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Abstract
We construct uncertainty intervals for weak Poisson signals in the presence of background.
We consider the case where a primary experiment yields a realization of the signal plus
background, and a second experiment yields a realization of the background. The data
acquisition times, for the background-only experiment, Tbg, and the primary experiment, T, are

selected so that their ratio, Tbg

T
, varies from 1 to 25. The upper choice of 25 is motivated by an

experimental study at the National Institute of Standards and Technology (NIST). The
expected number of background counts in the primary experiment varies from 0.2 to 2. We
construct 90% and 95% confidence intervals based on a propagation-of-errors method as well
as two implementations of a Neyman procedure where acceptance regions are constructed
based on a likelihood-ratio criterion that automatically determines whether the resulting
confidence interval is one-sided or two-sided. In one of the implementations of the Neyman
procedure due to Feldman and Cousins (FC), uncertainty in the expected background
contribution is neglected. In the other implementation, we account for random uncertainty in
the estimated expected background with a parametric bootstrap implementation of a method
due to Conrad. We also construct minimum length Bayesian credibility intervals. For each
method, we test for the presence of a signal based on the value of the lower endpoint of the
uncertainty interval. In general, the propagation-of-errors method performs the worst
compared to the other methods according to frequentist coverage and detection probability
criteria, and sometimes produces nonsensical intervals where both endpoints are negative. The
Neyman procedures generally yield intervals with better frequentist coverage properties
compared to the Bayesian method except for some cases where Tbg

T
= 1. In general, the

Bayesian method yields intervals with lower detection probabilities compared to Neyman
procedures. One of the main conclusions is that when Tbg

T
is 5 or more and the expected

background is 2 or less, the FC method outperforms the other methods considered. For
Tbg

T
= 1, 2 we observe that the Neyman procedure methods yield false detection probabilities

for the case of no signal that are higher than expected given the nominal frequentist coverage
of the interval. In contrast, for Tbg

T
= 1, 2, the false detection probability of the Bayesian

method is less than expected according to the nominal frequentist coverage.
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1. Introduction

We consider experiments where instruments yield count data
that can be modeled as realizations of a Poisson process with
expected value μS + μB where μS is the expected contribution
due to a signal of interest, and μB is the expected contribution
of a background process. That is,

nobs ∼ Poi(μS + μB). (1)

Given the measured value nobs and an estimate of μB from
an independent background-only experiment, we construct
uncertainty intervals (confidence intervals and Bayesian
credibility intervals) for μS . The statistical problem we study
occurs in a variety of application areas including particle and
astroparticle physics [1–9], isotopic ratio analysis (when the
major isotope is large enough so that most of the variability in
the ratio is due to the minor isotope) [10, 11], detection of low-
level radiation [12–15] and aerosol science and technology
[16].

Here, we focus on the case where the signal is weak and
consider the case where the ratio of the data acquisition time for
the background-only measurement Tbg and the data acquisition
time for the primary experiment T varies from 1 to 25. This
upper value of Tbg

T
= 25 was motivated by an experimental

study at the National Institute of Standards and Technology
(NIST), as were the values of μS and μB that we consider.
For such cases, we demonstrate that the standard propagation-
of-errors (POE) method yields confidence intervals with poor
coverage properties. Sometimes the POE method produces
intervals where the upper and/or lower endpoints are negative.
As an aside, for the special case where Tbg

T
= 1, one can

construct a confidence interval for μS based on a Bessel
function approach that has better coverage properties than
does the POE method [16]. However, for the general case
where Tbg

T
�= 1, this method is not applicable. Hence, we do

not include the method described in [16] in our study.
In addition to the POE method, we study the

relative performance of three other methods for constructing
uncertainty intervals. The first method [17] is an
implementation of a frequentist Neyman procedure [18]
developed by Feldman and Cousins. In this method, which
we refer to as the FC method, μB is assumed to be known.
For each of many discrete values of μS , acceptance regions
are constructed based on a likelihood-ratio criterion. Given
the intersection of the actual measured value with these
regions, one constructs a confidence interval for μS . In our
studies, we estimate μB from background-only experiments.
In [19], the FC method was extended to account for systematic
uncertainties in μB . We denote this method as the randomized
Feldman Cousins (RFC) method because μB is treated as a
random nuisance parameter. In this work, we implement a
version of the RFC method where uncertainty in μB is due
to Poisson counting statistics variation in a background-only
experiment that gives a direct measurement of μB . In the RFC
method, we simulate realizations of the nuisance parameter
μB with a parametric bootstrap method [20]. In both the
FC and the RFC methods, the upper and lower endpoints are
determined automatically.

We also determine the posterior probability density
function (posterior pdf) for μS with a Bayesian method
[21, 22] following Loredo’s treatment of the same problem
in [23]. Loredo did not discuss how to select the endpoints
of the credibility interval. Here, given that the integrated
posterior pdf has a particular value (equal to the nominal
frequentist coverage probability), we determine the endpoints
by minimizing the length of the credibility interval. As
an aside for the special case where μB is known, Roe
and Woodroofe [24] determined minimum length Bayesian
credibility intervals assuming a uniform prior for μS and
studied the frequentist coverage properties of their intervals.

Bayesian credibility intervals and frequentist confidence
intervals are conceptually different. To illustrate, consider a
one-dimensional parameter estimation problem. Frequentist
confidence intervals are constructed so that, ideally, the
true value of the parameter falls within the confidence
interval determined from any independent realization of
data with some desired coverage probability. In contrast,
Bayesian credibility intervals are constructed by modeling the
parameter of interest as a random variable. Given a prior
probability model for the parameter of interest and a likelihood
model for the data given the parameter, Bayes theorem
yields the conditional probability density function of the
parameter given the observed data. Based on this conditional
pdf (called the posterior pdf), one constructs credibility
intervals. By design, Bayesian credibility intervals are not
constructed with frequentist coverage in mind. Although the
conceptual foundations of frequentist and Bayesian inference
are different, frequentist coverage is widely accepted as an
empirical measure of the performance of not only frequentist
confidence intervals but Bayesian credibility intervals as well
[22, 25,26]. In a highly regarded textbook on Bayesian data
analysis, Gelman, Carlin, Stern and Rubin remark (page 111
of [22])

Just as the Bayesian paradigm can be seen to
justify simple ‘classical’ techniques, the methods of
frequentist statistics provide a useful approach for
evaluating the properties of Bayesian inferences—
their operating characteristics—when these are
regarded as embedded in a sequence of repeated
samples.

In this frequentist coverage study, we simulate realizations
of data given μS and μB , and quantify the probability that μS

falls in the interval determined from the simulated data. In
frequentist statistics, the relationship between a confidence
interval and a hypothesis test is well known. We exploit this
relationship and test the null hypothesis that μS = 0 against
the alternative hypothesis μS > 0, based on the value of the
lower endpoint of the uncertainty interval. We reject the null
hypothesis if the lower endpoint is greater than 0. Thus, the
probability that the lower endpoint of an interval is greater
than 0 is a signal detection probability. As a caveat, we do
not claim that this procedure is the most powerful test of our
hypothesis.

In section 2, we define our measurement model and
describe how we determine uncertainty intervals using each
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of the four methods. In this study, the background parameter
μB ranges from 0.2 to 2 and the signal parameter μS ranges
from 0 to 20. In section 3, we study the coverage properties of
uncertainty intervals for a variety of cases. We also determine
detection probabilities for a signal of interest. In general, the
propagation-of-errors method performs the worst compared
to the other methods according to frequentist coverage and
detection probability criteria. Further, the propagation-
of-errors method sometimes produces nonsensical intervals
where both endpoints are negative. The Neyman procedures
generally yield intervals with better frequentist coverage
properties compared to the Bayesian method except for the
case where Tbg

T
= 1 and there are 1 or more expected

background counts in the primary experiment. In general,
the Bayesian method yields intervals with lower detection
probabilities compared to Neyman procedures. When Tbg

T
is

5 or more, the FC method yields intervals with the highest
detection probabilities and best coverage properties in general.
However, for Tbg

T
= 1, 2 both the Neyman procedure methods

yield false detection probabilities for the case of no signal
that are higher than expected given the nominal frequentist
coverage of the interval. In contrast, for Tbg

T
= 1, 2, the

false detection probability of the Bayesian method is less than
expected according to the nominal frequentist coverage.

2. Measurement model and uncertainty intervals

In our simulation study, we consider an experiment where a
realization of the signal of interest plus background, nobs, is
observed during a time interval T. In a separate experiment
of duration Tbg, where Tbg

T
varies from 1 to 25, we measure

a realization of background nbg. We denote the data as
d = (nobs, nbg). The expected values of nobs and nbg are

μS + μB and μB
Tbg

T
, respectively, where μS is the expected

contribution from the signal of interest, and μB is the expected
contribution from the background. We model measurements of
nobs and nbg as independent Poisson random variables. Hence,
the likelihood function of the data is P(d|μS,μB), where

P(d|μS,μB) = (μS + μB)nobs
exp[−(μS + μB)]

nobs!

×
(

μB

Tbg

T

)nbg
exp

[
−

(
μB

Tbg

T

)]
nbg!

. (2)

2.1. Feldman Cousins method

In the FC method, one determines confidence intervals with a
Neyman procedure assuming exact knowledge of μB . In our
study, we set μB to an empirical estimate μ̂B , where

μ̂B = T

Tbg
nbg. (3)

Hence, the variance of μ̂B is

VAR(μ̂B) =
(

T

Tbg

)
μB, (4)
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Figure 1. Probability density functions for estimated background
for the case where Tbg/T = 25. For μB = 0.2, 1 and 2, the standard
deviations of the estimated background are 0.09, 0.20 and 0.28
respectively. The corresponding fractional standard deviations of
the estimated background are 45%, 20% and 14% respectively.

and the standard deviation of μ̂B is

σ(μ̂B) =
√

T

Tbg

√
μB. (5)

Thus, the fractional uncertainty of the estimate of μB is

σ(μ̂B)

μB

=
√

T

Tbg

1√
μB

. (6)

In figure 1, we plot probability density functions for the
estimated background when Tbg

T
= 25 for μB = 0.2, 1 and 2.

The FC method [17] produces a confidence interval for
μS under the assumption that the assumed background (μ̂B

in our case) equals the true background μB . For various
values of μS , we construct an acceptance region in n space.
For each integer value of n, we compute the conditional
probabilities P(n|μS, μ̂B) and P(n|μS, μ̂best), where μ̂best =
max(0, n − μ̂B) and

P(n|μS, μ̂B) = (μS + μ̂B)n
exp[−(μS + μ̂B)]

n!
. (7)

From these, we form the ratio R, where

R = P(n|μS, μ̂B)

P (n|μS, μ̂best)
. (8)

We include values of n in the acceptance region with the largest
values of R. For construction of a 100×p% confidence interval,
we add values until the sum of the P(n|μS, μ̂B) terms is p or
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greater. The lower and upper endpoints of the confidence
interval for μS are the minimum and maximum values of μS

that yield acceptance regions that include the observed value
nobs. For fixed nobs, due to the discreteness of n, the upper
endpoint of the interval is not always a decreasing function of
μB . In [17], Feldman and Cousins lengthened their intervals
so that the upper endpoint was a non-decreasing function of
μB . In this work, we do not adjust our intervals.

2.2. Extension of Feldman Cousins: uncertain background

In the RFC method, the value of μB is a random nuisance
parameter. In our analysis, we assume that uncertainty in μB

is due to random variation alone, i.e. counting statistics. If
there were systematic error, it could be incorporated into the
analysis. However, we do not do this.

The procedure to construct a confidence interval is very
similar to the FC method. For each value of μS , we compute
an acceptance region like before, but we replace P(n|μS, μ̂B)

and P(n|μS, μ̂best) with an estimate of their expected values
when one accounts for uncertainty in μ̂B .

One way to do this would be to simulate realizations of
μ̂B with a parametric bootstrap [20] method and determine the
mean values of P(n|μS, μ̂B) and P(n|μS, μ̂best) from all the
realizations. In this approach, the kth bootstrap replication
of nbg, n∗

bg(k) is simulated by sampling from a Poisson
distribution with expected value equal to nbg. That is,

n∗
bg(k) ∼ Poi(nbg). (9)

Given n∗
bg(k), the kth bootstrap replication of μ̂B , μ̂∗

B(k), is

μ̂∗
B(k) = T

Tbg
n∗

bg(k), (10)

and the kth bootstrap replication of μ̂best is μ̂∗
best(k) =

max(0, n − μ̂∗
B(k)). Thus, the kth bootstrap replication of

P(n|μS, μ̂) is

P(n|μS, μ̂
∗
B(k)) = (μS + μ̂∗

B(k))n
exp[−(μS + μ̂∗

B(k))]

n!
,

(11)

and the kth bootstrap replication of P(n|μS, μ̂best) is

P(n|μS, μ̂
∗
best(k)) = (μS + μ̂∗

best(k))n
exp[−(μS + μ̂∗

best(k))]

n!
.

(12)

From all K bootstrap replications, we determine the following
mean values:

P̄ (n|μS, μ̂B) = 1

K

K∑
k=1

P(n|μS, μ̂
∗
B(k)) (13)

and

P̄ (n|μS, μ̂best) = 1

K

K∑
k=1

P(n|μS, μ̂
∗
best(k)). (14)

In this Monte Carlo implementation of the RFC method, one
replaces P(n|μS, μ̂B) and P(n|μS, μ̂best) with the right-hand
sides of equations (13) and (14) respectively.
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Figure 2. Posterior probability density functions for the background
parameter μB given the observed value nbg.

To reduce computer run time, we do not implement
a Monte Carlo version of the RFC. Instead, we determine
the left-hand sides of equations (13) and (14) by numerical
integration. For instance, we evaluate the left-hand side of
equation (13) as

P̄ (n|μS, μ̂B) =
khi∑

k=klow

P

(
n|μS, μ̂

∗
B = kT

Tbg

)
w(k) (15)

where w(k) is

w(k) = exp(−nbg)n
k
bg

k!
. (16)

To speed up the algorithm, we select klow and khi so that the
sum of the w(k) terms agrees with 1 to within approximately
10−8. We use a similar method to determine the left-hand side
of equation (14).

2.3. Bayesian method

Following [23], we determine a Bayesian credibility interval
for μS given measurements of nobs and nbg. In this approach,
the priors p(μB) and p(μS |μB) are both uniform from 0 to a
large positive constant. Results are presented for the limiting
case where this positive constant approaches infinity. Based
on a Bayes theorem argument, one can show that

p(μS, μB |nobs, nbg) ∝ p(μB |nbg)p(nobs|μS,μB), (17)

where the posterior pdf for μB given nbg is

p(μB |nbg) = Tbg

T

exp
(− Tbg

T
μB

)( Tbg

T
μB

)nbg

nbg!
, (18)

and p(nobs|μS,μB) is the Poisson likelihood function:

p(nobs|μS,μB) = exp[−(μS + μB)](μS + μB)nobs/nobs!.

(19)

See figure 2 for examples of equation (18).
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Further, marginalizing with respect to μB , we get

p(μS |nobs, nbg) =
nobs∑
i=0

Ci

(μS)
i exp(−μS)

i!
, (20)

where

Ci =
(
1 + Tbg

T

)i (nobs+nbg−i)!
(nobs−i)!∑n

j=0

(
1 + Tbg

T

)j (nobs+nbg−j)!
(nobs−j)!

. (21)

See [23] for more details of this derivation.
In this study, we determine the endpoints of 90% and 95%

credibility intervals as follows. For both the 90% and 95%
cases, we determine the maximum lower endpoint of the one-
sided interval lmax. In an optimization code, for each trial value
of the lower endpoint l (where 0 � l � lmax) we determine the
upper endpoint u such that the integral of the posterior pdf from
l to u equals the nominal frequentist coverage. We determine
the lower endpoint l that minimizes u − l. If the optimal value
of l is less than the specified numerical tolerance (10−6) of the
optimization algorithm, we set it to 0.

2.4. Propagation-of-errors method

We compute two-sided confidence intervals with a standard
propagation-of-errors (POE) method that has a continuity
correction. The 1 − α level POE confidence interval for μS is
μ̂S ± (zα/2σ̂μ̂S

+ 0.5) where

μ̂S = nobs − μ̂B, (22)

and

σ̂ 2
μ̂S

= nobs +

(
T

Tbg

)2

nbg. (23)

For levels of 0.90 and 0.95, zα/2 = 1.64 and 1.96, respectively.
We expect that this method will yield confidence intervals with
coverage close to the desired nominal values for the asymptotic
case where the signal-to-noise ratio of the data is high. As a
caveat, continuity corrections are typically introduced when
constructing confidence intervals for the case where there is no
background [27] rather than the more general case considered
here.

In our simulation experiment, the POE method can yield
nonsensical results where one or both endpoints are negative
(table 1). In our coverage studies, we treat negative endpoints
as 0. Hence, if both endpoints are negative, the resultant
interval is treated as (0, 0). In physics and astroparticle physics
experiments where one hopes to discover a new particle, null
results are common and experimenters provide upper limits.
If both endpoints are negative, one cannot set a reasonable
upper limit. Hence, the POE method is clearly unacceptable
for low-count data sets.

3. Simulation experiments

In table 1, we list some realizations of data and associated
intervals constructed to have nominal coverage of 90% for the
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Figure 3. Estimated coverage probabilities for case where μB = 1
for intervals with nominal frequentist coverage probability of 0.90.

four methods. Based on 2000 realizations of data for each
of various choices of Tbg

T
and μS and μB , we determine the

frequentist coverage as the fraction of the intervals that cover
the true value of μS for each method (tables 2–7). We also
estimate detection probabilities for the different methods for
levels 0.90 and 0.95 (tables 8–13).

To start, we consider 90% intervals for the case where
μB = 1. In figures 3 and 4, we show coverage and detection
probabilities as a function of μS and Tbg

T
for this case. In

general, when Tbg

T
= 1, the coverage properties of the FC

and RFC methods are poor at low value of μS . In figures 5
and 6, we show the false detection probabilities for all cases
for μS = 0. For Tbg

T
= 1, 2, both the RFC and FC methods

have false detection probabilities that are higher than predicted
according to the nominal frequentist coverage of the intervals.
Hence, reporting a discovery based on an analysis with the
FC or RFC method should be treated with great caution for
cases where Tbg

T
= 1, 2. For Tbg

T
� 5, the false detection

probabilities of the FC and RFC methods are generally slightly
less than their associated nominal target values. In contrast,
for all values of Tbg

T
, the false detection probabilities of the

Bayesian method are less than the values predicted by the
nominal frequentist coverage. In figures 7–10, we display
coverage and detection probabilities for all cases considered
in our simulation study.

In tables 14 and 15, we list the root-mean-square (RMS)
deviation between the observed and nominal frequentist

5
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Table 1. Upper and lower endpoints of uncertainty intervals with nominal frequentist coverage of 0.90. The intervals are determined from
simulated values of nobs and nbg. For informational purposes, we list μS and μB .

Bayesian Bayesian FC FC RFC RFC POE POE
Tbg

T
μS μB nobs nbg lower upper lower upper lower upper lower upper

1 1.0 2.0 2 1 0.00 4.32 0.00 4.91 0.00 5.27 −2.35 4.35
1 10.0 0.2 6 0 1.58 10.42 2.21 11.46 2.21 11.46 1.47 10.53

5 2.0 0.2 1 0 0.00 3.74 0.11 4.35 0.11 4.35 −1.14 3.14
5 1.0 1.0 1 4 0.00 3.34 0.00 3.55 0.00 3.56 −2.07 2.47
5 5.0 2.0 5 7 0.49 8.11 1.04 8.58 0.95 8.58 −0.68 7.88

25 0.1 2.0 0 46 0.00 2.30 0.00 1.15 0.00 1.15 −2.79 −0.89
25 5.0 1.0 2 16 0.00 4.70 0.00 5.27 0.00 5.27 −1.48 4.20
25 10.0 0.2 9 7 4.57 14.62 4.08 15.01 4.08 15.04 3.28 14.16

Table 2. Estimated coverage probabilities of uncertainty intervals with nominal frequentist coverage of 0.90. Approximate 68% uncertainty
due to sampling variability given for cases where estimated coverage probability is greater than 0 or less than 1.

Tbg

T
= 1.

μS μB Bayesian FC RFC POE

0.0 0.2 1 0.857 ± 0.008 0.857 ± 0.008 1
0.1 0.2 1 0.797 ± 0.009 0.798 ± 0.009 1
0.2 0.2 1 0.948 ± 0.005 0.948 ± 0.005 1
1.0 0.2 0.998 ± 0.001 0.908 ± 0.006 0.908 ± 0.006 0.751 ± 0.010
2.0 0.2 0.995 ± 0.002 0.960 ± 0.004 0.961 ± 0.004 0.887 ± 0.007
5.0 0.2 0.867 ± 0.008 0.923 ± 0.006 0.933 ± 0.006 0.869 ± 0.008

10.0 0.2 0.906 ± 0.007 0.904 ± 0.007 0.906 ± 0.007 0.907 ± 0.007
20.0 0.2 0.911 ± 0.006 0.904 ± 0.007 0.908 ± 0.006 0.911 ± 0.006

0.0 1.0 0.990 ± 0.002 0.728 ± 0.010 0.748 ± 0.010 0.991 ± 0.002
0.1 1.0 0.992 ± 0.002 0.708 ± 0.010 0.733 ± 0.010 0.985 ± 0.003
0.2 1.0 0.986 ± 0.003 0.861 ± 0.008 0.862 ± 0.008 0.982 ± 0.003
1.0 1.0 0.994 ± 0.002 0.841 ± 0.008 0.856 ± 0.008 0.906 ± 0.007
2.0 1.0 0.981 ± 0.003 0.909 ± 0.006 0.927 ± 0.006 0.924 ± 0.006
5.0 1.0 0.900 ± 0.007 0.901 ± 0.007 0.922 ± 0.006 0.916 ± 0.006

10.0 1.0 0.896 ± 0.007 0.906 ± 0.007 0.921 ± 0.006 0.917 ± 0.006
20.0 1.0 0.903 ± 0.007 0.886 ± 0.007 0.901 ± 0.007 0.903 ± 0.007

0.0 2.0 0.964 ± 0.004 0.786 ± 0.009 0.835 ± 0.008 0.974 ± 0.004
0.1 2.0 0.972 ± 0.004 0.763 ± 0.010 0.828 ± 0.008 0.949 ± 0.005
0.2 2.0 0.968 ± 0.004 0.843 ± 0.008 0.857 ± 0.008 0.951 ± 0.005
1.0 2.0 0.980 ± 0.003 0.838 ± 0.008 0.867 ± 0.008 0.939 ± 0.005
2.0 2.0 0.978 ± 0.003 0.866 ± 0.008 0.930 ± 0.006 0.926 ± 0.006
5.0 2.0 0.910 ± 0.006 0.886 ± 0.007 0.927 ± 0.006 0.924 ± 0.006

10.0 2.0 0.872 ± 0.007 0.872 ± 0.007 0.912 ± 0.006 0.913 ± 0.006
20.0 2.0 0.907 ± 0.007 0.886 ± 0.007 0.908 ± 0.006 0.910 ± 0.006

coverage probabilities as a function of μB . We include results
for μS � 10. According to our coverage and detection
probability criteria, the POE method performed the least
well of all methods. This is not a surprise since the poor
performance of the POE method for low-count situations is
well known. In general, the Bayesian method yielded intervals
with the lowest detection probabilities compared to the FC and
RFC methods. According to the RMS coverage criterion, the
coverage properties of the Bayesian intervals are inferior to
the intervals produces by the FC and RFC methods for most
cases. The exception to this pattern was for the case where
Tbg

T
= 1 and μB = 1, 2. The FC and RFC methods had better

coverage compared to Bayesian method for μB = 0.2 for all
values of Tbg

T
considered.

For Tbg

T
= 1, 2 the coverage properties of the RFC

method were slightly better than those of the FC method for
μB = 1, 2. However, for Tbg

T
greater than or equal to 5,

the FC method yields intervals with superior coverage and
detection probabilities compared to the RFC and Bayesian
methods.

3.1. Comments

For fixed μB , as μS increases, we sometimes observe
nonmonotonic trends in coverage. In other studies such as
[24], nonmonotonic trends were also observed.

We expect the FC method to yield poor results
when the 1-sigma uncertainty in the estimated background

6
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Table 3. Estimated coverage probabilities of uncertainty intervals with nominal frequentist coverage of 0.90. Approximate 68% uncertainty
due to sampling variability given for cases where estimated coverage probability is greater than 0 or less than 1.

Tbg

T
= 5.

μS μB Bayesian FC RFC POE

0.0 0.2 0.993 ± 0.002 0.928 ± 0.006 0.928 ± 0.006 1
0.1 0.2 0.981 ± 0.003 0.882 ± 0.007 0.888 ± 0.007 1
0.2 0.2 0.974 ± 0.004 0.955 ± 0.005 0.955 ± 0.005 0.999 ± 0.001
1.0 0.2 0.971 ± 0.004 0.934 ± 0.006 0.934 ± 0.006 0.682 ± 0.010
2.0 0.2 0.973 ± 0.004 0.967 ± 0.004 0.967 ± 0.004 0.866 ± 0.008
5.0 0.2 0.909 ± 0.006 0.930 ± 0.006 0.930 ± 0.006 0.868 ± 0.008

10.0 0.2 0.892 ± 0.007 0.901 ± 0.007 0.901 ± 0.007 0.912 ± 0.006
20.0 0.2 0.892 ± 0.007 0.894 ± 0.007 0.894 ± 0.007 0.907 ± 0.006

0.0 1.0 0.964 ± 0.004 0.924 ± 0.006 0.924 ± 0.006 0.997 ± 0.001
0.1 1.0 0.956 ± 0.005 0.911 ± 0.006 0.939 ± 0.005 0.916 ± 0.006
0.2 1.0 0.969 ± 0.004 0.929 ± 0.006 0.929 ± 0.006 0.872 ± 0.007
1.0 1.0 0.967 ± 0.004 0.936 ± 0.005 0.937 ± 0.005 0.850 ± 0.008
2.0 1.0 0.968 ± 0.004 0.912 ± 0.006 0.915 ± 0.006 0.902 ± 0.007
5.0 1.0 0.912 ± 0.006 0.929 ± 0.006 0.929 ± 0.006 0.922 ± 0.006

10.0 1.0 0.893 ± 0.007 0.909 ± 0.006 0.909 ± 0.006 0.909 ± 0.006
20.0 1.0 0.891 ± 0.007 0.897 ± 0.007 0.902 ± 0.007 0.901 ± 0.007

0.0 2.0 0.944 ± 0.005 0.906 ± 0.007 0.908 ± 0.006 0.996 ± 0.001
0.1 2.0 0.954 ± 0.005 0.912 ± 0.006 0.938 ± 0.005 0.877 ± 0.007
0.2 2.0 0.944 ± 0.005 0.902 ± 0.007 0.907 ± 0.006 0.884 ± 0.007
1.0 2.0 0.963 ± 0.004 0.910 ± 0.006 0.922 ± 0.006 0.920 ± 0.006
2.0 2.0 0.966 ± 0.004 0.921 ± 0.006 0.926 ± 0.006 0.902 ± 0.007
5.0 2.0 0.901 ± 0.007 0.919 ± 0.006 0.920 ± 0.006 0.910 ± 0.006

10.0 2.0 0.902 ± 0.007 0.909 ± 0.006 0.913 ± 0.006 0.914 ± 0.006
20.0 2.0 0.897 ± 0.007 0.902 ± 0.007 0.905 ± 0.007 0.908 ± 0.006

Table 4. Estimated coverage probabilities of uncertainty intervals with nominal frequentist coverage of 0.90. Approximate 68% uncertainty
due to sampling variability given for cases where estimated coverage probability is greater than 0 or less than 1.

Tbg

T
= 25.

μS μB Bayesian FC RFC POE

0.0 0.2 0.982 ± 0.003 0.973 ± 0.004 0.973 ± 0.004 1
0.1 0.2 0.974 ± 0.004 0.967 ± 0.004 0.967 ± 0.004 1
0.2 0.2 0.953 ± 0.005 0.937 ± 0.005 0.937 ± 0.005 1
1.0 0.2 0.969 ± 0.004 0.954 ± 0.005 0.954 ± 0.005 0.698 ± 0.010
2.0 0.2 0.974 ± 0.004 0.979 ± 0.003 0.979 ± 0.003 0.884 ± 0.007
5.0 0.2 0.925 ± 0.006 0.928 ± 0.006 0.928 ± 0.006 0.891 ± 0.007

10.0 0.2 0.890 ± 0.007 0.906 ± 0.007 0.906 ± 0.007 0.920 ± 0.006
20.0 0.2 0.906 ± 0.007 0.909 ± 0.006 0.909 ± 0.006 0.920 ± 0.006

0.0 1.0 0.957 ± 0.005 0.940 ± 0.005 0.940 ± 0.005 0.999 ± 0.001
0.1 1.0 0.958 ± 0.005 0.931 ± 0.006 0.939 ± 0.005 0.665 ± 0.011
0.2 1.0 0.960 ± 0.004 0.931 ± 0.006 0.931 ± 0.006 0.709 ± 0.010
1.0 1.0 0.961 ± 0.004 0.946 ± 0.005 0.946 ± 0.005 0.875 ± 0.007
2.0 1.0 0.961 ± 0.004 0.917 ± 0.006 0.917 ± 0.006 0.916 ± 0.006
5.0 1.0 0.900 ± 0.007 0.927 ± 0.006 0.927 ± 0.006 0.927 ± 0.006

10.0 1.0 0.910 ± 0.006 0.930 ± 0.006 0.930 ± 0.006 0.914 ± 0.006
20.0 1.0 0.907 ± 0.006 0.914 ± 0.006 0.914 ± 0.006 0.918 ± 0.006

0.0 2.0 0.948 ± 0.005 0.929 ± 0.006 0.934 ± 0.006 0.998 ± 0.001
0.1 2.0 0.946 ± 0.005 0.930 ± 0.006 0.933 ± 0.006 0.873 ± 0.007
0.2 2.0 0.949 ± 0.005 0.928 ± 0.006 0.928 ± 0.006 0.889 ± 0.007
1.0 2.0 0.957 ± 0.005 0.919 ± 0.006 0.924 ± 0.006 0.909 ± 0.006
2.0 2.0 0.957 ± 0.005 0.930 ± 0.006 0.931 ± 0.006 0.902 ± 0.007
5.0 2.0 0.881 ± 0.007 0.913 ± 0.006 0.913 ± 0.006 0.896 ± 0.007

10.0 2.0 0.892 ± 0.007 0.908 ± 0.006 0.909 ± 0.006 0.897 ± 0.007
20.0 2.0 0.900 ± 0.007 0.909 ± 0.006 0.909 ± 0.006 0.912 ± 0.006

(equation (5)) is large. For Tbg

T
= 1 and μB = 0.2, 1, 2,

equation (5) yields absolute uncertainties of 0.45, 1 and 1.41,

and equation (6) yields fractional uncertainties of 224%, 100%

and 71% respectively. For Tbg

T
= 5, the absolute and fractional

uncertainties are 0.2, 0.45 and 0.63, and 100%, 45% and

31% respectively. For Tbg

T
= 25, the absolute and fractional

7
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Table 5. Estimated coverage probabilities of uncertainty intervals with nominal frequentist coverage of 0.95. Approximate 68% uncertainty
due to sampling variability given for cases where estimated coverage probability is greater than 0 or less than 1.

Tbg

T
= 1.

μS μB Bayesian FC RFC POE

0.0 0.2 1 0.857 ± 0.008 0.857 ± 0.008 1
0.1 0.2 1 0.976 ± 0.003 0.976 ± 0.003 1
0.2 0.2 1 0.948 ± 0.005 0.948 ± 0.005 1
1.0 0.2 1 0.974 ± 0.004 0.974 ± 0.004 0.755 ± 0.010
2.0 0.2 0.998 ± 0.001 0.976 ± 0.003 0.977 ± 0.003 0.892 ± 0.007
5.0 0.2 0.962 ± 0.004 0.972 ± 0.004 0.974 ± 0.004 0.953 ± 0.005

10.0 0.2 0.951 ± 0.005 0.949 ± 0.005 0.949 ± 0.005 0.935 ± 0.006
20.0 0.2 0.949 ± 0.005 0.953 ± 0.005 0.955 ± 0.005 0.950 ± 0.005

0.0 1.0 0.999 ± 0.001 0.748 ± 0.010 0.755 ± 0.010 0.999 ± 0.001
0.1 1.0 0.998 ± 0.001 0.878 ± 0.007 0.886 ± 0.007 0.995 ± 0.002
0.2 1.0 0.997 ± 0.001 0.862 ± 0.008 0.870 ± 0.008 0.998 ± 0.001
1.0 1.0 0.998 ± 0.001 0.945 ± 0.005 0.945 ± 0.005 0.940 ± 0.005
2.0 1.0 0.993 ± 0.002 0.949 ± 0.005 0.956 ± 0.005 0.946 ± 0.005
5.0 1.0 0.967 ± 0.004 0.951 ± 0.005 0.969 ± 0.004 0.958 ± 0.004

10.0 1.0 0.958 ± 0.004 0.959 ± 0.004 0.962 ± 0.004 0.960 ± 0.004
20.0 1.0 0.954 ± 0.005 0.944 ± 0.005 0.955 ± 0.005 0.950 ± 0.005

0.0 2.0 0.993 ± 0.002 0.835 ± 0.008 0.864 ± 0.008 0.994 ± 0.002
0.1 2.0 0.988 ± 0.002 0.869 ± 0.008 0.900 ± 0.007 0.981 ± 0.003
0.2 2.0 0.990 ± 0.002 0.856 ± 0.008 0.887 ± 0.007 0.989 ± 0.002
1.0 2.0 0.993 ± 0.002 0.921 ± 0.006 0.928 ± 0.006 0.965 ± 0.004
2.0 2.0 0.991 ± 0.002 0.935 ± 0.006 0.948 ± 0.005 0.966 ± 0.004
5.0 2.0 0.967 ± 0.004 0.937 ± 0.005 0.957 ± 0.005 0.962 ± 0.004

10.0 2.0 0.944 ± 0.005 0.943 ± 0.005 0.958 ± 0.004 0.958 ± 0.004
20.0 2.0 0.952 ± 0.005 0.945 ± 0.005 0.957 ± 0.005 0.958 ± 0.005

Table 6. Estimated coverage probabilities of uncertainty intervals with nominal frequentist coverage of 0.95. Approximate 68% uncertainty
due to sampling variability given for cases where estimated coverage probability is greater than 0 or less than 1.

Tbg

T
= 5.

μS μB Bayesian FC RFC POE

0.0 0.2 0.997 ± 0.001 0.932 ± 0.006 0.932 ± 0.006 1
0.1 0.2 0.997 ± 0.001 0.972 ± 0.004 0.972 ± 0.004 1
0.2 0.2 0.993 ± 0.002 0.974 ± 0.004 0.974 ± 0.004 1
1.0 0.2 0.990 ± 0.002 0.971 ± 0.004 0.971 ± 0.004 0.684 ± 0.010
2.0 0.2 0.983 ± 0.003 0.976 ± 0.003 0.976 ± 0.003 0.871 ± 0.007
5.0 0.2 0.950 ± 0.005 0.962 ± 0.004 0.962 ± 0.004 0.936 ± 0.005

10.0 0.2 0.949 ± 0.005 0.950 ± 0.005 0.950 ± 0.005 0.933 ± 0.006
20.0 0.2 0.945 ± 0.005 0.951 ± 0.005 0.955 ± 0.005 0.950 ± 0.005

0.0 1.0 0.983 ± 0.003 0.952 ± 0.005 0.962 ± 0.004 1
0.1 1.0 0.983 ± 0.003 0.953 ± 0.005 0.955 ± 0.005 0.955 ± 0.005
0.2 1.0 0.986 ± 0.003 0.953 ± 0.005 0.969 ± 0.004 0.921 ± 0.006
1.0 1.0 0.984 ± 0.003 0.967 ± 0.004 0.967 ± 0.004 0.855 ± 0.008
2.0 1.0 0.982 ± 0.003 0.968 ± 0.004 0.969 ± 0.004 0.930 ± 0.006
5.0 1.0 0.961 ± 0.004 0.966 ± 0.004 0.966 ± 0.004 0.945 ± 0.005

10.0 1.0 0.950 ± 0.005 0.959 ± 0.004 0.959 ± 0.004 0.955 ± 0.005
20.0 1.0 0.946 ± 0.005 0.946 ± 0.005 0.950 ± 0.005 0.941 ± 0.005

0.0 2.0 0.980 ± 0.003 0.939 ± 0.005 0.957 ± 0.005 0.999 ± 0.001
0.1 2.0 0.980 ± 0.003 0.954 ± 0.005 0.969 ± 0.004 0.895 ± 0.007
0.2 2.0 0.978 ± 0.003 0.943 ± 0.005 0.948 ± 0.005 0.902 ± 0.007
1.0 2.0 0.977 ± 0.003 0.951 ± 0.005 0.963 ± 0.004 0.945 ± 0.005
2.0 2.0 0.985 ± 0.003 0.959 ± 0.004 0.965 ± 0.004 0.927 ± 0.006
5.0 2.0 0.960 ± 0.004 0.957 ± 0.005 0.958 ± 0.005 0.943 ± 0.005

10.0 2.0 0.945 ± 0.005 0.959 ± 0.004 0.959 ± 0.004 0.954 ± 0.005
20.0 2.0 0.944 ± 0.005 0.947 ± 0.005 0.949 ± 0.005 0.947 ± 0.005

uncertainties are 0.09, 0.20 and 0.28, and 45%, 20% and 14%
respectively.

It is plausible that the performance of the FC method
depends solely on the equation (5) uncertainty of the

background estimate. However, comparison of the coverage
properties of the FC intervals for the case where Tbg

T
= 1,

μB = 0.2, and for the case where Tbg

T
= 5, μB = 1, suggests a

more complicated picture. For the first case, the FC intervals

8
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Table 7. Estimated coverage probabilities of uncertainty intervals with nominal frequentist coverage of 0.95. Approximate 68% uncertainty
due to sampling variability given for cases where estimated coverage probability is greater than 0 or less than 1.

Tbg

T
= 25.

μS μB Bayesian FC RFC POE

0.0 0.2 0.990 ± 0.002 0.983 ± 0.003 0.983 ± 0.003 1
0.1 0.2 0.987 ± 0.003 0.978 ± 0.003 0.978 ± 0.003 1
0.2 0.2 0.990 ± 0.002 0.979 ± 0.003 0.979 ± 0.003 1
1.0 0.2 0.984 ± 0.003 0.970 ± 0.004 0.970 ± 0.004 0.700 ± 0.010
2.0 0.2 0.982 ± 0.003 0.981 ± 0.003 0.981 ± 0.003 0.886 ± 0.007
5.0 0.2 0.949 ± 0.005 0.964 ± 0.004 0.964 ± 0.004 0.948 ± 0.005

10.0 0.2 0.956 ± 0.005 0.956 ± 0.005 0.956 ± 0.005 0.934 ± 0.006
20.0 0.2 0.948 ± 0.005 0.956 ± 0.005 0.956 ± 0.005 0.958 ± 0.005

0.0 1.0 0.981 ± 0.003 0.971 ± 0.004 0.972 ± 0.004 1
0.1 1.0 0.978 ± 0.003 0.970 ± 0.004 0.970 ± 0.004 0.687 ± 0.010
0.2 1.0 0.983 ± 0.003 0.969 ± 0.004 0.973 ± 0.004 0.715 ± 0.010
1.0 1.0 0.984 ± 0.003 0.967 ± 0.004 0.970 ± 0.004 0.876 ± 0.007
2.0 1.0 0.981 ± 0.003 0.980 ± 0.003 0.980 ± 0.003 0.949 ± 0.005
5.0 1.0 0.966 ± 0.004 0.966 ± 0.004 0.966 ± 0.004 0.937 ± 0.005

10.0 1.0 0.955 ± 0.005 0.972 ± 0.004 0.972 ± 0.004 0.965 ± 0.004
20.0 1.0 0.956 ± 0.005 0.956 ± 0.005 0.956 ± 0.005 0.954 ± 0.005

0.0 2.0 0.978 ± 0.003 0.964 ± 0.004 0.969 ± 0.004 1
0.1 2.0 0.973 ± 0.004 0.964 ± 0.004 0.967 ± 0.004 0.877 ± 0.007
0.2 2.0 0.979 ± 0.003 0.964 ± 0.004 0.966 ± 0.004 0.894 ± 0.007
1.0 2.0 0.981 ± 0.003 0.964 ± 0.004 0.967 ± 0.004 0.946 ± 0.005
2.0 2.0 0.981 ± 0.003 0.960 ± 0.004 0.961 ± 0.004 0.911 ± 0.006
5.0 2.0 0.940 ± 0.005 0.950 ± 0.005 0.949 ± 0.005 0.929 ± 0.006

10.0 2.0 0.942 ± 0.005 0.957 ± 0.005 0.957 ± 0.005 0.941 ± 0.005
20.0 2.0 0.946 ± 0.005 0.952 ± 0.005 0.952 ± 0.005 0.948 ± 0.005

Table 8. Estimated detection probabilities corresponding to uncertainty intervals with nominal frequentist coverage of 0.90. Approximate
68% uncertainty due to sampling variability given for cases where estimated coverage probability is greater than 0 or less than 1.

Tbg

T
= 1.

μS μB Bayesian FC RFC POE

0.0 0.2 0 0.143 ± 0.008 0.143 ± 0.008 0
0.1 0.2 0 0.203 ± 0.009 0.202 ± 0.009 0
0.2 0.2 0.001 ± 0.001 0.269 ± 0.010 0.268 ± 0.010 0.001 ± 0.001
1.0 0.2 0.028 ± 0.004 0.591 ± 0.011 0.580 ± 0.011 0.027 ± 0.004
2.0 0.2 0.152 ± 0.008 0.795 ± 0.009 0.759 ± 0.010 0.144 ± 0.008
5.0 0.2 0.725 ± 0.010 0.975 ± 0.004 0.951 ± 0.005 0.695 ± 0.010

10.0 0.2 0.979 ± 0.003 1 0.998 ± 0.001 0.971 ± 0.004
20.0 0.2 1 1 1 1

0.0 1.0 0.010 ± 0.002 0.272 ± 0.010 0.252 ± 0.010 0.009 ± 0.002
0.1 1.0 0.010 ± 0.002 0.293 ± 0.010 0.268 ± 0.010 0.009 ± 0.002
0.2 1.0 0.016 ± 0.003 0.310 ± 0.010 0.280 ± 0.010 0.015 ± 0.003
1.0 1.0 0.070 ± 0.006 0.461 ± 0.011 0.381 ± 0.011 0.055 ± 0.005
2.0 1.0 0.193 ± 0.009 0.602 ± 0.011 0.495 ± 0.011 0.157 ± 0.008
5.0 1.0 0.673 ± 0.010 0.887 ± 0.007 0.819 ± 0.009 0.571 ± 0.011

10.0 1.0 0.967 ± 0.004 0.994 ± 0.002 0.985 ± 0.003 0.936 ± 0.005
20.0 1.0 1 1 1 1

0.0 2.0 0.036 ± 0.004 0.214 ± 0.009 0.165 ± 0.008 0.026 ± 0.004
0.1 2.0 0.039 ± 0.004 0.238 ± 0.010 0.172 ± 0.008 0.028 ± 0.004
0.2 2.0 0.043 ± 0.005 0.253 ± 0.010 0.183 ± 0.009 0.031 ± 0.004
1.0 2.0 0.106 ± 0.007 0.343 ± 0.011 0.249 ± 0.010 0.073 ± 0.006
2.0 2.0 0.228 ± 0.009 0.493 ± 0.011 0.374 ± 0.011 0.162 ± 0.008
5.0 2.0 0.586 ± 0.011 0.805 ± 0.009 0.702 ± 0.010 0.461 ± 0.011

10.0 2.0 0.918 ± 0.006 0.977 ± 0.003 0.949 ± 0.005 0.850 ± 0.008
20.0 2.0 0.999 ± 0.001 1 0.999 ± 0.001 0.997 ± 0.001

have poor coverage at low values of μS (tables 2 and 5). For
the second case, the intervals have good coverage at all μS

(tables 3 and 6). However, the standard deviation of
the estimated background is the same for both cases.
Perhaps this result is due to differences in the shapes

of the background estimate pdfs for Tbg

T
= 1 and

Tbg

T
= 5.

In the POE method, we approximate the distribution of
the background-corrected estimate of μS , nobs − μ̂B , as a

9
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Table 9. Estimated detection probabilities corresponding to uncertainty intervals with nominal frequentist coverage of 0.90. Approximate
68% uncertainty due to sampling variability given for cases where estimated coverage probability is greater than 0 or less than 1.

Tbg

T
= 5.

μS μB Bayesian FC RFC POE

0.0 0.2 0.007 ± 0.002 0.072 ± 0.006 0.072 ± 0.006 0
0.1 0.2 0.029 ± 0.004 0.118 ± 0.007 0.118 ± 0.007 0
0.2 0.2 0.045 ± 0.005 0.148 ± 0.008 0.148 ± 0.008 0.001 ± 0.001
1.0 0.2 0.281 ± 0.010 0.453 ± 0.011 0.453 ± 0.011 0.022 ± 0.003
2.0 0.2 0.549 ± 0.011 0.694 ± 0.010 0.694 ± 0.010 0.119 ± 0.007
5.0 0.2 0.935 ± 0.006 0.962 ± 0.004 0.962 ± 0.004 0.654 ± 0.011

10.0 0.2 0.998 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.977 ± 0.003
20.0 0.2 1 1 1 1

0.0 1.0 0.036 ± 0.004 0.076 ± 0.006 0.076 ± 0.006 0.003 ± 0.001
0.1 1.0 0.048 ± 0.005 0.089 ± 0.006 0.089 ± 0.006 0.005 ± 0.001
0.2 1.0 0.055 ± 0.005 0.103 ± 0.007 0.103 ± 0.007 0.003 ± 0.001
1.0 1.0 0.176 ± 0.009 0.284 ± 0.010 0.283 ± 0.010 0.023 ± 0.003
2.0 1.0 0.381 ± 0.011 0.509 ± 0.011 0.509 ± 0.011 0.114 ± 0.007
5.0 1.0 0.852 ± 0.008 0.906 ± 0.007 0.906 ± 0.007 0.569 ± 0.011

10.0 1.0 0.994 ± 0.002 0.996 ± 0.001 0.995 ± 0.002 0.960 ± 0.004
20.0 1.0 1 1 1 1

0.0 2.0 0.056 ± 0.005 0.094 ± 0.007 0.092 ± 0.006 0.004 ± 0.001
0.1 2.0 0.049 ± 0.005 0.091 ± 0.006 0.088 ± 0.006 0.003 ± 0.001
0.2 2.0 0.076 ± 0.006 0.126 ± 0.007 0.120 ± 0.007 0.007 ± 0.002
1.0 2.0 0.153 ± 0.008 0.226 ± 0.009 0.214 ± 0.009 0.031 ± 0.004
2.0 2.0 0.318 ± 0.010 0.412 ± 0.011 0.394 ± 0.011 0.094 ± 0.007
5.0 2.0 0.753 ± 0.010 0.820 ± 0.009 0.803 ± 0.009 0.481 ± 0.011

10.0 2.0 0.984 ± 0.003 0.988 ± 0.002 0.987 ± 0.003 0.935 ± 0.006
20.0 2.0 1 1 1 1

Table 10. Estimated detection probabilities corresponding to uncertainty intervals with nominal frequentist coverage of 0.90. Approximate
68% uncertainty due to sampling variability given for cases where estimated coverage probability is greater than 0 or less than 1.

Tbg

T
= 25.

μS μB Bayesian FC RFC POE

0.0 0.2 0.018 ± 0.003 0.027 ± 0.004 0.027 ± 0.004 0
0.1 0.2 0.043 ± 0.005 0.067 ± 0.006 0.067 ± 0.006 0
0.2 0.2 0.079 ± 0.006 0.099 ± 0.007 0.099 ± 0.007 0.001 ± 0.001
1.0 0.2 0.364 ± 0.011 0.397 ± 0.011 0.397 ± 0.011 0.022 ± 0.003
2.0 0.2 0.638 ± 0.011 0.666 ± 0.011 0.666 ± 0.011 0.136 ± 0.008
5.0 0.2 0.968 ± 0.004 0.970 ± 0.004 0.970 ± 0.004 0.689 ± 0.010

10.0 0.2 1 1 1 0.983 ± 0.003
20.0 0.2 1 1 1 1

0.0 1.0 0.043 ± 0.005 0.060 ± 0.005 0.060 ± 0.005 0.001 ± 0.001
0.1 1.0 0.055 ± 0.005 0.081 ± 0.006 0.081 ± 0.006 0.002 ± 0.001
0.2 1.0 0.076 ± 0.006 0.098 ± 0.007 0.098 ± 0.007 0.004 ± 0.001
1.0 1.0 0.209 ± 0.009 0.261 ± 0.010 0.261 ± 0.010 0.022 ± 0.003
2.0 1.0 0.417 ± 0.011 0.493 ± 0.011 0.493 ± 0.011 0.097 ± 0.007
5.0 1.0 0.887 ± 0.007 0.915 ± 0.006 0.915 ± 0.006 0.582 ± 0.011

10.0 1.0 0.997 ± 0.001 0.997 ± 0.001 0.997 ± 0.001 0.972 ± 0.004
20.0 1.0 1 1 1 1

0.0 2.0 0.052 ± 0.005 0.071 ± 0.006 0.066 ± 0.006 0.002 ± 0.001
0.1 2.0 0.059 ± 0.005 0.079 ± 0.006 0.075 ± 0.006 0.006 ± 0.002
0.2 2.0 0.073 ± 0.006 0.092 ± 0.006 0.089 ± 0.006 0.008 ± 0.002
1.0 2.0 0.162 ± 0.008 0.203 ± 0.009 0.197 ± 0.009 0.029 ± 0.004
2.0 2.0 0.347 ± 0.011 0.404 ± 0.011 0.395 ± 0.011 0.098 ± 0.007
5.0 2.0 0.788 ± 0.009 0.823 ± 0.009 0.822 ± 0.009 0.509 ± 0.011

10.0 2.0 0.989 ± 0.002 0.991 ± 0.002 0.991 ± 0.002 0.933 ± 0.006
20.0 2.0 1 1 1 1

normal (Gaussian) random variable. For the special case

where μB = 0, a common rule of thumb is that the normal

approximation is reasonable when the expected value of nobs

is greater than about 10 [27]. From this, we conclude that

if the expected values of nobs and nbg both exceed 10, the

Gaussian assumption seems reasonable. As a caveat, the

adequacy of the normal approximation depends on the goal

of the analysis. For instance, constructing a confidence
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Table 11. Estimated detection probabilities corresponding to uncertainty intervals with nominal frequentist coverage of 0.95. Approximate
68% uncertainty due to sampling variability given for cases where estimated coverage probability is greater than 0 or less than 1.

Tbg

T
= 1.

μS μB Bayesian FC RFC POE

0.0 0.2 0 0.143 ± 0.008 0.143 ± 0.008 0
0.1 0.2 0 0.202 ± 0.009 0.202 ± 0.009 0
0.2 0.2 0 0.268 ± 0.010 0.268 ± 0.010 0
1.0 0.2 0.008 ± 0.002 0.580 ± 0.011 0.575 ± 0.011 0.008 ± 0.002
2.0 0.2 0.060 ± 0.005 0.759 ± 0.010 0.740 ± 0.010 0.059 ± 0.005
5.0 0.2 0.534 ± 0.011 0.951 ± 0.005 0.920 ± 0.006 0.515 ± 0.011

10.0 0.2 0.949 ± 0.005 0.998 ± 0.001 0.994 ± 0.002 0.929 ± 0.006
20.0 0.2 1 1 1 1

0.0 1.0 0.001 ± 0.001 0.252 ± 0.010 0.245 ± 0.010 0.002 ± 0.001
0.1 1.0 0.003 ± 0.001 0.268 ± 0.010 0.260 ± 0.010 0.003 ± 0.001
0.2 1.0 0.004 ± 0.001 0.280 ± 0.010 0.272 ± 0.010 0.004 ± 0.001
1.0 1.0 0.017 ± 0.003 0.381 ± 0.011 0.343 ± 0.011 0.015 ± 0.003
2.0 1.0 0.082 ± 0.006 0.495 ± 0.011 0.424 ± 0.011 0.072 ± 0.006
5.0 1.0 0.468 ± 0.011 0.820 ± 0.009 0.723 ± 0.010 0.379 ± 0.011

10.0 1.0 0.917 ± 0.006 0.985 ± 0.003 0.963 ± 0.004 0.844 ± 0.008
20.0 1.0 1 1 1 0.999 ± 0.001

0.0 2.0 0.007 ± 0.002 0.165 ± 0.008 0.136 ± 0.008 0.006 ± 0.002
0.1 2.0 0.013 ± 0.003 0.172 ± 0.008 0.142 ± 0.008 0.012 ± 0.002
0.2 2.0 0.011 ± 0.002 0.183 ± 0.009 0.152 ± 0.008 0.009 ± 0.002
1.0 2.0 0.033 ± 0.004 0.249 ± 0.010 0.188 ± 0.009 0.025 ± 0.003
2.0 2.0 0.100 ± 0.007 0.374 ± 0.011 0.279 ± 0.010 0.066 ± 0.006
5.0 2.0 0.405 ± 0.011 0.702 ± 0.010 0.580 ± 0.011 0.285 ± 0.010

10.0 2.0 0.837 ± 0.008 0.951 ± 0.005 0.903 ± 0.007 0.742 ± 0.010
20.0 2.0 0.997 ± 0.001 0.999 ± 0.001 0.998 ± 0.001 0.993 ± 0.002

Table 12. Estimated detection probabilities corresponding to uncertainty intervals with nominal frequentist coverage of 0.95. Approximate
68% uncertainty due to sampling variability given for cases where estimated coverage probability is greater than 0 or less than 1.

Tbg

T
= 5.

μS μB Bayesian FC RFC POE

0.0 0.2 0.003 ± 0.001 0.068 ± 0.006 0.068 ± 0.006 0
0.1 0.2 0.020 ± 0.003 0.112 ± 0.007 0.112 ± 0.007 0
0.2 0.2 0.026 ± 0.004 0.140 ± 0.008 0.139 ± 0.008 0
1.0 0.2 0.196 ± 0.009 0.412 ± 0.011 0.410 ± 0.011 0.005 ± 0.002
2.0 0.2 0.441 ± 0.011 0.639 ± 0.011 0.635 ± 0.011 0.048 ± 0.005
5.0 0.2 0.896 ± 0.007 0.945 ± 0.005 0.943 ± 0.005 0.480 ± 0.011

10.0 0.2 0.997 ± 0.001 0.999 ± 0.001 0.998 ± 0.001 0.947 ± 0.005
20.0 0.2 1 1 1 1

0.0 1.0 0.017 ± 0.003 0.048 ± 0.005 0.038 ± 0.004 0.001 ± 0.001
0.1 1.0 0.024 ± 0.003 0.059 ± 0.005 0.049 ± 0.005 0.001 ± 0.001
0.2 1.0 0.029 ± 0.004 0.070 ± 0.006 0.057 ± 0.005 0.001 ± 0.001
1.0 1.0 0.104 ± 0.007 0.208 ± 0.009 0.174 ± 0.008 0.008 ± 0.002
2.0 1.0 0.283 ± 0.010 0.422 ± 0.011 0.378 ± 0.011 0.047 ± 0.005
5.0 1.0 0.782 ± 0.009 0.865 ± 0.008 0.846 ± 0.008 0.398 ± 0.011

10.0 1.0 0.985 ± 0.003 0.994 ± 0.002 0.991 ± 0.002 0.916 ± 0.006
20.0 1.0 1 1 1 1

0.0 2.0 0.020 ± 0.003 0.061 ± 0.005 0.043 ± 0.005 0.001 ± 0.001
0.1 2.0 0.026 ± 0.004 0.051 ± 0.005 0.039 ± 0.004 0.001 ± 0.001
0.2 2.0 0.034 ± 0.004 0.075 ± 0.006 0.061 ± 0.005 0.001 ± 0.001
1.0 2.0 0.084 ± 0.006 0.145 ± 0.008 0.125 ± 0.007 0.010 ± 0.002
2.0 2.0 0.208 ± 0.009 0.305 ± 0.010 0.264 ± 0.010 0.039 ± 0.004
5.0 2.0 0.635 ± 0.011 0.743 ± 0.010 0.698 ± 0.010 0.324 ± 0.010

10.0 2.0 0.970 ± 0.004 0.982 ± 0.003 0.979 ± 0.003 0.871 ± 0.008
20.0 2.0 1 1 1 0.999 ± 0.001

interval with nominal coverage of 0.99 is a more demanding
task than constructing an interval with nominal coverage
of 0.90. For the cases studied here where the nominal
coverage is 0.90 or 0.95, the POE intervals had coverage

close to the desired nominal values when μS was greater than
about 5.

In our implementation of the Bayesian method, we specify
uniform priors for μS and μB and construct a minimum length

11
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Table 13. Estimated detection probabilities corresponding to uncertainty intervals with nominal frequentist coverage of 0.95. Approximate
68% uncertainty due to sampling variability given for cases where estimated coverage probability is greater than 0 or less than 1.

Tbg

T
= 25.

μS μB Bayesian FC RFC POE

0.0 0.2 0.010 ± 0.002 0.017 ± 0.003 0.017 ± 0.003 0
0.1 0.2 0.024 ± 0.003 0.042 ± 0.004 0.042 ± 0.004 0
0.2 0.2 0.058 ± 0.005 0.074 ± 0.006 0.074 ± 0.006 0
1.0 0.2 0.304 ± 0.010 0.352 ± 0.011 0.352 ± 0.011 0.002 ± 0.001
2.0 0.2 0.573 ± 0.011 0.626 ± 0.011 0.626 ± 0.011 0.027 ± 0.004
5.0 0.2 0.952 ± 0.005 0.966 ± 0.004 0.966 ± 0.004 0.429 ± 0.011

10.0 0.2 1 1 1 0.946 ± 0.005
20.0 0.2 1 1 1 1

0.0 1.0 0.019 ± 0.003 0.029 ± 0.004 0.028 ± 0.004 0
0.1 1.0 0.030 ± 0.004 0.042 ± 0.004 0.038 ± 0.004 0
0.2 1.0 0.037 ± 0.004 0.059 ± 0.005 0.052 ± 0.005 0.001 ± 0.001
1.0 1.0 0.131 ± 0.008 0.160 ± 0.008 0.152 ± 0.008 0.003 ± 0.001
2.0 1.0 0.333 ± 0.011 0.372 ± 0.011 0.363 ± 0.011 0.037 ± 0.004
5.0 1.0 0.838 ± 0.008 0.863 ± 0.008 0.855 ± 0.008 0.393 ± 0.011

10.0 1.0 0.996 ± 0.001 0.996 ± 0.001 0.996 ± 0.001 0.928 ± 0.006
20.0 1.0 1 1 1 1

0.0 2.0 0.022 ± 0.003 0.036 ± 0.004 0.031 ± 0.004 0.001 ± 0.001
0.1 2.0 0.033 ± 0.004 0.045 ± 0.005 0.042 ± 0.004 0.001 ± 0.001
0.2 2.0 0.036 ± 0.004 0.053 ± 0.005 0.051 ± 0.005 0.001 ± 0.001
1.0 2.0 0.105 ± 0.007 0.132 ± 0.008 0.126 ± 0.007 0.010 ± 0.002
2.0 2.0 0.243 ± 0.010 0.295 ± 0.010 0.286 ± 0.010 0.035 ± 0.004
5.0 2.0 0.703 ± 0.010 0.738 ± 0.010 0.731 ± 0.010 0.340 ± 0.011

10.0 2.0 0.976 ± 0.003 0.984 ± 0.003 0.983 ± 0.003 0.855 ± 0.008
20.0 2.0 1 1 1 1
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Figure 4. Estimated detection probabilities for case where μB = 1
for intervals with nominal frequentist coverage probability of 0.90.
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Figure 5. Estimated detection probabilities for case where there is
no signal (μS = 0) associated with intervals with nominal
frequentist coverage probability of 0.90.
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Figure 6. Estimated detection probabilities for case where there is
no signal (μS = 0) associated with intervals with nominal
frequentist coverage probability of 0.95.

Table 14. Root-mean-square deviation between observed and
nominal frequentist coverage averaged over all values of μS � 10.
Nominal frequentist coverage is 0.90.

Tbg

T
μB Bayesian FC RFC POE

1 0.2 0.084 0.052 0.053 0.087
1 1.0 0.075 0.101 0.090 0.058
1 2.0 0.062 0.077 0.045 0.044

2 0.2 0.080 0.044 0.049 0.101
2 1.0 0.064 0.030 0.018 0.054
2 2.0 0.055 0.031 0.017 0.040

5 0.2 0.067 0.039 0.039 0.107
5 1.0 0.055 0.023 0.028 0.044
5 2.0 0.046 0.013 0.021 0.039

10 0.2 0.065 0.038 0.042 0.105
10 1.0 0.054 0.026 0.031 0.077
10 2.0 0.049 0.022 0.031 0.038

25 0.2 0.061 0.055 0.055 0.101
25 1.0 0.050 0.033 0.034 0.122
25 2.0 0.044 0.024 0.026 0.039

credibility interval. Roe and Woodroofe [24] determined a
minimum length credibility interval based on a uniform prior
for μS for the simpler problem where μB was assumed to be
known. Hence, our study can be regarded as a generalization
of [24] to the case where μB is not known exactly. As a caveat,
in a Bayesian approach, one could consider other priors. For a

Figure 7. Estimated coverage probabilities corresponding to
intervals with target coverage of 0.90. In the plots, we show results
for μB = 0.2, 1, 2 and Tbg/T = 1, 2, 5, 10, 25.

Table 15. Root-mean-square deviation between observed and
nominal frequentist coverage averaged over all values of μS � 10.
Nominal frequentist coverage is 0.95.

Tbg

T
μB Bayesian FC RFC POE

1 0.2 0.042 0.040 0.040 0.084
1 1.0 0.040 0.088 0.084 0.031
1 2.0 0.035 0.066 0.046 0.027

2 0.2 0.040 0.031 0.031 0.105
2 1.0 0.032 0.030 0.025 0.047
2 2.0 0.028 0.024 0.014 0.020

5 0.2 0.035 0.019 0.019 0.110
5 1.0 0.029 0.011 0.014 0.043
5 2.0 0.026 0.007 0.011 0.035

10 0.2 0.035 0.020 0.020 0.107
10 1.0 0.027 0.016 0.019 0.071
10 2.0 0.026 0.014 0.017 0.040

25 0.2 0.031 0.024 0.024 0.103
25 1.0 0.027 0.021 0.022 0.138
25 2.0 0.024 0.011 0.014 0.043

given experiment, it is possible that other priors might be more
appropriate than the uniform prior considered here. How well
such alternative Bayesian schemes would perform relative to
the one studied here is beyond the scope of this study.
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Figure 8. Estimated coverage probabilities corresponding to
intervals with target coverage of 0.95. In the plots, we show results
for μB = 0.2, 1, 2 and Tbg/T = 1, 2, 5, 10, 25.

As remarked earlier, we did not adjust our intervals to
ensure that the upper endpoint of the FC and RFC intervals
are non-decreasing functions of μB . It is possible that such an
adjustment might improve the performance of the FC and RFC
methods. Also, the FC method of computing the likelihood-
ratio term R may not be the best procedure [28–31].

4. Summary

In this work, we studied four methods to construct uncertainty
intervals for very weak Poisson signals in the presence
of background. We considered the case where a primary
experiment yielded a realization of the signal plus background,
and a second experiment yielded a realization of the
background. The duration of the background-only experiment
Tbg and and the duration of the primary experiment T were

selected so that Tbg

T
varied from 1 to 25. This choice of Tbg

T
=

25 was motivated by experimental studies at NIST. The values
of the expected background μB varied from 0.2 to 2. The
choice of the range was also motivated by NIST experiments.

We constructed confidence intervals based on the standard
propagation-of-errors method as well as two implementations
of a Neyman procedure due to Feldman and Cousins (FC)
and Conrad (RFC). In the FC method, uncertainty in the
background was neglected. In our implementation of the

Figure 9. Estimated detection probabilities corresponding to
intervals with target coverage of 0.90. In the plots, we show results
for μB = 0.2, 1, 2 and Tbg/T = 1, 2, 5, 10, 25.

RFC method, uncertainty in the background parameter was
accounted for. In both of these methods, acceptance regions
were determined for each value of the expected signal rate
based on a likelihood-ratio ordering principle. Hence, the
upper and lower endpoints of the confidence intervals were
automatically selected. We also constructed minimum length
Bayesian credibility intervals.

According to our coverage and detection probability
criteria, the POE method performed the least well of all
methods. In general, the Bayesian method yielded intervals
with the lowest detection probabilities compared to the FC and
RFC methods (tables 8–13, figures 4–6, 9 and 10). According
to an RMS criterion, the coverage properties of the Bayesian
intervals were inferior to the intervals produces by the FC and
RFC methods (tables 14 and 15) for most cases. The exception
to this pattern was for the case where Tbg

T
= 1 and μB = 1, 2.

The FC and RFC methods had better coverage compared
to the Bayesian method for μB = 0.2 for all values of Tbg

T

considered. We expect similar results for μB < 0.2. We
interpret this result as evidence that when the expected number
of background counts is 0.2 or less, the FC method (which
neglects uncertainty in the background) works well because
uncertainty in the observed background is not significant
compared to other sources of uncertainty that affect the
interval.
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Figure 10. Estimated detection probabilities corresponding to
intervals with target coverage of 0.95. In the plots, we show results
for μB = 0.2, 1, 2 and Tbg/T = 1, 2, 5, 10, 25.

For Tbg

T
= 1, 2 the coverage properties of the RFC

method were slightly better than those of the FC method for
μB = 1, 2. However, for Tbg

T
greater than or equal to 5, the FC

method yielded intervals with superior coverage and detection
probabilities compared to the RFC and Bayesian methods. We
attribute the good performance of the FC method to the fact
that uncertainty in the estimated background is not significant
compared to other sources of uncertainty that affect the interval
when μB � 2 and Tbg

T
� 5. The relative performance of the

three methods for μB > 2 is an open question. We speculate
that for the FC method to yield a result superior to the Bayesian
or RFC method for μB much larger than 2, Tbg

T
may have to

be larger than 5 in order to reduce the uncertainty of estimated
background to a sufficiently low level.

As a caveat, for Tbg

T
= 1, 2, both the RFC and FC

methods had false detection probabilities that were higher
than predicted according to the nominal frequentist coverage
of the intervals for Tbg

T
= 1, 2 (figures 5 and 6). Hence,

reporting a discovery based on an analysis with the FC or RFC
method should be treated with great caution for cases where
Tbg

T
= 1, 2. For Tbg

T
� 5, the false detection probabilities of the

FC and RFC methods were generally slightly less than their
associated nominal target values. In contrast, for all values of
Tbg

T
, the false detection probabilities of the Bayesian method

were less than the value predicted by the nominal frequentist
coverage.
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