 2 through 5, the frequency 

estimated from a 4-mesh grid convergence technique fails to match the theoretical solution. 

 

     Table 3.  4-Mesh Simulation Results and Grid Convergence Estimates of FEM Uncertainty 
 

          Mesh      No. of        No. of       Degrees of               Y  (kHz)                   Y  (kHz) 

           size       elements      nodes         freedom               (ABAQUS)               (ANSYS) 

       --------------------------------------------------------------------------------------------------------- 

             4       640            945      2,835          181.052       181.238 

             6    2,160         2,821      8,463          180.788       180.870 

             8    5,120         6,273    18,819          180.646       180.692 

           12  17,280       19,825    59,475          180.503       180.524 
 

      infinity (via a least square fit, Figs. 4 and 5) ..       180.199 (0.096)      180.201 (0.081) 

 

In short, this example illustrates that, because of additional errors such as round-off and matrix 

solver routines that have not been accounted for, there is always the difficulty of using a grid 

convergence technique to progressively refine the mesh of a discretized model to the "correct" 

limit of a continuum.    At best, we use a least square approximation technique in this exercise to 

estimate the so-called Class B errors due to spatial discretization.  For ABAQUS simulation, that  



Example 1  -  Continued 

 

error is  180.199 - 179.026 = 1.173 kHz, or about 0.66 %, and the same is true for the ANSYS 

simulation, even though the two simulations do not seem to be identical.  Without knowing a 

theoretical solution, the only uncertainty we can calculate using the grid convergence method is 

the prediction 95% confidence half-interval, which is 0.096 kHz or 0.081 kHz, for ABAQUS or 

ANSYS simulations, respectively.  This ends our investigation for Class B error (mathematical). 

 

We now turn our attention to a method to address both Class A and Class C errors.  For this, we 

introduce our new approach by using the method of DOE.  Our first step is to construct a table of 

factors and their two-level variabilities.  As shown in Fig. 6, a 3-factor 2-level DOE needs 8 runs 

for a full-factorial, and only 4 runs for a half-factorial design.  We plan to use both designs in 

this example to gain some valuable insight into the difference between those two designs.  The 

center point around which we choose to conduct the 8-run and 4-run experiments is the FEM 

simulation result at  a single mesh size, namely,  m  = 4.  Since mass density can be measured 

quite precisely and has negligible variability, we choose to work with the other three factors, 

namely, the length, L, thickness, t, and Young's modulus, E.  Based on laboratory experience
32

 

on the measurement variability of those three factors, we construct Table 4 for the first step of a 

DOE exercise: 

 

Table 4 Factors and Two-Level Variability in DOE 

 

   Factor     Center Point Value      Percent Change
32

        ( +1 )        ( -1 ) 

 ------------------------------------------------------------------------------------------------ 

   X1 = L   0.232  mm  1.6 %       0.23571      0.22829 

   X2 =  t   0.007  mm  2.5 %       0.00718      0.00682 

   X3 = E 169,158 MPa  0.1 %       169,327          168,989 

 

In Table 5, we show the 8-run FEM simulation results and the full-factorial DOE with which we 

conducted simulations in both ABAQUS and ANSYS.  Using a DATAPLOT subroutine for a 

10-step analysis of DOE data presented in Part III, we first examine the output results for the 8-

run ABAQUS data as shown in 5 of its 10 plots given by Figs. 7 through 11. 

 

Table 5.   ABAQUS 8-run Results for a Full-Factorial Two-Level Design 

 

 Order of Run      X1      X2      X3       ABAQUS (kHz)       ANSYS (kHz) 

 -------------------------------------------------------------------------------------------------- 

 

  1       -1       -1         -1  182.119   182.306  

  2      +1       -1       -1  170.807  170.981 

  3       -1      +1       -1  191.692  191.888 

  4      +1      +1       -1  179.786  179.970 

  5       -1       -1      +1  182.301  182.488 

  6      +1       -1      +1  170.977  171.152 

  7       -1      +1      +1  191.883  192.080 

  8      +1      +1      +1  179.966  180.150 
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Fig. 7  First of ten plots by DATAPLOT showing the ABAQUS data as an ordered set.  Note the 

table at the bottom of the plot being the transposed DOE matrix with re-ordered columns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.  Step 3 of a 10-step analysis of the ABAQUS data from  8 runs of experiments showing 

the main effects of the full factorial 2-level design (k =3, n =8).  Note X1 and X2 are dominant. 
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Fig. 9. Step 4 of a 10-step analysis of the ABAQUS data from  8 experimental runs showing the 

interaction effects of the full factorial design (k =3, n =8).  Note the lack of interaction effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.  Step 7 of a 10-step analysis of the ABAQUS data from  8  runs showing an ordered plot 

of the absolute values of the main (d3."d4."d5) and interaction effects (d34."d35."d45."d345). 
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Fig. 11.  Step 10 of an analysis of the ABAQUS data from  8 runs showing the contour plot of 

the 2 dominant factors, X1 and X2.  The plane behavior of the plot shows d34 is negligible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12.  Sensitivity analysis of the 3-factor 8-run-plus-center-point ABAQUS data using a two-

parameter (length and thickness) least square multilinear fit algorithm of DATAPLOT. 
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Fig. 13.  Results of an uncertainty analysis generated by a DATAPLOT 10-step code showing 

that the first natural frequency of the bending of an isotropic elastic beam has a prediction 95% 

confidence interval of (171.587 kHz, 190.765 kHz) for the ABAQUS
5
 mesh-4 simulation. 

 

In Fig. 7, we plot the 8-run ABAQUS data in an ordered set with the DOE matrix displaed at the 

bottom of the plot in a transposed matrix form.  In Figs. 8 and 9, we exhibit the main and 

interaction effects of the analysis in a graphical form such that an quick inspection of the two 

figures gives us a feel as to how strong or weak are the relative magnitudes of the effects given 

by d3."d4."d5."d34."d35. and d45 of eq. (2), Part II, Topic A.  As a matter of fact, all of the 

coefficients, except d2, of eq. (2) for a full-factorial 8-run design are given in Fig. 10 in a box on 

the upper right corner of the plot.  Furthermore, Fig. 10 is also a plot of the absolute values of 

those seven coefficients to show decisively that  X1  and  X2  are the two dominant factors, and  

X3  and all two-term and three-term interactions are negligible.  This interesting result allows us 

to simplify the model given in eq. (2) to a multilinear model of two factors, namely, Y  = A0 + A1 

X1 + A2 X2.  A graphical plot of this model is given in Fig. 11, a display of the estimated 

coefficients, A0, A1, and A2, by a least square fit, in Fig. 12, and a summary of the ABAQUS 8-

run DOE uncertainty analysis results is given in Fig. 13.  The formula we used to calculate the 

prediction confidence intervals with the usual standard notation of the statistics literature, is 

given below (see, e.g., Nelson, Coffin and Copeland
43

 [p. 179, eq. 5.3.2]): 

                           _ 

    y    +    t (c /2;  n - 1)   *   s  *  ( 1 + 1/n )
1/2    

(4) 

 

We are now able to compare the estimated uncertainty of an ABAQUS simulation due to Class A 

and Class B errors.  From Fig. 13, the estimated 95% upper and lower bounds of the frequency 

response,  Y , are given by 190.765 and 171.587, respectively, or by 181.176 (9.589), where 

9.589 is the 95% confidence half-interval.  This value is two orders of magnitude larger than its 

counterpart, 0.096, given in Fig. 5 by a grid convergence least square fit algorithm. 



Example 1  -  Continued 

 

To illustrate the difference between a full-factorial and a half-factorial design, we continue our 

investigation by running an ABAQUS 4-run experiment as shown in Table 6. 

 

      Table 6.   ABAQUS 4-run Results for a Half-Factorial Two-Level Design 

 

    Order of Run    X1   X2   X3 (X1*X2)     ABAQUS (kHz)        ANSYS (kHz) 

 -------------------------------------------------------------------------------------------------- 

  1    -1    -1     +1  182.301  182.488 

  2   +1    -1      -1  170.807  170.981 

  3    -1   +1       -1  191.692  191.888 

  4   +1   +1     +1  179.966  180.150 

 

The half-factorial design is also given in Table 6, where the column under X3 is given by the 

product of the columns under X1 and X2. 

 

In Fig. 14, we plot the main and two-term interaction effects of the experiment and observe that 

there are some two-term interactions that were not observed in a full-factorial experiment.  This 

phenomenon is quantified in Fig. 15 where we discover that the coefficients, d3."d4."and d5. are 

now "confounded."  For example, the correct value of  d4  given in Fig. 10 as   -9.280762, is now 

computed as  -9.27501, because the latter includes an effect known as  d35. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14.  Step 4 of a 10-step analysis of the ABAQUS data from  4  runs showing the interaction 

effects of the half-factorial design (k =3, n =4).  Note the presence of two interaction effects. 
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Fig. 15.  Step 7 of a 10-step analysis of the ABAQUS data from  4  runs showing an ordered plot 

of the absolute values of a mixture of main (d3."d4."d5) and interaction effects (d34."d35."d45). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16.  Step 10 of an analysis of the ABAQUS data from  4 runs showing the contour plot of 

the 2 dominant factors, X1 and X2.  The total no. of runs is not enough to support a model with 

interaction effects, so we ended up with no choice but a plane behavior of the contour plot. 



 

= 163.649 

= 198.679 
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Fig. 17.  Results of an uncertainty analysis generated by a DATAPLOT 10-step code showing 

that the first natural frequency of the bending of an isotropic elastic beam has a much wider 95% 

confidence interval, (163.649 kHz, 198.679 kHz), based on a half-factorial design with only 4 

runs of the ABAQUS
5
 mesh-4 simulation, instead of the 8-run full factorial design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18.  A re-plot of Fig. 5 showing that the frequency with confidence half-interval, 180.199 

(0.096) kHz, estimated from a least square approximation of an inverse-quadratic model of the 4-

mesh ABAQUS grid convergence data, fails to match the theoretical solution of  179.026 kHz 
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Fig. 19.  Combining uncertainty analysis results of Fig. 5 (4-point grid convergence modeling), 

Fig. 13 (3-factor, 8-run, full factorial DOE on mesh-4 with center point) and Fig. 17 (3-factor, 4-

run, half factorial DOE on mesh-4 with center point), we present a graphical representation of 

the three FEM simulation results in a probability vs. frequency plot, where the three results are, 

180.199 (0.096) kHz, 181.176 (9.589) kHz, and 181.164 (17.515), respectively. 

 

In Figs. 16 and 17, we find that contour plot and the uncertainty analysis of the simplified two-

parameter model of a 4-run half-factorial design give quite different results from the same of the 

8-run full-factorial one.  For the half-factorial design, the lower and upper bounds of the 95% 

confidence estimates of the frequency are given by 163.649 and 198.679, or, in the standard 

expression of uncertainty, by 181.164 (17.515).  A summary of the three uncertainty results for 

all ABAQUS runs is given in Figs. 18 and 19.  Note the increase in the estimate of uncertainty 

from  9.589  to 17.515  when the DOE is changed from an 8-run full-factorial to a 4-run half-

factorial one.  The moral of the exercise is that one needs more runs to reduce uncertainty.  This 

ends our example for finding the Class A errors. 

 

Table 7    Estimated Mean and Variance of FEM Simulations using ABAQUS and ANSYS 

 

         ABAQUS         ANSYS 

    __    __ 

  Mean  YA   =   181.176  YB   =   181.362 B

 

  Variance sA
2
   =   13.822  sB

2
   =   13.851  
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Fig. 20.  Step 10 of an analysis of the ANSYS data from  8 runs showing the contour plot of the 

2 dominant factors, X1 and X2.  The plane behavior of the plot shows d34 is negligible. 

 

 

 

= 171.762 

= 190.962 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21.  Results of an uncertainty analysis generated by a DATAPLOT 10-step code showing 

that the first natural frequency of the bending of an isotropic elastic beam has a predicted 95% 

confidence interval of (171.762 kHz, 190.962 kHz) for the ANSYS
6
 mesh-4 simulation. 



Example 1  -  Continued 

 

To address Class C error due to software implementation, we perform an identical FEM 

simulation experiment of an 8-run full factorial design using ANSYS (see Figs. 20 and 21).  A 

summary of the DOE analysis results for both ABAQUS and ANSYS is given in Table 7. 

 

Considering each FEM solution as a “Treatment” in a statistical experiment
37

, we apply an 

analysis of variance (ANOVA) technique to obtain an equally-weighted consensus value of the 

two estimated variances and means as shown below: 

 

Step 1.   Calculate the consensus mean  y  : 

 

   y    =   ( Ay   +  By  )  / 2   =   181.269   kHz.    (5) 

 

Step 2.   Calculate the consensus variance,  s  , using the formula given by Liu and Zhang
44

 when 

the number of treatment is  2  and each weight equals  1/2 : 

 

     s
2
    =      (sA

2
 + sB

2
) / 2       +     ( Ay  - y )

2
 / 2 + ( By  - y )

2
 / 2    (6) 

 

           [within-treatment]                  [ between-treatment ] 

                 =          13.8365            +          0.0043      +     0.0043            =    13.8451 ,  

 

and the consensus standard deviation      s    =    3.7209  kHz. 

 

Step 3.   Calculate 95% confidence half-interval using the combined residual degrees of freedom 

equal to the sum of the residual degrees of freedom of Method A (ABAQUS) given in Fig. 12 

and Method B (ANSYS) in Fig. 21, i.e., 

 

  Combined  Rdf   =    (Rdf)A  +  (Rdf)B     (7) 

     =        6      +      6       =     12. 

 

From the  t-distribution table (see, e.g., Nelson, Coffin, and Copeland
43

, p.444, Table B-2), we 

obtain  t(0.025, 12) = 2.179.   For  n = 9 +9 = 18, the  95%  confidence half-interval is given by: 

 

            95%  prediction half-interval     =   2.179  *  s  *  (1 + 1/18)
1/2

   =    8.330  kHz. 

 

In summary, the  3  error estimates in the form of prediction 95% confidence half-intervals are:  

 

For ABAQUS Class B error by 4-mesh grid convergence method:     Y  =  180.199 (0.096).  
  
For DOE-ABAQUS Class A error on a single mesh (Mesh-4):  Y  =  181.176 (9.589).   
 

For DOE-ABAQUS & DOE-ANSYS Classes A & C errors on Mesh-4: Y  =  181.269 (8.330). 

   

In the next example, for which there is no known theoretical solution, we will demonstrate how 

to combine Classes B (mathematical) and C (software implementation) as well as A and C errors. 



Example 2    Vibration of a Single-Crystal Silicon Cantilever Beam 

 

In experiments and simulations on the resonance frequencies of the single-crystal silicon 

cantilever beam in an atomic force microscope (see, e.g., Rabe, et al
45

, Kester, et al
46

, etc.), as 

shown in Fig. 22, a major discrepancy was reported by Hurley, et al
47

 [p.2347, Table 1] on the 

two lowest natural bending resonance frequencies of such beam in two different shapes, 

rectangular and dagger.   

 

For instance, the first natural frequency for a rectangular shape
47

 with nominal lengths, 

0.223/0.232 mm, and thickness, 0.0081 mm, was  found  to be  180.8 (0.2)  kHz  (experimental) 

and 189.7 kHz (extrapolated to 0.0081 mm thickness from an ANSYS FEM solution of 180.8  

kHz for 0.00772 mm thickness by assuming eq. (1) holds for the extrapolation).  The 4.9% 

difference between the experimental (180.8) and the ANSYS FEM solution (189.7) needs to be 

augmented by a comparison of the uncertainty in the measured and the predicted values.  

Unfortunately, the ANSYS simulation reported by Hurley, et al
47

 did not include an uncertainty 

estimate.  A subsequent investigation by Fong, et al
32

 reported results with several different 

uncertainty estimates, of which a few were based on DOE.  One such DOE-based estimate is 

presented here as an example of a new approach to FEM uncertainty estimation. 

 

As mentioned earlier in this paper, the exact solution of all resonance frequencies of a cantilever 

beam in linear isotropic elasticity is well known (see, e.g., Timoshenko and Young
40

 [p. 338], 

and Clough and Penzien
41

 [p. 380] as shown in Fig. 1).  However, the same for a single-crystal 

silicon beam modeled as an orthotropic material because of its orientation does not exist in the 

literature (see, e.g., Fong, et al
32

), even though a series solution for the static case of an 

orthotropic cantilever of rectangular cross-section subject to an end load is known (see, e.g., 

Lekhnitskii
48

). 

 

The existence of an exact solution for an isotropic free-vibration problem and the lack of the 

same for an orthotropic one provided an opportunity for Fong, et al
32

 to (a) search for an 

approximate solution with uncertainty bounds for the orthotropic problem and (b) apply a 

metrology-based approach to the verification of the solution by examing uncertainty of all three 

classes listed in Part I.   A typical plot of the free vibration analysis of an anisotropic elastic 

cantilever beam using a specific mesh design (e.g., Mesh size  m = 4) is given in Fig. 23.     

 

Let us begin with Class B (mathematical) error estimation.  Similar to the 8-node grid 

convergence experiment we presented in Example 1, we choose to work with four mesh designs, 

namely, Mesh-4, Mesh-6, Mesh-8, and Mesh-10.  A typical plot of the  h
2
-convergence of one 

FEM software package, LS-DYNA, is given in Fig. 24.  A least square fit of those data for an 

inverse-quadratic model using DATAPLOT
1
 allows us to extrapolate the model to Mesh-infinity 

and obtain a predicted value of the first frequency with 95% confidence half-interval equal to  

179.349 + 0.131  kHz.   

 

Unlike the case of the free vibration of an isotropic elastic cantilever beam, the extrapolated 

frequency result shown in Fig. 24 cannot be compared with a theoretical solution, and thus we do 

not have the means to determine the absolute error of Class B (mathematical).  Using a 

metrological approach, we could estimate the combined errors of Class B (mathematical)  
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Fig. 22.  Typical geometry of a single-crystal silicon cantilever beam with the location of a tip in 

contact with the surface of a sample in an atomic force microscope (after Kester, Rabe, 

Presmanes, Tailhades, and Arnold
46

 [p. 1277, Fig. 3] ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23.  Typical FEM result of a beam natural frequency analysis using a FEM package named 

ANSYS
5
, version 10.0, with an 8-node element type and a mesh design (total 640 elements). 
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Fig. 24.  A typical plot of the  h
2
-convergence of the simulation results of one FEM software 

package, LS-DYNA
6
, for an 8-node 4-mesh-design (m = 4, 6, 8, 10) grid convergence 

experiment.  A least square fit of those data for an inverse-quadratic model using DATAPLOT
1
 

allows us to extrapolate the model to Mesh-infinity and obtain a predicted value of the first 

frequency with 95% confidence half-interval equal to  179.349 + 0.131  kHz.   

 

 

and Class C (software implementation) by performing same exercises using different FEM 

packages and element types.  In Fig. 25, we show
32

 a summary plot of four such exercises, 

namely, ABAQUS (8-node element type C3D8I), ABAQUS (20-node element type C3D20), 

ANSYS (8-node element type ST64 for anisotropic solid), and LS-DYNA (8-node type 002). 

A summary of the extrapolated means and predictionh 95% confidence half-intervals of those 

four exercises are given below: 

                       Estimated Mean        Prediction 95% Half-Interval 
 

    ABAQUS (8-node C3D8I):  179.218  kHz   0.087  kHz 

    ABAQUS (20-node C3D20):  179.128     0.028 

    ANSYS (8-node type ST64):  180.321   0.087 

    LS-DYNA (8-ndoe type 002): 179.349   0.131 



Example 2  -  Continued 

 

From Fig. 18, we observe that for the case of an isotropic elastic beam, the grid-convergence 

method yields an extrapolated mean frequency (180.199 kHz) larger than the theoretical solution 

(179.026 kHz).  Assuming this is also true for an anisotropic elastic beam where the unknown 

theoretical solution is also to the left of the FEM simulations, the four-plot diagram in Fig. 25 

shows that among the four FEM results, the absolute error (Class B) of ANSYS (ST64) is the 

largest.  This observation provides us a basis for assigning weights to each of the four 

simulations by assuming that one can calculate weights as proportional to the inverse of the 

product of (a) the absolute value of the distance from the theoretical solution to the extrapolated 

frequency, and (b) the standard deviation of the extrapolated frequency, if such a set of exercises 

is carried out for the isotropic elastic beam case.   Using a method by Liu and Zhang
44

, Fong, et 

al
32 

showed that the combined weighted result of the frequency estimation with prediction 95% 

confidence intervals is given by 179.385 (0.929) kHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 25.  Estimated Means and 95% Confidence Half-Intervals of First Natural Frequency of a 

Single-Crystal Silicon Cantilever by four FEM methods, namely, ABAQUS (Element C3D8I), 

ANSYS (Element 64), LS-DYNA (Element 002), and ABAQUS (Quadratic Element C3D20).  

Unweighted (i.e., equal weights) & “weighted” means  & prediction confidence half-intervals  

are also displayed for comparison. 
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Table 8.  A 5-variable 8-run fractional orthogonal design for two-level 

         experiments based on Box, Hunter, and Hunter
37

 [p. 420] 

and a more general design [same reference, p. 410]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9.  List of 5 input parameters (length, thickness, and 3 elastic constants) for a 5-variable, 

9-run fractional orthogonal design (with center point) of a FEM experiment in computing the 

first natural frequency of a single-crystal silicon cantilever beam.  Three elastic constants for the 

center run 0 in silicon before rotation, given here in solid line brackets, are based on McSkimin 

and Andreatch
49

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example 2  -  Continued 

 

Table 10.  Solution of first natural frequency (kHz) of a single-crystal silicon cantilever by a 

finite element method (FEM) based on (1) a 5-factor 8-run-plus-center-point fractional 

orthogonal design of experiments with prescribed input variability, (2) a commercially-available 

FEM package named  ANSYS
5
, version 10.0, and (3) four specific mesh sizes, m-6 (30 equal 

divisions in length, 6, in thickness, and 12, in width, or 30 x 6 x 12), m-8 (40 x 8 x 16), m-10 (50 

x 10 x 20), and m-12 (60 x 12 x 24). 

 

 

 

 

 

 

 

 

 

 

 

 

So far, we have discussed the combination of Class B (mathematical) and Class C (software 

implementation) errors to obtain a frequency estimate with uncertainty bounds for an anisotropic 

elastic cantilever beam.   But we observe from Example 1 that the uncertainty for Class A errors 

(physical) of a FEM simulation, when evaluated via the method of DOE, is several orders of 

magnitude larger in the case of an isotropic elastic beam.  We will now conduct a DOE for the 

anisotropic beam to see if the same is true. 

 

In Table 8, we first adopt a 5-variable and 2
5-2

 fraction (X4=X2*X3, X5=X1*X2*X3) orthogonal 

design for two-level experiments (see Box, Hunter, and Hunter
37

 [p.420]) in order to evaluate 

Class A errors for a specific FEM mesh design, namely,  m = 12.   In Table 9, we first list the 

variability of each of the five factors, namely, length, thickness, and the three elastic constants  

c11, c12, and c44, of a single-crystal (cubic) silicon beam.  We then show the values of those five 

factors needed for us to make 9 runs (8 for DOE plus one center point) of FEM simulations.  In 

Table 10, we show the frequency responses of an ANSYS simulation experiments at mesh sizes 

6, 8, 10, and 12.   

 

For this example, we will only carry out a DOE exercise for mesh size 12, as outlined in red in 

Table 10.  Using DATAPLOT to conduct a 10-step analysis of the DOE data of mesh 12, we 

show in Fig. 26 a plot of the main effects, with X1 (length) and X2 (thickness) singled out as 

obviously dominant.  Unfortunately, we observe in Fig. 27 that there are confounding effects in 

the interaction matrix.  In Fig. 28, we observe that the main effect of X1 is confounded with 

X2*X4 and X3*X5.  However, since X3, X4, and X5 have negligible effects (see Fig. 26), the 

confounding effects of X2*X4 and X3*X5 within X1 are also negligible.  Such an argument 

allows us to simplify the 5-factor model to a 2-factor model as shown in Fig. 29.  A least square 

multi-linear fit of the 9 data points is given in Fig. 30, and a summary of the uncertainty analysis 

results is given in Fig. 31.  For ANSYS mesh-12 simulation, frequency = 180.453 (9.453) kHz. 
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Fig. 26.  Step 3 of a 10-step analysis (Ref. 39, Chap. 5, Sect. 5.5.9, pp. 313-412) of the data from  

8 runs of experiments showing the main effects of the fractional factorial design.(k =5, n =8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 27.  Step 4 of a 10-step analysis (Ref. 39, Chap. 5, Sect. 5.5.9, pp. 313-412) of the data from  

8 experimental runs showing the interaction effects of the fractional factorial design.(k =5, n =8). 
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Fig. 28.    Step 7 of a 10-step analysis of the ANSYS data from 8 runs showing an ordered plot 

of the absolute values of the main (d3."d4."d5."d6."d7) and interaction effects. 

 

Let us pause for what we have accomplished so far.  We have obtained only the uncertainty 

estimate of the Class A error (physical) for one FEM software package, namly, ANSYS.  We 

observe from Example 1 that a different package may not yield identical result, so we decided to 

make another set of experiment using LS-DYNA.  In Table 11, the 9-run response values for LS-

DYNA mesh-6 through mesh-12 are given.  Again, we only choose to work with mesh-12, and a 

10-step DOE-based analysis yields a similar output with Fig. 32 showing the least square multi-

linear fit of the 9 response data by a function of two variables, and Fig. 33, the uncertainty 

analysis results.  For LS-DYNA mesh-12 simulation, first frequency = 179.451 (9.393) kHz. 

 

We are now ready to combine Classes A (physical) and C (software implementation) errors for 

two FEM software packages using the following individual estimates: 

 

               ANSYS         LS-DYNA 

                          __    __ 

  Mean  YA   =   180.453  YB   =   179.451 B

  Variance sA
2
   =   13.432  sB

2
   =   13.261 
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Fig. 29.  Step 10 of a 10-step analysis (Ref. 39, Chap. 5, Sect. 5.5.9, pp. 313-412) of the data 

from  8 runs of experiments showing the contour plot of the 2 dominant factors, X1 and X2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30.    Sensitivity analysis of the  ANSYS
5
  mesh-12 design of experiment (DOE) data using 

a two-parameter (length and thickness) least square fit algorithm of a statistical software package 

named DATAPLOT
1
. 
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= 171.000 

= 189.906 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31.    A summary of the uncertainty results generated by a DATAPLOT 10-step DOE 

analysis code showing that the first natural frequency of the elastic bending of a single-crystal 

silicon beam has a prediction 95% confidence interval of (171.000 kHz, 189.906 kHz) for the 

ANSYS
5
 mesh-12 simulation. 

 

 

 

Table 11.  Solution of first natural frequency (kHz) of a single-crystal silicon cantilever by a 

finite element method (FEM) based on (1) a 5-factor 8-run-plus-center-point fractional 

orthogonal design of experiments with prescribed input variability, (2) a commercially-available 

FEM package named  LS-DYNA
6
, version 970, and (3) four specific mesh sizes, m-6 (30 equal 

divisions in length, 6, in thickness, and 12, in width, or 30 x 6 x 12), m-8 (40 x 8 x 16), m-10 (50 

x 10 x 20), and m-12 (60 x 12 x 24). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example 2  -  Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 32.    Sensitivity analysis of the  LS-DYNA
6
  mesh-12 design of experiment (DOE) data 

using a two-parameter (length and thickness) least square fit algorithm of a statistical software 

package named DATAPLOT
1
. 

 

 

 

= 170.058 

= 188.844 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 33.  A summary of the uncertainty results generated by a DATAPLOT 10-step DOE 

analysis code showing that the first natural frequency of the elastic bending of a single-crystal 

silicon beam has a prediction 95% confidence interval of (170.058 kHz, 188.844 kHz) for the 

LS-DYNA
6
 mesh-12 simulation. 



Example 2  -  Continued 

 

Again, as in Example 1, we consider each FEM solution as a "Treatment" in statistical 

experiment, and apply an analysis of variance (ANOVA) technique in three steps to obtain an 

equally-weighted consensus value of the two estimated variances and means.  The method of 

combining Classes A (physical) and C (software packages) errors yields an estimate of the mesh-

12 frequency with a prediction 95% confidence half-interval as  179.952 (8.254) kHz.  A plot of 

comparing the multiple FEM DOE estimate (for t = 0.007 mm) with the experimental plus 

ANSYS simulation (for t = 0.0081 mm)
47

 is given in Fig. 34. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   =  179.952 (8.254) kHz 
 

mesh-12 (L = 0.232, t = 0.007 mm) 
 

Fig. 34.  A plot of comparing the multiple FEM DOE estimate (for L = 0.232 mm, t = 0.007 mm) 

with the experimental plus ANSYS simulation (for L = 0.223/0.232 mm, t = 0.081 mm)
47

.  Note 

that without a known theoretical solution, the comparison is only qualitative, because a correct 

comparison requires all simulations to have the same  L  and  t  as those associated with the 

experiment. 

 



Significance and Limitations of the DOE Approach 

 

The DOE approach to an uncertainty estimation of FEM simulations, as presented in this paper 

with two examples, is significant for at least two reasons: 

 

(1)  It provides an alternative approach to uncertainty estimation of mathematical modeling 

and simulation where the traditional approach of using Monte Carlo method becomes cost-

prohibitive as the degrees of freedom per simulation go as high as hundreds of thousands or more 

in most FEM simulations.  

 

(2)  It provides a new approach for a FEM user to translate his or her understanding of the 

variability of a problem to a quantitative expression of uncertainty in FEM results such that a 

better insight on many of the unknown features, e.g., constitutive equation, boundary condition, 

etc., may be gained before making decisions on new physical experiments. 

 

In addition, the DOE approach provides a user with a method to rank the importance of various 

factors and to simplify a complex model to a manageable size.    

 

There are, clearly, many limitations to this approach.  The first and foremost is the loss of 

accuracy when many factors are confounded with interactions in a fractional factorial design.  

There is also a need to elevate the two-level experiment to three- or higher-level ones, but that 

will increase the computing cost significantly to render the approach not as useful. 

 

Conclusion 

 

As a deterministic computational method of simulation, finite element method (FEM) has been a 

valuable tool in both engineering and science ever since computer was introduced in the 1950s.  

Recent rapid advances in computer hardware and memory have made it possible to address the 

practical but hard question of delivering FEM simulations with uncertainty estimation.  In 

particular, for researchers in micro- and nano-measurement sciences where the governing laws of 

physics, chemistry, and biology are generally the objects of inquiry and thus not well-known for 

FEM implementation, the lack of a FEM simulation with uncertainty estimation is a major 

barrier.  The development of a metrology-based mathematical modeling and simulation method 

such as the one presented here removes one of the barriers for enhancing the practice of 

fundamental science and engineering design through scientific computation and visualization.  

The DOE approach outlined in this paper not only answers the call of the 2006 NSF Blue Ribbon 

Panel Report on Simulation-Based Engineering Science
50 

as quoted below: 

 

 " . . . verification, validation, and uncertainty quantification are challenging 

    and necessary research areas that must be actively pursued," 

 

but also provides a tool for model verification as demanded by D. E. Post (Los Alamos National 

Laboratory) and L. G. Votta (Sun Microsystems) in a Physics Today (2005) article
51

: 

 

 " . . . New methods of verifying and validating complex codes are mandatory 

    if computational science is to fulfill its promise for science and society." 



Acknowledgment 

 

We wish to thank Howard Baum, Ronald F. Boisvert, Robert F. Cook, Andrew Dienstfrey, 

Richard Fields, Richard Gates, Donna C. Hurley, Hung-kung Liu, Daniel Lozier, Geoffrey 

McFadden, Kuldeep Prasad, Ronald Rehm, Emil Simiu, Douglas Smith, Barry Taylor, and Nien-

Fang Zhang, all of NIST, H. Norm Abramson of Southwest Research Institute, San Antonio, TX, 

Barry Bernstein of Illinois Inst. of Technology, Chicago, IL, Hal F. Brinson of University of  

Houston, Houston, TX, Michael Burger of LSTC Corp., Livermore, CA, Yuh J. (Bill) Chao of 

University of S. Carolina, Columbia, SC, Mel F. Kanninen of San Antonio, TX, Poh-Sang Lam 

of Savannah River National Laboratory, Aiken, SC, Bradley E. Layton of Drexel University, 

Philadelphia, PA, Pedro Marcal of MPave Corp., Julian, CA, Paul C. Mitiguy and Charles R. 

Steele of Stanford University, Stanford, CA, William Oberkampf and Jon Helton of Sandia 

National Laboratories, Albuquerque, NM, Robert Rainsberger of XYZ Scientific Applications, 

Inc., Livermore, CA, Glenn B. Sinclair of Louisiana State University, Baton Rouge, LA, Ala 

Tabiei of University of Cincinnati, Cincinnati, OH, and Tomasz Wierzbicki of M.I.T., 

Cambridge, MA, for their valuable discussions/comments during the course of this investigation. 

 

The work reported here has been supported, in part, by NIST through three intramural grants 

over a span of four years, namely, (a) a 2003 contract award to the first author (Fong), P. O. No. 

NA1341-03-W-0536, entitled "Modeling and Analysis of Structural Integrity of a Complex 

Structure under Mechanical and Thermal Loading," (b) a 2004-05 competence award to the first 

two authors (Fong & Filliben) on "Complex System Failure Analysis: A Computational Science 

Approach," and (c) a 2005-06 exploratory competence award to three of the four authors (Fong, 

Filliben & deWit) on "A Stochastic Approach to Modeling of Contact Dynamics in Atomic Force 

Acoustic Microscopy," for which each of the individual awardees are grateful. 

 

Disclaimer:  

 

The views expressed in this paper are strictly those of the authors and do not necessarily reflect 

those of their affiliated institutions.  The mention of the names of all commercial vendors and 

their products is intended to illustrate the capabilities of existing products, and should not be 

construed as endorsement by the authors or their affiliated institutions. 

 

 

 

 

References 
 

[1] Filliben, J. J., and Heckert, N. A., 2002, DATAPLOT: A Statistical Data Analysis Software System, a 

 public domain software released by NIST, Gaithersburg, MD 20899,  

 http://www.itl.nist.gov/div898/software/dataplot.html (2002). 

 

[2] Hughes, T. J. R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, revised 

edition of an original version published in 1987 by Prentice-Hall entitled "The Finite Element Method."  

Dover (2000). 

 

[3] Zienkiewicz, O. C., and Taylor, R. L., The Finite Element Method, 5th ed., Vol. 1, The Basis.  Butterworth-

Heinemann (2000). 

http://www.itl.nist.gov/div898/software/dataplot.html


[4]   ABAQUS, 2007, ABAQUS User’s Manual, Version 6.7.0.  ABAQUS, Inc., 1080 Main St., Pawtucket, 

Rhode Island 02860-4847 (2007). 

 

[5]  ANSYS, 2007, ANSYS User’s Manual, Release 10.0.  ANSYS, Inc., 275 Technology Dr., Cannonsburg, PA 

15317 (2006). 

 

[6]   LSTC, 2003, LS-DYNA Keyword User’s Manual, Version 970, April 2003, Livermore Software Technology 

Corp., Livermore, CA (2003). 

 

[7] Kwon, Y. W., and Bang, H. C., The Finite Element Method Using MATLAB, 2nd ed.  CRC Press (2000). 

 

[8] Baker, N., Holst, M., and Wang, F., "Adaptive multilevel finite element solution of the Poisson-Boltzmann 

equation II:  Refinement at solvent accessible surfaces in biomolecular systems," J. Comput. Chem., Vol. 

21, No. 15, pp. 1343-1352 (2000). 

 

[9] Gladilin, E., Micoulet, A., Hosseini, B., Rohr, K., Spatz, J., and Eils, R., "3D finite element analysis of 

uniaxial cell stretching: from image to insight," Phys. Biol., Vol. 4, pp. 104-113 (2007). 

 

[10] Borodkin, J., and Hollister, S., "A New Method for Correcting Boundary Condition Errors on 

Microstructural FEA Models of Trabecular Bone and Implant Interfaces," in Computer Methods in 

Biomechanics & Biomedical Engineering, J. Middleton, M. L. Jones, and G. N. Pande, eds., pp. 105-114.  

Gordon and Breach (1996). 

 

[11] Kormi, K., Webb, D. C., and Tan, L. -B., "A Finite Element Simulation of Arterial Orifice Dilation by 

Angioplasty Balloon Insertion," in Computer Methods in Biomechanics & Biomedical Engineering, J. 

Middleton, M. L. Jones, and G. N. Pande, eds., pp. 305-314.  Gordon and Breach (1996). 

 

[12] Bhattacharya, A. K., and Nix, W. D., "Analysis of Elastic and Plastic Deformation Associated with 

Indentation Testing of Thin Films on Substrates," Int. J. Solids Struct., Vol. 24, No. 12, pp. 1287-1298 

(1988). 

 

[13] Baker, N., Holst, M., et al, "Toward Computational Cell Biology: Nanostructures," San Diego 

Supercomputer Center (SDSC) EnVision, Vol. 16, No. 3, pp. 1-7 (2006). 

 http://www.sdsc.edu/pub/envision/v16.3/baker.html  

 

[14] Ayyub, B. M., ed., Uncertainty Modeling and Analysis in Civil Engineering.  CRC Press (1998). 

 

[15] Lord, G. J., and Wright, L., "Uncertainty Evaluation in Continuous Modeling," Report to the National 

Measurement System Policy Unit, Department of Trade and Industry, NPL Report CMSC 31/03.  

Teddington, Middlesex, U.K.: National Physical Laboratory (2003). 

 

[16] Hlavacek, I., Chleboun, J., and Babuska, I., Uncertain Input Data Problem and the Worst Scenario Method.  

Elsevier (2004). 

 

[17] Oberkampf, W. L., “A Proposed Framework for Computational Fluid Dynamics Code Calibration/ 

Validation,” Proc. 18th AIAA Aerospace Ground Testing Conference, Colorado Spring, CO,  AIAA Paper 

No. 94-2540 (1994). 

 

[18] Roache, P. J.,, Verification and Validation in Computational Science and Engineering.  Hermosa 

Publishers, Albuquerque, NM (1998). 

 

[19] Oberkampf, W. L., Trucano, T. G., and Hirsch, C., "Verification, Validation, and Predicative Capability in 

Computational Engineering and Physics," Proc. Workshop on Foundations for V & V in the 21st Century, 

22-23 Oct. 2002, John Hopkins Univ./Appl. Phys. Lab., Laurel, Maryland, D. Pace & S. Stevenson, eds., 

published by Society for Modeling & Simulation International (2002). 

 

http://www.sdsc.edu/pub/envision/v16.3/baker.html


[20] Babuska, I., and Oden, J. T., "Verification and validation in computational engineering and science: basic 

concepts," Comput. Methods Appl. Mech. Engrg., Vol. 193, pp. 4057-4066 (2004). 

 

[21] Fong, J. T., "ABC of Statistics for Verification and Validation (V&V) of Simulations of High-Consequence 

Engineering Systems," Proc. 2005 ASME Pressure Vessels and Piping Conference, July 17-21, 2005, 

Denver, CO, Paper No. PVP2005-MF-13-1 (2005). 

 

[22] Butler, B. P., Cox, M. G., Forbes, A. B., Harris, P. M., and Lord, G. J., "Model Validation in the Context of 

Metrology: A Survey," UK NMS Software Support for Metrology Programme, Model Validation Survey 

v1.0, NPL Report CISE 19/99.  Teddington, Middlesex, U.K.: National Physical Laboratory (1999). 

 

[23] Fong, J. T., Filliben, J. J., deWit, R., Fields, R. J., Bernstein, B., and Marcal, P. V., "Uncertainty in Finite 

Element Modeling and Failure Analysis: A Metrology-Based Approach," ASME Trans., J. Press. Vess. 

Tech., Vol. 128, pp. 140-147 (2006). 

 

[24] Department of Defense (DOD),  DOD  Directive  No. 5000.61: Modeling and Simulation (M&S) 

Verification, Validation, and Accreditation (VV&A), Defense Modeling and Simulation Office, Office of the 

Director of Defense Research and Engineering (1996). 

 

[25] ANS, Guidelines for the Verification and Validation of Scientific and Engineering Computer Programs for 

the Nuclear Industry, American Nuclear Society, ANSI/ANS-10.4-1987 (1987). 

 

[26] AIAA, Guide for the Verification and Validation of Computational Fluid Dynamics Simulations, American 

Institute of Aeronautics and Astronautics, AIAA-G-077-1998, Reston, VA (1998). 

 

[27] ASME, Guide for Verification and Validation in Computational Solid Mechanics, American Society of 

Mechanical Engineers, ASME-PTC-60-Guide, V&V 10-2006, Product Catalog - Codes and Standards - 

Computational/Analysis., New York, NY (2006). 

 

[28] Cohen, M. L., Ralph, J. E., and Steffey, D. L., eds., 1998, Statistics, Testing, and Defense Acquisition: New 

Approaches and Methodological Improvements, National Academy Press, Washington, DC (1998). 

 

[29] Haldar, A., Guran, A., and Ayuub, B. M., eds. Uncertainty Modeling in Finite Element, Fatigue and 

Stability of Systems.  World Scientific Publishing Co. Pte. Ltd., 1060 Main Street, River Edge, NJ 07661 

(1997). 

 

[30] Haldar, A., and Mahadevan, S., Reliability Assessment Using Stochastic Finite Element Analysis.  Wiley 

(2000).  

 

[31] Yang, D., Oh, S. L., Huh, H., and Kim, Y. H., eds., "Numisheet 2002: Design Innovation Through Virtual 

Manufacturing," Proc. 5th Int. Conf. and Workshop on Numerical Simulation of 3D Sheet Forming 

Processes - Verification of Simulation and Experiment, 21-25 October 2002, Jeju Island, Korea, Vol. 2, 

published by Korea Advanced Inst. of Science and Technology (KAIST), 373-1, Science Town, Taejon, 

305-701, Korea (2002). 

 

[32] Fong, J. T., Filliben, J. J., deWit, R., and Bernstein, B., "Stochastic Finite Element Method (FEM) and 

Design of Experiments for Pressure Vessel and Piping (PVP) Decision Making," Proc. of 2006 ASME 

Pressure Vessels and Piping Division Conference, July 23-27, 2006, Vancouver, B. C., Canada, paper no. 

PVP2006-ICPVT11-93927.  New York, NY: American Society of Mechanical Engineers (2006). 

 

[33] ISO, 1993, Guide to the Expression of Uncertainty in Measurement, prepared by ISO Technical advisory 

Group 4 (TAG 4), Working Group 3 (WG 3), Oct. 1993.  ISO/TAG 4, sponsored by the BIPM (Bureau 

International des Poids et Mesures), IEC (International Electrotechnical Commission), IFCC (International 

Federation of Clinical Chemistry), ISO, IUPAC (Int. Union of Pure and Applied Chemistry), IUPAP 

(International Union of Pure and Applied Physics), and OIML (Int. Organization of Legal Metrology) 

(1993). 



[34] Taylor, B. N., and Kuyatt, C. E., Guidelines for Evaluating and Expressing the Uncertainty of NIST 

Measurement Results, NIST Tech. Note 1297, Sep. 1994 edition (supersedes Jan. 1993 edition), prepared 

under the auspices of the NIST Ad Hoc Committee on Uncertainty Statements, U. S. Government Printing 

Office, Washington, DC (1994). 

 

[35] Natrella, M. G., Experimental Statistics, NBS Handbook 91, 1963 edition (reprinted October 1966 with 

corrections).  U. S. Government Printing Office, Washington, DC (1966). 

 

[36] John, P. W. M., Statistical Design and Analysis of Experiments, SIAM Classics in Applied Mathematics, 

Philadelphia, PA (1971). 

 

[37] Box, G. E., Hunter, W. G., and Hunter, J. S., 1978, Statistics for Experimenters: An Introduction to Design, 

 Data Analysis, and Model Building.  Wiley (1978). 

 

[38] Montgomery, D. C., Design and Analysis of Experiments, 5th ed.  Wiley (2000). 

 

[39] Croarkin, C., Guthrie, W., Heckert, N. A., Filliben, J. J., Tobias, P., Prins, J., Zey, C., Hembree, B., and 

Trutna, eds., 2003, NIST/SEMATECH e-Handbook of Statistical Methods, Chapter 5 on Process 

Improvement (pp. 1-480), http://www.itl.nist.gov/div898/handbook/, first issued, June 1, 2003, and last 

updated July 18, 2006.  Produced jointly by the Statistical Engineering Division of the National Institute of 

Standards & Technology, Gaithersburg, MD, and the Statistical Methods Group of SEMITECH, Austin, 

TX.   Also available as a NIST Interagency Report in a CD-ROM upon request to alan.heckert@nist.gov 

(2006). 

 

[40] Timoshenko, S., and Young, D. H., 1955, Vibration Problems in Engineering, 3rd ed.  D. Van Nostrand 

(1955) 

 

[41] Clough, R., and Penzien, J., 2003, Dynamics of Structures, 2nd ed. (Revised).  Berkeley, CA 94704: 

Computers and Structures, Inc. (2003). 

 

[42] Myers, R. H., and Montgomery, D. C., Response Surface Methodology: Process and Product Optimization 

Using Designed Experiments, 2nd ed.  Wiley (2002).  

 

[43] Nelson, P. R., Coffin, M., and Copeland, K. A. F., Introductory Statistics for Engineering Experimentation.  

Elsevier (2003). 

 

[44] Liu, H. K., and Zhang, N. F., “Bayesian Approach to Combining Results from Multiple Methods,” Proc. 

Amer. Stat. Assoc., pp. 158-163 (2002). 

 

[45] Rabe, U., Janser, K., and Arnold, W., “Vibrations of free and surface-coupled atomic force microscope 

cantilevers: Theory and experiment,” Rev. Sci. Instrum., 67 (9), 3281-3293 (1996). 

 

[46] Kester, E., Rabe, U., Presmanes, L., Tailhades, Ph., and Arnold, W., “Measurement of Young’s modulus of 

nanocrystalline ferrites with spinel structures by atomic force acoustic microscopy,” J. Phys. Chem. Solids, 

61, 1275-1284 (2000). 

 

[47] Hurley, D. C., Shen, K., Jennett, N. M., and Turner, J. A., “Atomic force acoustic microscopy methods to 

determine thin-film elastic properties,” J. Appl. Phys., 94(4), 2347-2354 (2003). 

 

[48] Lekhnitskii, S. G., Theory of Elasticity of an Anisotropic Body, translated from the revised 1977 Russian 

edition.  Moscow: MIR Publishers (1981). 

 

[49] McSkimin, H. J., and Andreatch, P., Jr., “Elastic Moduli of Silicon vs. Hydrostatic Pressure at 25.0 C and 

 - 195.8 C,” J. Appl. Phys., 35(7), 2161-2165 (1964). 

 

http://www.itl.nist.gov/div898/handbook/
mailto:alan.heckert@nist.gov


[50] Oden, J. T. (Chair), et al, 2006,  “Simulation-Based Engineering Science (SBES): Revolutionizing 

 Engineering Science through Simulation,”  Report of the NSF Blue Ribbon Panel on SBES, Feb. 2006 

 http://www.ices.utexas.edu/events/SBES_Final_Report.pdf  

 

[51] Post, D. E., and Votta, L. G., “Computational Science Demands a New Paradigm,” Physics Today, Jan. 

2005, pp. 35-41 (2005). 

http://www.ices.utexas.edu/events/SBES_Final_Report.pdf

