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Abstract
The results from an interlaboratory evaluation are said to be statistically consistent if they fit a
normal (Gaussian) consistency model which postulates that the results have the same unknown
expected value and stated variances–covariances. A modern method for checking the fit of a
statistical model to the data is posterior predictive checking, which is a Bayesian adaptation of
classical hypothesis testing. In this paper we propose the use of posterior predictive checking
to check the fit of the normal consistency model to interlaboratory results. If the model fits
reasonably then the results may be regarded as statistically consistent. The principle of
posterior predictive checking is that the realized results should look plausible under a posterior
predictive distribution. A posterior predictive distribution is the conditional distribution of
potential results, given the realized results, which could be obtained in contemplated
replications of the interlaboratory evaluation under the statistical model. A systematic
discrepancy between potential results obtained from the posterior predictive distribution and
the realized results indicates a potential failing of the model. One can investigate any number
of potential discrepancies between the model and the results. We discuss an overall measure of
discrepancy for checking the consistency of a set of interlaboratory results. We also discuss
two sets of unilateral and bilateral measures of discrepancy. A unilateral discrepancy measure
checks whether the result of a particular laboratory agrees with the statistical consistency
model. A bilateral discrepancy measure checks whether the results of a particular pair of
laboratories agree with each other. The degree of agreement is quantified by the Bayesian
posterior predictive p-value. The unilateral and bilateral measures of discrepancy and their
posterior predictive p-values discussed in this paper apply to both correlated and independent
interlaboratory results. We suggest that the posterior predicative p-values may be used to
assess unilateral and bilateral degrees of agreement in International Committee of Weights and
Measures (CIPM) key comparisons.

1. Introduction

A question that is often asked about the results from an
interlaboratory evaluation is whether they are statistically
consistent. Indeed some interlaboratory evaluations are
conducted for the primary purpose of determining whether
statistically consistent results can be obtained. The summary

data from an interlaboratory evaluation consists of n paired
results and standard uncertainties [x1, u(x1)], . . . , [xn, u(xn)].
The results x1, . . . , xn need not be the measured values of the
same measurand; however, they are deemed to be suitable for
comparison, otherwise a check of their consistency would be
meaningless. The uncertainties u(x1), . . . , u(xn) are assumed
to be non-zero and they may be unequal. The traditional
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concept of statistical consistency motivated by the Birge test [1]
is based on regarding the results x1, . . . , xn as realizations
of random variables with sampling probability distributions
with unknown expected values. To apply the Birge test, the
standard uncertainties u(x1), . . . , u(xn) are regarded as the
known standard deviations of those sampling distributions.
A test of statistical consistency checks whether the expected
values of the sampling probability distributions of the results
may be regarded as approximately equal.

1.1. The Birge test of consistency

The Birge test [1, 2] is based on the following three
assumptions: (i) The results x1, . . . , xn may be regarded
as realizations of random variables, also denoted by
x1, . . . , xn, with sampling probability density functions (pdfs)
of unknown expected values. (ii) The standard uncertainties
u(x1), . . . , u(xn) may be regarded as the known standard
deviations of the pdfs of x1, . . . , xn, respectively. (iii) The
sampling pdfs of x1, . . . , xn may be regarded as normal
(Gaussian) and mutually independent. The following test
statistic, called the Birge test statistic is calculated from the
data [x1, u(x1)], . . . , [xn, u(xn)]:

R2 =
n∑

i=1

wi(xi − xW)2/(n − 1), (1)

where wi = 1/u2(xi) for i = 1, 2, . . . , n, and
xW = ∑

i wixi/
∑

i wi is the weighted mean of the results
x1, . . . , xn. If the expected values E(x1), . . . , E(xn) of
the results are all equal to some unknown value µ, then the
expected value of the test statistic R2 is one4. Thus if the
calculated (realized) value of R2 is substantially larger than
one or equivalently the calculated value of (n − 1) R2 =∑

i wi(xi − xW)2 is substantially larger than (n − 1), then the
results x1, . . . , xn are declared to be inconsistent.

To quantify the largeness of a calculated value of (n − 1)
R2, a statistical approach is needed. Suppose the calculated
value of R2 is R2

0 . Now suppose that χ2
ν [1 − α] is the 100

(1 − α)th percentile of the chi-square probability distribution,
χ2

ν , with degrees of freedom ν; that is, Pr{χ2
ν � χ2

ν

[1 − α]} = 1 − α, for 0 < α < 1. A traditional value of
α is 0.05, which corresponds to the 95th percentile χ2

ν [0.95].
The calculated value (n − 1) R2

0 is compared with the 95th
percentile χ2

(n−1)[0.95] of the chi-square distribution χ2
(n−1)

with degrees of freedom (n − 1). The 95th percentile
χ2

(n−1)[0.95] is substantially larger than (n − 1); therefore,
if (n − 1) R2

0 is larger than χ2
(n−1)[0.95] then it would be

substantially larger than (n − 1). Suppose the calculated
value (n − 1) R2

0 is larger than χ2
(n−1)[0.95]; that is, the

event {(n − 1)R2
0 > χ2

(n−1)[0.95]} occurs. Then the results
x1, . . . , xn are declared to be statistically inconsistent with 95%
confidence. Statistical inconsistency implies that the expected
values E(x1), . . . , E(xn) of the results may not be regarded as
equal.

4 This particular statement does not require that the forms of the sampling
distributions of x1, . . . , xn be normal. However, the normal distribution is
required to make a probabilistic statement about statistical consistency.

1.2. Statistical consistency defined as not excessive
dispersion in the results

We had previously used in [3] the following definition of
statistical consistency: the results x1, . . . , xn are said to
be statistically consistent, relative to their stated variances
u2(x1), . . . , u

2(xn) and covariances u(x1,x2), . . . , u(xn−1, xn),
if their dispersion is not greater than what can be
expected from a normal statistical consistency model which
postulates that x1, . . . , xn have a joint n-variate normal
sampling pdf with a common unknown expected value µ,
known variances u2(x1), . . . , u

2(xn), and known covariances
u(x1,x2), . . . , u(xn−1, xn). In the Birge test of consistency, all
covariances are assumed to be zero.

In matrix form, the normal consistency model postulates
that the random vector x = (x1, . . . , xn)

t has an n-variate
normal distribution, N(1µ, D), with expected value 1µ and
variance–covariance matrix (dispersion matrix) D, where
1 = (1, . . . , 1)t , the variances u2(x1), . . . , u

2(xn) are diagonal
elements of D, and the covariances u(x1,x2), . . . , u(xn−1, xn)

are off-diagonal elements of D. The superscript t in the
definitions of x = (x1, . . . , xn)

t and 1 = (1, . . . , 1)t indicates
transpose of a vector or of a matrix. We can express the normal
consistency model as the linear statistical model5:

x = 1µ + e, where e ∼ N(0, D). (2)

By the relational symbol ∼ used in (2) we mean that the
random vector e = (e1, . . . , en)

t has the joint n-variate
normal probability distribution N(0, D). Using the notation
u(xi, xi) = u2(xi) for i = 1, 2, . . . , n, we can express the
variance–covariance matrix D as [u(xi, xj )]. In the linear
statistical model (2), the dispersion matrix D is assumed to be
known and positive definite [3]. In terms of the model (2), we
had previously used in [3] the following definition of statistical
consistency.

Definition 1. The results x = (x1, . . . , xn)
t are said to

be statistically consistent relative to the variance–covariance
matrix D = [u(xi, xj )], if their dispersion is not greater than
what can be expected from the normal consistency model (2).

1.3. Statistical interpretation of the Birge test and its
generalized version

Reference [3] interprets the Birge test of consistency as a
classical test of the null hypothesis H0 that the variances of
the sampling pdfs of the results x1, . . . , xn are less than or
equal to their stated values u2(x1), . . . , u

2(xn) against the
alternative hypothesis H1 that the variances of the sampling
pdfs of x1, . . . , xn are greater than u2(x1), . . . , u

2(xn). A
modern statistical protocol for hypothesis testing is to calculate
the classical p-value. The classical p-value is the maximum
probability under the null hypothesis H0 of realizing in
conceptual replications of the interlaboratory evaluation a

5 Statisticians often express a general linear statistical model as y = Xβ + e,
where e ∼ N(0, τ 2Σ). The model (2) is a special case in which X = 1, β = µ,
Σ = D and τ 2 = 1.
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value of the test statistic R2 that is equal to or larger than
its realized (observed, calculated) value. The null hypothesis
H0 is rejected when the p-value is too small. Reference [3]
gives an expression for the classical p-value of the calculated
Birge test statistic R2

0 . Then it is shown in [3] that the classical
p-value of the Birge test statistic R2 is equal to the Bayesian
posterior probability corresponding to the null hypothesis
of statistical consistency based on non-informative improper
prior distributions for the unknown statistical parameters.

Occasionally the interlaboratory results are correlated and
it is necessary to check for their consistency. Reference [3]
presents a general test of consistency for both uncorrelated
and correlated results, of which the Birge test is a special case.
Then it is shown in [3] that the classical p-value of the general
test statistic is equal to the Bayesian posterior probability
of the null hypothesis based on using non-informative prior
distributions. The general test makes it possible to check
the consistency of correlated results from interlaboratory
evaluations.

1.4. Statistical consistency defined as fitting the normal
(Gaussian) consistency model

In this paper we propose an improved definition of statistical
consistency in interlaboratory results than the definition used
earlier in [3]. Suppose the expected values E(x1), . . . , E(xn)

are unequal; that is, the differences between them are of
practical importance. If the variances u2(x1), . . . , u

2(xn) were
stated to be too large and consequently the calculated value
of the Birge test statistic R2

0 were sufficiently small, then the
results x1, . . . , xn would appear to be statistically consistent.
This apparent statistical consistency would be an artefact of
stating the variances u2(x1), . . . , u

2(xn) to be too large. Thus,
if a metrologist overstates the uncertainties then he (she) may
mask inequality of the expected values E(x1), . . . , E(xn); that
is, wrongly declare the results with unequal expected values to
be consistent.

A review of the Birge test in [2] notes that if the
value of R2

0 is substantially less than one6, then the stated
variances u2(x1), . . . , u

2(xn) may well be too large. To prevent
unreal pronouncements of statistical consistency arising from
excessively overstating the variances, in this paper we use the
following definition of consistency.

Definition 2. The results x = (x1, . . . , xn)
t are said to

be statistically consistent relative to the variance–covariance
matrix D = [u(xi, xj )], if the normal consistency model (2),
reasonably fits the results x1, . . . , xn.

A modern Bayesian method for checking the fit of a
statistical model to the data is posterior predictive checking
[4, chapter 6]. In this paper we use posterior predictive
checking to check the fit of the normal consistency model (2)
to the results x = (x1, . . . , xn)

t . If the model (2) reasonably
fits, then the results x1, . . . , xn may be regarded as statistically
consistent.
6 If the value R2

0 is substantially larger than one, then either the
expected values E(x1), . . . , E(xn) are not equal or the stated variances
u2(x1), . . . , u

2(xn) are too small.

1.5. Bayesian posterior predictive checking of the fit of
statistical consistency model

Concept of posterior predictive checking. The concept of
posterior predictive checking of the fit of a statistical model
to the realized data is a Bayesian adaptation of the classical
(frequentist sampling) method of hypothesis testing [4]. A
statistical model is a description of the sampling probability
distribution attributed to the data; it describes the probabilities
of obtaining various data values conditional on the values of
certain parameters in contemplated replications of the data
generation process. The aim in classical hypothesis testing
is to assess whether the unknown values of the parameters
of a sampling distribution belong to a set specified by the
null hypothesis. A suitable test statistic is determined. A
test statistic is a criterion to check the discrepancy between
the realized data and the other data which might be obtained
under the set of parameter values specified by the null
hypothesis. The classical p-value of a test statistic is
the maximum probability of obtaining a value of the test
statistic more extreme than its realized value in contemplated
replications according to the sampling distributions under the
null hypothesis. A small classical p-value indicates that
the realized data have low probability of occurrence under
the sampling distributions specified by the null hypothesis.
Therefore if the classical p-value is too small then the null
hypothesis is rejected.

All Bayesian statistical inferences are conditional on the
realized data. A posterior predictive distribution is like a
sampling distribution of the data except that it is conditioned
on the realized results rather than conditioned on unknown
or hypothesized values of certain statistical parameters. A
posterior predictive distribution of potential data is the integral
of the sampling distribution with respect to the Bayesian
posterior distributions of the parameters conditioned on the
realized data. A discrepancy measure is a measure of the
discrepancy between the statistical model and the data. It plays
the same role in Bayesian posterior predictive model checking
that a test statistic plays in classical hypothesis testing.
The posterior predictive p-value of a discrepancy measure
is the probability of obtaining a value of the discrepancy
measure more extreme than its realized value in contemplated
replications according to the posterior predictive distribution
conditioned on the realized data. An extreme posterior
predictive p-value (one which is close to 0 or close to 1)
indicates that the realized data have a low probability of
occurring under the postulated statistical model. That is, the
statistical model does not appear to fit the realized data.

In this section we discuss application of the concept of
posterior predictive checking to assess the fit of the statistical
consistency model (2) to the results x = (x1, . . . , xn)

t . Let
xrep = (x

rep
1 , . . . , x

rep
n )t represent potential results that could be

obtained in a contemplated replication of the interlaboratory
evaluation under the normal consistency model (2). The
sampling distributions of xrep and x, conditional on the
unknown parameter µ, are identical; that is, x ∼ N(1µ, D)

as well as xrep ∼ N(1µ, D). The values of the parameters
µ and D = [u(xi, xj )] remain unchanged in contemplated
replications. The state of knowledge concerning the
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unknown value of µ is described by the Bayesian posterior
probability distribution of µ conditional on the realized results
x = (x1, . . . , xn)

t . When there is no a priori knowledge
about the value of µ, a non-informative improper prior
distribution is used to determine the posterior distribution of µ

conditional on x.

Posterior predictive distribution of the potential results. The
posterior predictive distribution of xrep is the conditional
distribution of xrep given the realized results x = (x1, . . . , xn)

t .
Let f (xrep|µ) be the sampling pdf of xrep conditional on the
unknown parameter µ postulated by the normal consistency
model (2). Now suppose, p(µ|x) is the posterior pdf of µ

given the realized results x, then the posterior predictive pdf of
xrep given x, p(xrep|x), is the integral

p(xrep|x) =
∫

f (xrep|µ)p(µ|x) dµ. (3)

The posterior predictive pdf p(xrep|x) is the average of the
conditional pdfs f (xrep|µ) of xrep over the posterior distribution
of µ. It is the prediction of the potential results xrep that could
be obtained in contemplated replications of the interlaboratory
evaluation under the normal consistency model (2) conditioned
on the realized results x.

If the statistical model (2) fits, then the replicated results
xrep obtained from this model should look similar to the
realized results x [4, section 6.3]. Another way of saying
this is that the realized results x = (x1, . . . , xn)

t should
look plausible under the posterior predictive pdf p(xrep|x). A
systematic discrepancy between the results xrep obtained from
the posterior predictive pdf and the realized results x indicates
a failing of the statistical model (2).

Discrepancy measures. A discrepancy measure T(xrep) is a
measure of the discrepancy that one wishes to check between
the statistical model and the data [4, section 6.3]. Unlike
a classical test statistic which depends only on the data,
a Bayesian discrepancy measure may depend in addition
to the data on the model parameters under their posterior
distribution. Since, in model (2) there is only one unknown
parameter; therefore, the discrepancy measures depend only
on the data, such as classical test statistics. We will discuss
several discrepancy measures for checking the fit of statistical
consistency model (2) to the results x.

Posterior predictive p-values of discrepancy measures. The
Bayesian posterior predictive p-value, pP, of a realized value
T(x) of the discrepancy measure T(xrep) is the probability
of realizing in contemplated replications a value of the
discrepancy measure T(xrep) more extreme than its realized
value T(x); that is,

pP = Pr{T (xrep) � T (x)|x}, (4)

where the probability is defined with respect to the posterior
predictive distribution of xrep conditioned on the realized
results x. The statistical model (2) is suspect if the posterior
predictive p-value pP of a discrepancy measure T(x) is extreme
(that is, close to 0 or close to 1), thereby indicating that the
realized results x are not very likely to be seen in contemplated
replications if the statistical model (2) were true.

1.6. Outline

In section 2, we discuss an overall measure of discrepancy
for checking the statistical consistency of interlaboratory
results. Then we determine the posterior predictive p-value
of obtaining a value of the overall discrepancy measure more
extreme than its realized value. In section 3, we discuss two
sets of unilateral and bilateral measures of discrepancy. A
unilateral discrepancy measure checks whether the result from
a particular laboratory agrees with the statistical consistency
model. A bilateral discrepancy measure checks whether the
results from a particular pair of laboratories agree with each
other. Then we determine the posterior predictive p-values
of obtaining values of unilateral and bilateral discrepancy
measures more extreme than their realized values. A p-value
close to zero or close to one suggests discrepancy. In section 4,
we illustrate the calculation of posterior predicative p-values
of discrepancy measures. In section 5, we suggest that the
posterior predicative p-values may be used to assess the
degrees of agreement in the results from an International
Committee of Weights and Measures (CIPM) key comparison.
A brief summary appears in section 6.

2. Overall measure of discrepancy for checking
consistency

The normal consistency model (2) postulates that the sampling
pdf f (x|µ) of x given µ is

f (x|µ) = (2π)−n/2|D|−1/2

× exp{− 1
2 (x − 1µ)tD−1(x − 1µ)}. (5)

We will determine a Bayesian posterior pdf p(µ|x) for the
unknown parameter µ in (5) using a non-informative improper
prior distribution for µ. Then we will use the integral (3) to
determine the posterior predictive pdf p(xrep|x) of xrep given
x. We will introduce an overall discrepancy measure Tc(xrep)
for checking the fit of the normal consistency model (2) to the
realized results x = (x1, . . . , xn)

t . It turns out that the posterior
predictive pdf of the overall discrepancy measure Tc(xrep) has
a simple and well-known form. Thus, the posterior predictive
p-value, pP, of the realized value of the overall discrepancy
measure Tc(x) can be analytically determined.

2.1. Bayesian posterior distribution of the common expected
value

The generalized least squares estimate (GLSE) m of the single
unknown parameter µ in (5) is that value m for which the
quadratic form (x − 1µ)tD−1 (x − 1µ) is minimum. The
GLSE m has the following properties, which are special
cases (corresponding to τ 2 = 1) of the properties derived in
[3, appendices B and E]:

(i) The GLSE estimate7 m of µ in (5) is m = Btx where
Bt = (1tD−11)−11tD−1.

7 The minimization of the quadratic form (x − 1µ)tD−1 (x − 1µ) in (5)
is equivalent to maximization of the pdf f (x|µ) interpreted as a likelihood
function of µ. Therefore, m = Btx is both the GLSE and the maximum
likelihood estimate (MLE) of µ.
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(ii) The sampling distribution of m = Btx is normal with
expected value E(m) = µ and variance V (m) =
(1tD−11)−1.

(iii) The quadratic form (x − 1µ)tD−1 (x − 1µ) in (5) can be
parsed as

(x − 1µ)tD−1(x − 1µ)

= (x − 1m)tD−1(x − 1m) +
(m − µ)2

(1tD−11)−1
. (6)

This expression shows that the minimum value8 of the
quadratic form (x − 1µ)tD−1 (x − 1µ) is (x − 1m)tD−1

(x − 1m).
(iv) The sampling distribution of the minimum quadratic form

(x−1m)tD−1(x−1m) is the chi-square distribution χ2
(n−1)

with degrees of freedom (n − 1).
(v) The sampling distributions of m and (x−1m)tD−1 (x−1m)

are independent.

The estimate m is the minimum variance unbiased estimate
of µ in the sense that it is unbiased, that is E(m) = µ, and
it has the smallest variance among all unbiased estimates of
µ [5, section 5a.2]. Thus it is a statistically optimum estimate
of the parameter µ in model (2).

As discussed in appendix A, the Bayesian posterior
distribution of µ given x, based on using a well-known
non-informative improper prior distribution p(µ) for µ,
is normal, N(m, (1tD−11)−1), with expected value m =
Bt x = (1tD−11)−11tD−1x and variance (1tD−11)−1 having
the pdf

p(µ|x) = (2π)−1/2[(1tD−11)−1]−1/2

× exp

{
−1

2

(µ − m)2

(1tD−11)−1

}
. (7)

2.2. Posterior predictive distribution of the results

The sampling pdf f (xrep|µ) of xrep conditional on the unknown
parameter µ postulated by the normal consistency model (2) is

f (xrep|µ) = (2π)−n/2|D|−1/2

× exp{− 1
2 (xrep − 1µ)tD−1(xrep − 1µ)}. (8)

As discussed in appendix B, the posterior predictive
distribution of xrep conditional on the given results x
determined from the integral (3) is the n-variate normal
distribution with the pdf

p(xrep|x) = (2π)−n/2|V|−1/2

× exp{− 1
2 (xrep − 1Btx)V−1(xrep − 1Btx)}, (9)

having the expected value E(xrep|x) = 1B tx =
1(1tD−11)−11tD−1x and the variance–covariance matrix
V(xrep|x) = V = D + 1(1tD−11)−11t . Since the results x
are known, both parameters, expected value and variance, of
the posterior predictive pdf p(xrep|x) are known.

8 The minimum quadratic form (x − 1m)tD−1(x − 1m) is the residual sum
of squares for the model (2) [5, table 4.a.7, column 4].

2.3. Overall measure of discrepancy and its posterior
predictive p-value

A generic measure of discrepancy between the model (2)
and the results xrep (motivated by generalized least squares
theory [5]) is the quadratic form (xrep−1µ)tD−1 (xrep−1µ),
which depends on the unknown parameter µ. Therefore
we use its minimum value (xrep−1mrep)tD−1(xrep−1mrep) as
an overall measure of discrepancy, Tc(xrep), where mrep =
B t xrep and B t = (1tD−11)−11tD−1 [3, section 2]; thus,
Tc(xrep) = (xrep−1mrep)tD−1 (xrep−1mrep). The realized value
of the overall discrepancy measure Tc(xrep), calculated from
the results x, is Tc(x) = (x − 1m)tD−1(x − 1m), where
m = Btx = (1tD−11)−11tD−1x.

We show in appendix C that the posterior predictive
distribution of the overall discrepancy measure Tc(xrep)
conditional on the realized results x is the chi-square
distribution χ2

(n−1) with degrees of freedom (n−1). In symbols,

p(Tc(xrep)|x) ∼ χ2
(n−1). (10)

Therefore the posterior predictive p-value pP of T(x) is

pP = Pr{Tc(xrep) � Tc(x)|x} = Pr{χ2
(n−1) � Tc(x)}. (11)

Thus, to check the fit of model (2) to the results x, we calculate
the overall discrepancy measure Tc(x) = (x − 1m)tD−1

(x − 1m) where m = Btx = (1tD−11)−11tD−1x. Then
we determine the posterior predictive p-value of Tc(x) from
the expression (11). A posterior predictive p-value pP that
is extreme (close to 0 or 1) indicates that the statistical
consistency model (2) does not fit the results x; that is, the
results may not be regarded as statistically consistent.

A posterior predictive p-value close to 0 (say, less
than 0.05) indicates that either the expected values
E(x1), . . . , E(xn) are not equal or the stated variances
u2(x1), . . . , u

2(xn) are too small. If the stated variances are
believed to be reliable then one may conclude that the expected
values E(x1), . . . , E(xn) appear to be unequal. A posterior
predictive p-value close to 1 (say, greater than 0.95) indicates
that the stated variances u2(x1), . . . , u

2(xn) may be too large;
thus, they are not a reliable basis for assessing the equality
of the expected values E(x1), . . . , E(xn). Thus a posterior
predictive p-value that is close to 0 or close to 1 indicates that
the results x = (x1, . . . , xn)

t may not be regarded as consistent.

2.4. Birge test of consistency for independent results

If the results x1, . . . , xn are mutually independent then the
covariances u(x1,x2), . . . , u(xn−1, xn) are all zero. Thus
the variance–covariance matrix D reduces to the diagonal
matrix D = Diag[u2(x1), . . . , u

2(xn)] with inverse D−1 =
Diag[w1, . . . , wn], where wi = 1/u2(xi) for i = 1, 2, . . . , n.
Thus, 1tD−11 = ∑

i wi , (1tD−11)−1 = 1/
∑

i wi , and
1tD−1x = xtD−11 = ∑

i wixi , and xtD−1x = ∑
i wix

2
i . The

GLSE of µ reduces to m = Bt x = (1tD−11)−11tD−1x =∑
i wixi/

∑
i wi = xW, the weighted mean. Consequently, the

sampling distribution of m = xW is normal with expected value
µ and variance V (xW) = (1tD−11)−1 = 1/

∑
i wi . We will

use the symbol u2(xW) for the variance V (xW) = 1/
∑

i wi of
the weighted mean xW.
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When the results are independent, the quadratic form
(x−1µ)tD−1 (x−1µ) reduces to

∑
i (xi−µ)2/u2(xi) = ∑

i wi

(xi−µ)2 with minimum value (x−1m)tD−1(x−1m) = ∑
i wi

(xi − xW)2 = (n − 1)R2. Thus, the sampling distribution of∑
i wi (xi − xW)2 = (n − 1)R2 is the χ2

(n−1) distribution.
Also, the sampling distributions of xW and (n − 1) R2 are
independent [3, appendix B].

If the results x1, . . . , xn are mutually independent, then
the posterior pdf p(µ|x) given in (7) reduces to

p(µ|x) = (2π)−1/2[u2(xW)]−1/2 exp

{
−1

2

(µ − xW)2

u2(xW)

}
.

(12)

Further, the posterior predictive distribution p(xrep|x) of xrep

conditional on the results x given in (9) reduces to an n-variate
normal distribution, N(1xW, D+u2(xW)11t), with the expected
value E(xrep|x) = 1(1tD−11)−11tD−1x = 1xW and the
variance–covariance matrix V (xrep|x) = D+1(1tD−11)−11t =
D + u2(xW)11t , where D = Diag[u2(x1), . . . , u

2(xn)].
The overall discrepancy measure introduced in section 2.3

reduces to Tc(xrep) = ∑
i wi (xrep

i − x
rep
W )2, where x

rep
W =∑

i wix
rep
i /

∑
i wi [3, appendix B]. The realized value of this

discrepancy measure is Tc(x) = ∑
i wi(xi−xW)2 = (n−1)R2

0 ,
where R2

0 is the realized (calculated) value of the Birge test
statistic (1). The posterior predictive distribution of the overall
discrepancy measure Tc(xrep) = ∑

i wi(x
rep
i − x

rep
W )2 is the

chi-square distribution χ2
(n−1) with degrees of freedom (n − 1)

(section 2.3). The posterior predictive p-value of the realized
discrepancy measure Tc(x) = ∑

i wi(xi −xW)2 = (n−1)R2
0 is

pP = Pr{χ2
(n−1) � (n − 1)R2

0}. (13)

As discussed in [3, appendix D], the event {(n − 1)R2
0 >

χ2
(n−1)[0.95]} is equivalent to the event that pP = Pr{χ2

(n−1) �
(n − 1) R2

0} < 0.05. Thus a comparison of the posterior
predictive p-value pP relative to 0.05 is equivalent to the Birge
test of consistency discussed in section 1.1.

3. Unilateral and bilateral measures of discrepancy
for individual laboratories

A great advantage of the posterior predictive checking is that
there is no limit on the number of potential discrepancies
between the statistical model and the data that may be
investigated. For example, one may investigate whether the
result from a particular laboratory agrees with the statistical
consistency model (2) and whether the results from a particular
pair of laboratories agree with each other [10]. The result
xi from the laboratory labelled i agrees with the statistical
model (2) if the difference between xi and the prediction of
xi based on the model is not too large in view of the stated
variance of the difference, for i = 1, 2, . . . , n. The results xi

and xj from the laboratories labelled i and j agree with each
other if their difference is not too large in view of the stated
variance of the difference, for i, j = 1, 2, . . . , n and i �= j .
In this section we introduce two sets of unilateral and bilateral
discrepancy measures which are suitable for investigating such
discrepancies.

A basic statistical measure of discrepancy between a
statistical model and the data is the vector of residuals which
are differences between the data and their predicted values
determined by replacing the unknown statistical parameters in
the model by their estimates [11, chapter 3]. If all residuals
are zero, the model fits the data perfectly. If the residuals
show a random pattern, then the model may be useful for
statistical prediction. On the other hand, a systematic pattern
in the residuals indicates inadequacies of the model in fitting
the data. The unilateral and bilateral discrepancy measures
discussed below are linear functions of the residuals.

We will determine the residuals and their posterior
predictive distributions. Then we will discuss the discrepancy
measures. A statistically optimum estimate of the parameter µ

in the model (2) is mrep = (1tD−11)−11tD−1xrep (section 2.1).
The corresponding prediction of the potential result xrep

i is mrep,
for i = 1, 2, . . . , n. The difference ri(xrep) = x

rep
i − mrep

between the result x
rep
i and its prediction mrep is the residual,

for i = 1, 2, . . . , n. The residual ri(xrep) indicates discrepancy
of the result x

rep
i from the model (2). The n residuals

ri(xrep) form the vector r(xrep) = (r1(xrep), . . . , rn(xrep))t =
(x

rep
1 − mrep, . . . , x

rep
n − mrep)t with realized value r(x) =

(x − 1m) = (r1(x), . . . , rn(x))t = (x1 − m, . . . , xn − m)t ,
where m = (1tD−11)−11tD−1x.

As discussed in appendix D, the posterior predictive
distribution p(r(xrep)|x) of the vector r(xrep) of residuals is
the n-variate normal distribution, N (0, D − 1(1tD−11)−11t),
with expected value E(r(xrep)|x) = 0 and variance–
covariance matrix V (r(xrep)|x) = D − 1(1tD−11)−11t . Since
(1tD−11)−1 = V (m) (section 2.1); therefore, V (r(xrep)|x) =
D − V (m)11t = [u(xi, xj ) − V (m)]. Thus, V (r(xrep)|x)

is a matrix whose ijth element is u(xi, xj ) − V (m). It
follows that the covariance of ri(xrep) and rj (xrep) is C(ri(xrep),
rj (xrep)|x) = C(x

rep
i − mrep, x

rep
j − mrep|x) = u(xi, xj ) −

V (m), and the variance of ri(xrep) is V (ri(xrep)|x) =
V (x

rep
i − mrep|x) = u2(xi) − V (m) for i, j = 1, 2, . . . , n. In

symbols,

p(r(xrep)|x) ∼ N(0, [u(xi, xj ) − V (m)]), (14)

where u(xi, xj ) − V (m) is the ijth element of the variance–
covariance matrix V (r(xrep)|x) and V (m) = (1tD−11)−1 for
i, j = 1, 2, . . . , n.

3.1. Unilateral discrepancy measures

As a unilateral measure of discrepancy, denoted by Ti(xrep),
between the result x

rep
i from the laboratory labelled i and

the statistical consistency model (2), we can use the residual
ri(xrep); that is, Ti(xrep) = ri(xrep) = x

rep
i − mrep,

for i = 1, 2, . . . , n. From (14), the posterior predictive
distribution, p(Ti(xrep)|x), of Ti(xrep) conditional on the
realized results x is normal, N(0, u2(xi) − V (m)), with
expected value 0 and variance u2(xi) − V (m); that is,

p(Ti (xrep)|x) ∼ N(0, u2(xi) − V (m)). (15)

Thus the posterior predictive distribution of the ratio
Ti (xrep)/

√
(u2(xi) − V (m)) conditional on x is the standard

normal distribution with expected value 0 and variance 1.
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The realized value of Ti(xrep) is Ti(x) = ri(x) = (xi −m),
for i = 1, 2, . . . , n. The posterior predictive p-value pP of the
realized discrepancy measure Ti(x) = (xi − m) is

pP = Pr{Ti (xrep) � Ti (x)|x}

= Pr

{
Z � (xi − m)√

u2(xi) − V (m)

}
, (16)

where Z is a variable that has the standard normal distribution
with expected value 0 and variance 1. If the results x1, . . . , xn

are mutually independent then m = xW, and V (m) =
V (xW) = (1tD−11)−1 = 1/

∑
i wi denoted by u2(xW). In

that case the posterior predictive p-value pP of the realized
discrepancy measure Ti (x) = ri(x) = (xi − xW) reduces to

pP = Pr

{
Z � (xi − xW)√

u2(xi) − u2(xW)

}
, (17)

for i = 1, 2, . . . , n. A posterior predictive p-value that is close
to 0 or close to 1 indicates that the result xi from the laboratory
labelled i does not agree with the statistical consistency model
(2), for i = 1, 2, . . . , n.

3.2. Bilateral discrepancy measures

As a bilateral measure of discrepancy, denoted by Ti−j (xrep),
between the results x

rep
i and x

rep
j from two particular

laboratories labelled i and j , we can use the difference
between the residuals ri(xrep) and rj (xrep); that is, Ti−j (xrep) =
Ti(xrep) − Tj (xrep) = ri(xrep) − rj (xrep) = (x

rep
i − mrep)−

(x
rep
j − mrep) = (x

rep
i − x

rep
j ), for i, j = 1, 2, . . . , n and

i �= j . From (14), the posterior predictive distribution,
p(Ti−j (xrep)|x), of Ti−j (xrep), conditional on the realized
results x is normal, N(0, u2(xi) + u2(xj ) − 2u(xi, xj )), with
expected value 0 and variance u2(xi) + u2(xj ) − 2u(xi, xj );
that is

p(Ti−j (xrep)|x) ∼ N(0, u2(xi) + u2(xj ) − 2u(xi, xj )).

(18)

Thus the posterior predictive distribution of the ratio
Ti−j (xrep)/

√
(u2(xi) + u2(xj ) − 2u(xi, xj )) conditional on x

is the standard normal distribution with expected value 0 and
variance 1.

The realized value of Ti−j (xrep) is Ti−j (x) = ri(x) −
rj (x) = (xi − xj ), for i, j = 1, 2, . . . , n and i �= j . The
posterior predictive p-value pP of the realized discrepancy
measure Ti−j (x) = (xi − xj ) is

pP = Pr{Ti−j (xrep) � Ti−j (x)|x}

= Pr

{
Z � (xi − xj )√

u2(xi) + u2(xj ) − 2u(xi, xi)

}
, (19)

where Z is a variable that has the standard normal distribution
with expected value 0 and variance 1. If the results
x1, . . . , xn are mutually independent then all covariances
u(x1,x2), . . . , u(xn−1, xn) are zero and the posterior predictive
p-value pP of the realized discrepancy measure Ti−j (x) =
ri(xrep) − rj (xrep) = (xi − xj ) reduces to

pP = Pr

{
Z � (xi − xj )√

u2(xi) + u2(xj )

}
, (20)

Table 1. Mean relative differences x1, . . . , x16 from the BIPM
measurements for the wavelength 514.536 nm and their associated
standard uncertainties u(x1), . . . , u(x16), reproduced from the BIPM
Report [12, table 65, columns 6 and 7].

Indices i xi × 104 u(xi) × 104

1 −0.20 1.30
2 1.10 1.70
3 2.00 1.40
4 −0.30 2.50
5 13.10 4.90
6 1.70 2.70
7 −11.00 6.80
8 0.00 2.20
9 0.30 1.30

10 −5.10 2.40
11 5.90 3.20
12 −1.10 2.60
13 1.30 1.10
14 5.30 3.40
15 2.90 2.90
16 −1.00 5.10

for i, j = 1, 2, . . . , n and i �= j . A posterior predictive
p-value that is close to 0 or close to 1 indicates that the results xi

and xj from the laboratories labelled i and j do not agree with
each other, for i, j = 1, 2, . . . , n and i �= j . In interlaboratory
evaluations between particular national measurement institutes
(NMIs), complete bilateral consistency between all pairs may
be required to assure that the international measurement system
is working properly.

4. Calculation of posterior predictive p-values

To illustrate the calculation of posterior predictive p-values of
the realized discrepancy measures, Tc(x), Ti (x), and Ti−j (x)
for i, j = 1, 2, . . . , n and i �= j , we have used a small subset
of the data from a BIPM Report [12] on the supplementary
comparison CCPR-S3 of cryogenic radiometers carried out by
the Consultative Committee for Photometry and Radiometry
of the CIPM. A set of three transfer standard detectors was
calibrated by the cryogenic radiometer of the laboratory
labelled i (for i = 1, 2, . . . , n, where n = 16) and also
by the radiometer of the BIPM (which served as a reference
laboratory). The result xi is the arithmetic mean of the relative
differences9 between the ‘responsivities’ of the three detectors
calibrated at the laboratory labelled i and the same three
detectors calibrated at the BIPM for i = 1, 2, . . . , 16. The
responsivity of a detector depends on the wavelength for the
laser source. The results x1, . . . , x16 and the corresponding
standard uncertainties u(x1), . . . , u(x16) for the wavelength
514.536 nm from the BIPM Report [12, table 65, columns
6 and 7] are reproduced in table 1. For our discussion, the
identities of the laboratories are not relevant so we display
only the indices, i = 1, 2, . . . , 16, for the laboratories. The
results (mean relative differences) x1, . . . , x16 are regarded in
the BIPM Report [12] as mutually independent. Also, the

9 If Ri and RBIPM are responsivities from the laboratories labelled i and
the BIPM, respectively, for i = 1, 2, . . . , n, then the relative difference is
(Ri − RBIPM)/RBIPM.
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Table 2. Realized values of the unilateral discrepancy measures
Ti(x) = xi − xW, standard deviations S(Ti(xrep)), and posterior
predictive p-values pP for i = 1, 2, . . . , 16.

Indices i Ti(x) × 104 S(Ti(xrep)) × 104 pP

1 −1.01 1.20 0.80
2 0.29 1.63 0.43
3 1.19 1.31 0.18
4 −1.11 2.45 0.67
5 12.29 4.88 0.01
6 0.89 2.65 0.37
7 −11.81 6.78 0.96
8 −0.81 2.14 0.65
9 −0.51 1.20 0.66

10 −5.91 2.35 0.99
11 5.09 3.16 0.05
12 −1.91 2.55 0.77
13 0.49 0.98 0.31
14 4.49 3.36 0.09
15 2.09 2.86 0.23
16 −1.81 5.08 0.64

BIPM Report regards the variances u2(x1), . . . , u
2(x16) as the

known variances of the sampling pdfs of the results.
The weighted mean of the n = 16 results x1, . . . , x16

shown in table 1 is xW = 0.81×10−4 with standard uncertainty
u(xW) = 0.49×10−4 units. The realized (calculated) value of
the Birge test statistic (1) is R2

0 = 1.53. The realized value of
the overall discrepancy measure is Tc(x) = ∑

i wi(xi−xW)2 =
(n − 1)R2

0 = 22.98. The posterior predictive distribution of
the overall discrepancy measure Tc(xrep) conditional on the
realized results x = (x1, . . . , x16)

t is the chi-square distribution
with degrees of freedom (n − 1) = 15 (sections 2.3 and 2.4).
The posterior predictive p-value of obtaining in contemplated
replications of the CCPR-S3 a value of Tc(xrep) more extreme
than Tc(x) = 22.98 is pP = 0.08. Relative to the traditional
benchmark 0.05 for pP the realized discrepancy measure
Tc(x) = 22.98 is not extreme. Thus solely based on the
overall discrepancy measure Tc(x), the statistical consistency
model (2) appears to fit the results x.

The overall discrepancy measure Tc(x) does not give a
sufficiently detailed picture of the fit of model (2) to the
results x. A more informative picture is provided by the
unilateral and bilateral discrepancy measures. Table 2 displays
the realized values of the unilateral discrepancy measures,
Ti (x) = xi − xW, for i = 1, 2, . . . , 16. Table 2 also displays
the standard deviations S(Ti(xrep)) =

√
u2(xi) − u2(xW) of

the posterior predictive distributions of Ti (xrep) conditional on
the results x and the posterior predictive p-values of Ti (x), for
i = 1, 2, . . . , 16. The extreme posterior predictive p-values
relative to the traditional benchmarks of 0.05 and 0.95 are
shown in bold type. Thus the results from the laboratories
labelled 5, 7, and 10 do not agree with the statistical consistency
model (2). (We note that the BIPM Report [12] regards the
laboratories 5 and 7 as discrepant but not the laboratory 10
with a more extreme p-value than the laboratory 7.)

Table 3 displays the realized values of the bilateral
discrepancy measures, Ti−j (x) = xi − xj , expressed as 10−4

units, for i, j = 1, 2, . . . , 16 and i �= j . Table 4 displays the
standard deviations S(Ti−j (xrep)) = √

u2(xi) + u2(xj ) of the

posterior predictive distributions of the bilateral discrepancy
measures Ti−j (xrep) conditional on the realized results x,
expressed as 10−4 units, for i, j = 1, 2, . . . , 16 and i �= j .
Table 5 displays the posterior predictive p-values of the
realized bilateral discrepancy measures Ti−j (x), for i, j =
1, 2, . . . , 16 and i �= j . The extreme posterior predictive
p-values relative to the traditional benchmarks of 0.05 and 0.95
are shown in bold type. We note that the posterior predictive
p-values of 62 of the 162 − 16 = 240 bilateral discrepancy
measures xi − xj , for i �= j , are extreme. That is, 26% of the
bilateral discrepancy measures have extreme p-values.

If the statistical consistency model (2) reasonably fits
the results x1, . . . , xn then they are declared to be consistent.
However, a check of the fitness depends on the criterion
used for checking. We discussed three criteria: overall
discrepancy, unilateral discrepancy and bilateral discrepancy.
The unilateral discrepancy measures Ti(x) = xi − xW and
the bilateral discrepancy measures Ti−j (x) = xi − xj , for
i, j = 1, 2, . . . , n and i �= j , give a more detailed
picture of the fit of the statistical consistency model to the
interlaboratory results x1, . . . , xn than the overall discrepancy
measure Tc(x). A set of results may be consistent according
to one criterion but not according to a more stringent criterion.
For example, from tables 1 and 2 we note that the results from
the supplementary comparison CCPR-S3 may be regarded as
statistically consistent according to the overall discrepancy
measure Tc(x) = ∑

i wi(xi − xW)2 = (n − 1)R2
0 but not

according to the unilateral discrepancy measures Ti (x) =
xi −xW, for i = 1, 2, . . . , 16, because three of the results (from
laboratories 5, 7 and 10) have extreme posterior predictive
p-values. If the laboratories 5, 7 and 10 are removed then
the results from the remaining 13 laboratories are consistent
according to the unilateral discrepancy measures. However,
from table 5, we note that the results from the following
two pairs of laboratories have extreme posterior predictive
p-values: (1, 11) and (11, 12). Thus statistical consistency of
all unilateral discrepancy measures does not imply statistical
consistency of all bilateral discrepancy measures.

5. Use of posterior predictive p-values to assess the
degrees of agreement in CIPM key comparisons

CIPM key comparisons are interlaboratory evaluations
between national metrology institutes (NMIs) conducted by the
consultative committees of the CIPM. They serve as technical
bases for international Mutual Recognition Arrangements
(MRA) [13]. A CIPM key comparison is expected to
yield as output a key comparison reference value (KCRV),
unilateral and bilateral degrees of equivalence (DOE), and
their associated standard uncertainties. When the results
x1, . . . , xn are judged to be overall consistent, the KCRV
is generally set as the weighted mean xW with standard
uncertainty u(xW) [10]. Then the unilateral DOE are defined
as di = xi−xW with uncertainties u(di) =

√
u2(xi) − u2(xW),

for i = 1, 2, . . . , n, and the bilateral DOE are defined as
di−j = xi−xj with uncertainties u(di−j ) = √

u2(xi) + u2(xj ),
for i, j = 1, 2, . . . , n and i �= j . These uncertainties
are determined in [10] from the statistical consistency
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Table 3. Realized values of the bilateral discrepancy measures Ti−j (x) = xi − xj , expressed as 10−4 units, for i, j = 1, 2, . . . , 16 and i �= j .

Indices j

Indices
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 −1.3 −2.2 0.1 −13.3 −1.9 10.8 −0.2 −0.5 4.9 −6.1 0.9 −1.5 −5.5 −3.1 0.8
2 1.3 −0.9 1.4 −12.0 −0.6 12.1 1.1 0.8 6.2 −4.8 2.2 −0.2 −4.2 −1.8 2.1
3 2.2 0.9 2.3 −11.1 0.3 13.0 2.0 1.7 7.1 −3.9 3.1 0.7 −3.3 −0.9 3.0
4 −0.1 −1.4 −2.3 −13.4 −2.0 10.7 −0.3 −0.6 4.8 −6.2 0.8 −1.6 −5.6 −3.2 0.7
5 13.3 12.0 11.1 13.4 11.4 24.1 13.1 12.8 18.2 7.2 14.2 11.8 7.8 10.2 14.1
6 1.9 0.6 −0.3 2.0 −11.4 12.7 1.7 1.4 6.8 −4.2 2.8 0.4 −3.6 −1.2 2.7
7 −10.8 −12.1 −13.0 −10.7 −24.1 −12.7 −11.0 −11.3 −5.9 −16.9 −9.9 −12.3 −16.3 −13.9 −10.0
8 0.2 −1.1 −2.0 0.3 −13.1 −1.7 11.0 −0.3 5.1 −5.9 1.1 −1.3 −5.3 −2.9 1.0
9 0.5 −0.8 −1.7 0.6 −12.8 −1.4 11.3 0.3 5.4 −5.6 1.4 −1.0 −5.0 −2.6 1.3

10 −4.9 −6.2 −7.1 −4.8 −18.2 −6.8 5.9 −5.1 −5.4 −11.0 −4.0 −6.4 −10.4 −8.0 −4.1
11 6.1 4.8 3.9 6.2 −7.2 4.2 16.9 5.9 5.6 11.0 7.0 4.6 0.6 3.0 6.9
12 −0.9 −2.2 −3.1 −0.8 −14.2 −2.8 9.9 −1.1 −1.4 4.0 −7.0 −2.4 −6.4 −4.0 −0.1
13 1.5 0.2 −0.7 1.6 −11.8 −0.4 12.3 1.3 1.0 6.4 −4.6 2.4 −4.0 −1.6 2.3
14 5.5 4.2 3.3 5.6 −7.8 3.6 16.3 5.3 5.0 10.4 −0.6 6.4 4.0 2.4 6.3
15 3.1 1.8 0.9 3.2 −10.2 1.2 13.9 2.9 2.6 8.0 −3.0 4.0 1.6 −2.4 3.9
16 −0.8 −2.1 −3.0 −0.7 −14.1 −2.7 10.0 −1.0 −1.3 4.1 −6.9 0.1 −2.3 −6.3 −3.9

Table 4. Standard deviations S(Ti−j (xrep)) = √
u2(xi) + u2(xj ) of the posterior predictive distributions of the bilateral discrepancy measures

Ti−j (xrep) conditional on x, expressed as 10−4 units, for i, j = 1, 2, . . . , 16 and i �= j .

Indices j

Indices
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2.1 1.9 2.8 5.1 3.0 6.9 2.6 1.8 2.7 3.5 2.9 1.7 3.6 3.2 5.3
2 2.1 2.2 3.0 5.2 3.2 7.0 2.8 2.1 2.9 3.6 3.1 2.0 3.8 3.4 5.4
3 1.9 2.2 2.9 5.1 3.0 6.9 2.6 1.9 2.8 3.5 3.0 1.8 3.7 3.2 5.3
4 2.8 3.0 2.9 5.5 3.7 7.2 3.3 2.8 3.5 4.1 3.6 2.7 4.2 3.8 5.7
5 5.1 5.2 5.1 5.5 5.6 8.4 5.4 5.1 5.5 5.9 5.5 5.0 6.0 5.7 7.1
6 3.0 3.2 3.0 3.7 5.6 7.3 3.5 3.0 3.6 4.2 3.7 2.9 4.3 4.0 5.8
7 6.9 7.0 6.9 7.2 8.4 7.3 7.1 6.9 7.2 7.5 7.3 6.9 7.6 7.4 8.5
8 2.6 2.8 2.6 3.3 5.4 3.5 7.1 2.6 3.3 3.9 3.4 2.5 4.0 3.6 5.6
9 1.8 2.1 1.9 2.8 5.1 3.0 6.9 2.6 2.7 3.5 2.9 1.7 3.6 3.2 5.3

10 2.7 2.9 2.8 3.5 5.5 3.6 7.2 3.3 2.7 4.0 3.5 2.6 4.2 3.8 5.6
11 3.5 3.6 3.5 4.1 5.9 4.2 7.5 3.9 3.5 4.0 4.1 3.4 4.7 4.3 6.0
12 2.9 3.1 3.0 3.6 5.5 3.7 7.3 3.4 2.9 3.5 4.1 2.8 4.3 3.9 5.7
13 1.7 2.0 1.8 2.7 5.0 2.9 6.9 2.5 1.7 2.6 3.4 2.8 3.6 3.1 5.2
14 3.6 3.8 3.7 4.2 6.0 4.3 7.6 4.0 3.6 4.2 4.7 4.3 3.6 4.5 6.1
15 3.2 3.4 3.2 3.8 5.7 4.0 7.4 3.6 3.2 3.8 4.3 3.9 3.1 4.5 5.9
16 5.3 5.4 5.3 5.7 7.1 5.8 8.5 5.6 5.3 5.6 6.0 5.7 5.2 6.1 5.9

model (2), which postulates that the results x1, . . . , xn have
independent normal sampling probability distributions with
known variances u2(x1), . . . , u

2(xn), respectively.
It is not clear what the ‘degrees of equivalence’ are meant

to be. The expected values of the sampling distributions of
di = xi −xW and di−j = xi −xj are zero, for i, j = 1, 2, . . . , n

and i �= j . This implies that their realized values are statistical
estimates of zero. Therefore, di = xi − xW do not quantify
the agreements of individual results with the weighted mean
xW (regarded as the KCRV), and di−j = xi − xj do not
quantify the agreements between pairs of individual results,
for i, j = 1, 2, . . . , n and i �= j [14].

The variances of the differences d1, . . . , dn and di−j , for
i, j = 1, 2, . . . , n and i �= j , are generally unequal; so, they
cannot be directly compared. To compare the differences,
they should be transformed into another metric that takes their

unequal variances into account. One simple way is to divide
d1, . . . , dn and di−j , for i, j = 1, 2, . . . , n and i �= j , by their
standard deviations (square roots of their variances). The ratios
d1/u(d1) . . . , dn/u(dn) can be directly compared. Likewise,
the ratios di−j /u(di−j ), where i, j = 1, 2, . . . , n and i �= j ,
can be directly compared.

The term ‘degrees of equivalence’ suggests a quantitative
scale of measurement for displaying the degrees of agreement.
We suggest that di = xi − xW may be regarded as realized
values of the unilateral discrepancy measures Ti(xrep) with
variances u2(di) = u2(xi) − u2(xW), for i = 1, 2, . . . , n. We
suggest that di−j = xi −xj may be regarded as realized values
of the bilateral discrepancy measures Ti−j (xrep) with variances
u2(di−j ) = u2(xi) + u2(xj ), for i, j = 1, 2, . . . , n and
i �= j . The posterior predictive p-values pP of di = xi − xW,
for i = 1, 2, . . . , n, may be used to assess the degrees of
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Table 5. Posterior predictive p-values pP of the realized bilateral discrepancy measures Ti−j (x) = xi − xj , for i, j = 1, 2, . . . , 16 and
i �= j . The extreme p-values pP are shown in bold type.

Indices j

Indices
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.73 0.88 0.49 1.00 0.74 0.06 0.53 0.61 0.04 0.96 0.38 0.81 0.93 0.84 0.44
2 0.27 0.66 0.32 0.99 0.57 0.04 0.35 0.35 0.02 0.91 0.24 0.54 0.87 0.70 0.35
3 0.12 0.34 0.21 0.99 0.46 0.03 0.22 0.19 0.01 0.87 0.15 0.35 0.82 0.61 0.29
4 0.51 0.68 0.79 0.99 0.71 0.07 0.54 0.58 0.08 0.94 0.41 0.72 0.91 0.80 0.45
5 0.00 0.01 0.01 0.01 0.02 0.00 0.01 0.01 0.00 0.11 0.01 0.01 0.10 0.04 0.02
6 0.26 0.43 0.54 0.29 0.98 0.04 0.31 0.32 0.03 0.84 0.23 0.45 0.80 0.62 0.32
7 0.94 0.96 0.97 0.93 1.00 0.96 0.94 0.95 0.79 0.99 0.91 0.96 0.98 0.97 0.88
8 0.47 0.65 0.78 0.46 0.99 0.69 0.06 0.55 0.06 0.94 0.37 0.70 0.90 0.79 0.43
9 0.39 0.65 0.81 0.42 0.99 0.68 0.05 0.45 0.02 0.95 0.32 0.72 0.92 0.79 0.40

10 0.96 0.98 0.99 0.92 1.00 0.97 0.21 0.94 0.98 1.00 0.87 0.99 0.99 0.98 0.77
11 0.04 0.09 0.13 0.06 0.89 0.16 0.01 0.06 0.05 0.00 0.04 0.09 0.45 0.24 0.13
12 0.62 0.76 0.85 0.59 0.99 0.77 0.09 0.63 0.68 0.13 0.96 0.80 0.93 0.85 0.51
13 0.19 0.46 0.65 0.28 0.99 0.55 0.04 0.30 0.28 0.01 0.91 0.20 0.87 0.70 0.33
14 0.07 0.13 0.18 0.09 0.90 0.20 0.02 0.10 0.08 0.01 0.55 0.07 0.13 0.30 0.15
15 0.16 0.30 0.39 0.20 0.96 0.38 0.03 0.21 0.21 0.02 0.76 0.15 0.30 0.70 0.25
16 0.56 0.65 0.71 0.55 0.98 0.68 0.12 0.57 0.60 0.23 0.87 0.49 0.67 0.85 0.75

agreement between the individual results and the statistical
consistency model (2). The posterior predictive p-values pP

of di−j = xi − xj , for i, j = 1, 2, . . . , n and i �= j , may
be used to assess the degrees of agreement between pairs of
results.

6. Summary

A set of the results x = (x1, . . . , xn)
t from an interlaboratory

evaluation with a stated (known) variance–covariance matrix
V (x) = D = [u(xi, xj )] is said to be statistically consistent
if the model x ∼ N(1µ, D) reasonably fits the results x. We
refer to the model x ∼ N(1µ, D) as the normal statistical
consistency model. Statistical consistency implies that the
expected values E(x1), . . . , E(xn) of the results are equal
(to some unknown constant µ), at least approximately; that
is, the results x1, . . . , xn agree with each other. A modern
method for checking the fit of a statistical model to the data
is Bayesian posterior predictive checking. It is a Bayesian
adaptation of the classical (frequentist sampling) method of
hypothesis testing. We used posterior predictive checking to
check the fit of the normal consistency model, N(1µ, D), to
the interlaboratory results x.

The principle of posterior predictive checking is that if a
statistical model reasonably fits then the realized results should
look plausible under the posterior predictive distribution
of potential results that could be obtained in contemplated
replications of the interlaboratory evaluation under that model.
A posterior predictive distribution is the integral of the
sampling distribution of potential data with respect to the
Bayesian posterior distributions of the parameters conditioned
on the realized data. A systematic discrepancy between the
results obtained from the posterior predictive distribution and
the realized results indicates misfit. A discrepancy measure is
a measure of the discrepancy that one wishes to investigate
between the statistical model and the results. A Bayesian

posterior predictive p-value, pP, of a discrepancy measure
is the probability of realizing in contemplated replications
a value of the discrepancy measure more extreme than its
realized (observed) value. The statistical model is suspect
if the posterior predictive p-value pP is close to 0 or close
to 1, thereby indicating that the realized results are unlikely
to be seen in contemplated replications if the statistical model
were true.

We discussed an overall measure of discrepancy for
checking the overall fit of the normal consistency model
N(1µ, D) to the interlaboratory results x. The posterior
predictive distribution of the overall discrepancy measure
conditional on the realized results x is a chi-square distribution;
therefore, the corresponding posterior predictive p-value
is analytically determined. We also discussed two sets
of unilateral and bilateral measures of discrepancy. A
unilateral discrepancy measure checks whether the result from
a particular laboratory agrees with the statistical consistency
model. A bilateral discrepancy measure checks whether
the results from a particular pair of laboratories agree with
each other. The particular laboratories of interest could
be any of the participating laboratories. The posterior
predictive distributions of the proposed unilateral and bilateral
measures of discrepancy are normal with zero expected values
and known variances; therefore, the corresponding posterior
predictive p-values are analytically determined. A posterior
predictive p-value pP that is extreme (close to 0 or 1) indicates
that the normal consistency model does not fit the results x.

We have illustrated the calculation of posterior predictive
p-values. The numerical example indicates that the unilateral
and bilateral discrepancy measures give a better (more
detailed) picture of the fit of the normal consistency model
to the interlaboratory results than the overall discrepancy
measure. The overall, unilateral and bilateral discrepancy
measures and their posterior predictive p-values apply to
both correlated and independent interlaboratory results. We
proposed that the posterior predictive p-values of the realized
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unilateral and bilateral discrepancy measures may be used to
assess the degrees of agreement in the results from a CIPM key
comparison.
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Appendix A

The Bayesian posterior distribution of µ given x is
normal, N(m, (1tD−11)−1), with expected value m =
(1tD−11)−11tD−1x and variance (1tD−11)−1.

The variance–covariance matrix D = [u(xi, xj )] is
known; therefore, by substituting (6) in (5) we have

f (x|µ) = (2π)−n/2|D|−1/2

× exp

{
−1

2

[
(x − 1m)tD−1(x − 1m) +

(m − µ)2

(1tD−11)−1

]}
,

(21)

where m = Btx = (1tD−11)−11tD−1x. The expression (21)
regarded not as a function of x but as a function of µ is the
likelihood function, l (µ|x), of µ given x; thus,

l(µ|x) ∝ exp

{
−1

2

(µ − m)2

(1tD−11)−1

}
. (22)

The symbol ∝ in (22) stands for ‘is proportional to’. As a prior
distribution p(µ) for µ we can use a non-informative improper
function that is uniform in µ [6, p 53]; that is, p(µ) ∝1.
According to Bayes’s theorem [6], the posterior pdf, p(µ|x),
of µ given x is proportional to the product of the likelihood
function l(µ|x) and the prior distribution p(µ). Thus

p(µ|x) ∝ l(µ|x) × p(µ) ∝ exp

{
−1

2

(µ − m)2

(1tD−11)−1

}
. (23)

By normalizing the expression (23) we get the posterior pdf
p(µ|x) given in (7).

Appendix B

The posterior predictive distribution of xrep conditional on
the given results x is normal, N(1(1tD−11)−11tD−1x, D +
1(1tD−11)−11t), with expected value 1(1tD−11)−11tD−1x and
variance–covariance matrix D + 1(1tD−11)−11t .

The sampling pdf f (xrep|µ) of xrep given µ is given in
(8) and the posterior pdf p(µ|x) of µ given x is given in (7).
Thus the integrand f (xrep|µ) p(µ|x) in the integral (3) may be
expressed as

(2π)−(n+1)/2

∣∣∣∣D 0

0t (1tD−11)−1

∣∣∣∣
−1/2

exp

{
− 1

2

(
xrep − 1µ

µ − m

)t

×
(

D 0

0t (1tD−11)−1

)−1 (
xrep − 1µ

µ − m

) }
. (24)

The integrand f (xrep|µ) p(µ|x) in (3) expressed as (24) may
be regarded as the pdf of the (n+1)-variate normal distribution

for the random vector ((xrep − 1µ)t, µ)t with expected value
(0t, m)t and variance–covariance matrix(

D 0

0t (1tD−11)−1

)
, (25)

where m = Btx = (1tD−11)−11tD−1x. Thus the integral (3) is
the marginal pdf of xrep determined from the joint pdf (24) of
the (n + 1)-variate normal distribution for ((xrep − 1µ)t, µ)t .

The marginal pdf of xrep can be easily obtained from the
following well-known theorem concerning the distribution of
linear functions of a multivariate normal distribution [7].

Theorem. If y has a multivariate normal distribution with
expected value η and variance–covariance matrix Σ, then the
distribution of Ky is multivariate normal with expected value
Kη and variance–covariance matrix KΣKt.

By applying this theorem with y = ((xrep − 1µ)t , µ)t ,
η = (0t, m)t,Σ given in (25), K = [I, 1], we
have Ky = (xrep − 1µ) + 1µ = xrep, Kη = 1m =
1(1tD−11)−11tD−1x, and K ΣKt = D + 1(1tD−11)−11t .
Thus, the marginal pdf of xrep is normal with expected
value 1(1tD−11)−11tD−1x and variance–covariance matrix
D + 1(1tD−11)−11t .

Therefore the posterior predictive pdf p(xrep|x) defined
by the integral (3) is an n-variate normal distribution with
expected value E(xrep|x) = 1Btx = 1(1tD−11)−11tD−1x and
variance–covariance matrix V (xrep|x) = D + 1(1tD−11)−11t .
That is

p(xrep|x) ∼ N(1Btx, V). (26)

where Bt = (1tD−11)−11tD−1 and V = D + 1(1tD−11)−11t .

Appendix C

The posterior predictive distribution of Tc(xrep) conditional on
the results x is the chi-square distribution, χ2

(n−1), with degrees
of freedom n − 1.

As discussed in [3, appendix B], (xrep − 1mrep) =
[xrep−1(1tD−11)−11tD−1xrep] = [I−1(1tD−11)−11tD−1]xrep.
Consequently, we can express the overall discrepancy measure
Tc(xrep) as Tc(xrep) = (xrep−1mrep)tD−1(xrep−1mrep) =
(xrep)tAxrep, where A = [D−1 − D−11(1tD−11)−11tD−1].
The distribution of xrep conditional on x is given in
appendix B. We seek to determine the pdf of Tc(xrep)

conditional on x. We will use the following theorem from
[8, section 2.5].

Theorem. If the distribution of y is normal N(µ, V) then the
distribution of ytAy is non-central chi-square with degrees of
freedom equal to rank of A and non-centrality parameter (1/2)

µtAµ if and only if AV is idempotent, that is AVAV = AV.

Let us consider this theorem with y = xrep, µ= 1
(1tD−11)−11tD−1x, V = D + 1(1tD−11)−11t , and A = [D−1 −
D−11(1tD−11)−11tD−1]. Now AV = [D−1 − D−11(1tD−1

1)−11tD−1][D + 1(1tD−11)−11t] = [I − D−11(1tD−11)−11t],
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and AVAV = [I − D−11(1tD−11)−11t] [I − D−11
(1tD−11)−11t] = [I − D−11(1tD−11)−11t]. So AV = AVAV;
that is, AV is idempotent. The rank of an idempotent
matrix is equal to its trace [9, p 134]. The trace of AV is
tr(I − D−11(1tD−11)−11t) = tr(I)− tr(D−11(1tD−11)−11t) =
tr(I) − tr((1tD−11)−11tD−11) = n − 1; therefore, the rank
of AV is also n − 1. Since D is positive definite and hence
non-singular, the matrix V = D + 1(1tD−11)−11t is also non-
singular [9, theorem 18.1.1]. So the rank of AV is the rank of
A. Thus the rank of A is n − 1.

Now µtAµ = xt[D−11(1tD−11)−11t] [D−1 − D−11
(1tD−11)−11tD−1] [1(1tD−11)−11tD−1] x = 0. Thus,
AV is an idempotent matrix, µtAµ = 0, and rank
of A is n − 1. Therefore the posterior predictive
distribution of the discrepancy measure Tc(xrep) =
(xrep)tAxrep = (xrep − 1mrep)tD−1(xrep − 1mrep) is the chi-
square distribution, χ2

(n−1), with degrees of freedom n − 1.

Appendix D

The posterior predictive distribution p(r(xrep)|x) of the
residuals r(xrep) is the n-variate normal distribution, N (0, D−1
(1tD−11)−11t), with expected value 0 and variance–covariance
matrix D − 1(1tD−11)−11t .

The posterior predictive distribution p(xrep|x) of xrep

conditional on the given results x is a fully speci-
fied n-variate normal distribution with expected value
E(xrep|x) = 1(1tD−11)−11tD−1x and variance–covariance
matrix V (xrep|x) = D + 1(1tD−11)−11t (appendix B). Since
r(xrep) = (xrep − 1mrep) = [xrep − 1(1tD−11)−11tD−1xrep] =
[I − 1(1tD−11)−11tD−1]xrep, the vector of residuals r(xrep)

is a linear function of xrep. Therefore, the posterior pre-
dictive distribution p(r(xrep)|x) of the residuals r(xrep) con-
ditional on x is also normal, which is fully described by
its expected values and variance–covariance matrix. The
expected value of the residuals r(xrep) conditional on x
is E(r(xrep)|x) = [I − 1(1tD−11)−11t D−1]E(xrep|x) =
[I − 1(1tD−1 1)−11tD−1] 1(1tD−11)−11tD−1x = 0. The
variance–covariance matrix of the residuals r(xrep) conditional
on x is V (r(xrep)|x) = [I − 1(1t D−11)−11tD−1]V (xrep|x)

[I − 1(1t D−11)−11tD−1]t = [I − 1(1tD−11)−11tD−1]
[D + 1(1tD−11)−11t] [I − D−11(1tD−11)−11t] = [I − 1
(1tD−11)−11tD−1] [D][I − D−11(1tD−11)−11t] + [I − 1

(1tD−11)−11tD−1][1(1tD−11)−11t][I−D−11(1tD−11)−1 1t] =
[D − 1(1tD−11)−11t] + 0. Thus the posterior predictive
distribution p(r(xrep)|x) of the residuals r(xrep) is the n-variate
normal distribution with expected value E(r(xrep)|x) =
0 and variance–covariance matrix V (r(xrep)|x) = D −
1(1tD−11)−11t .
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International des Poids et Mesures)
http://www.bipm.org/pdf/RapportBIPM/2000/09.pdf

[13] International Committee of Weights and Measures (CIPM)
1999 Mutual Recognition of National Measurement
Standards and of Calibration and Measurement Certificates
Issued By National Metrology Institutes
http://www.bipm.org/utils/en/pdf/mra 2003.pdf

[14] Kacker R N, Datla R U and Parr A C 2004 Statistical analysis
of CIPM key comparisons based on the ISO Guide
Metrologia 41 340–52

Metrologia, 45 (2008) 512–523 523

http://dx.doi.org/10.1103/PhysRev.40.207
http://dx.doi.org/10.1103/RevModPhys.41.375
http://dx.doi.org/10.1088/0026-1394/45/3/001
http://dx.doi.org/10.1088/0026-1394/39/6/10
http://www.bipm.org/pdf/RapportBIPM/2000/09.pdf
http://www.bipm.org/utils/en/pdf/mra_2003.pdf
http://dx.doi.org/10.1088/0026-1394/41/4/017

	1. Introduction
	1.1. The Birge test of consistency
	1.2. Statistical consistency defined as not excessive dispersion in the results
	1.3. Statistical interpretation of the Birge test and its generalized version
	1.4. Statistical consistency defined as fitting the normal (Gaussian) consistency model
	1.5. Bayesian posterior predictive checking of the fit of statistical consistency model
	1.6. Outline

	2. Overall measure of discrepancy for checking consistency
	2.1. Bayesian posterior distribution of the common expected value
	2.2. Posterior predictive distribution of the results
	2.3. Overall measure of discrepancy and its posterior predictive p-value
	2.4. Birge test of consistency for independent results

	3. Unilateral and bilateral measures of discrepancy for individual laboratories
	3.1. Unilateral discrepancy measures
	3.2. Bilateral discrepancy measures

	4. Calculation of posterior predictive p-values
	5. Use of posterior predictive p-values to assess the degrees of agreement in CIPM key comparisons
	6. Summary
	 Acknowledgment
	 Appendix A
	 Appendix B
	 Appendix C
	 Appendix D
	 References

