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Abstract—We document methods for the quantitative evaluation of systems that produce a scalar summary of a biometric sample’s

quality. We are motivated by a need to test claims that quality measures are predictive of matching performance. We regard a quality

measurement algorithm as a black box that converts an input sample to an output scalar. We evaluate it by quantifying the association

between those values and observed matching results. We advance detection error trade-off and error versus reject characteristics as

metrics for the comparative evaluation of sample quality measurement algorithms. We proceed this with a definition of sample quality,

a description of the operational use of quality measures. We emphasize the performance goal by including a procedure for annotating

the samples of a reference corpus with quality values derived from empirical recognition scores.

Index Terms—Biometrics, quality measurement, authentication, evaluation, performance measures.

Ç

1 BACKGROUND

QUALITY measurement algorithms are increasingly de-
ployed in operational biometric systems [1], [2] and

there is now international consensus in industry [3],
academia [4], and government [5] that a statement of a
biometric sample’s quality should be related to its recognition
performance. That is, a quality measurement algorithm takes
a signal or image, x, and produces a scalar, q ¼ QðxÞ, which is
predictive of error rates associated with the verification or
identification of that sample. This paper formalizes this
concept and advances methods to quantify whether a quality
measurement algorithm (QMA) is actually effective.

What is meant by quality? Broadly, a sample should be
of good quality if it is suitable for automated matching. This
viewpoint may be distinct from the human conception of
quality. If, for example, an observer sees a fingerprint with
clear ridges, low noise, and good contrast, then he might
reasonably say it is of good quality. However, if the image
contains few minutiae, then a minutiae-based matcher
would underperform. Likewise, if a human judges a face
image to be sharp, but a face recognition algorithm benefits
from a slight blurring of the image, then the human
statement of quality is inappropriate. Thus, the term quality
is not used here to refer to the fidelity of the sample, but
instead to the utility of the sample to an automated system.
The assertion that performance is ultimately the most
relevant goal of a biometric system implies that a c. For
fingerprint minutiae algorithms, this could be the ease with
which minutiae are detected. For face algorithms, it might
include how readily the eyes are located.

Prior work on quality evaluation, and of sample quality
analysis generally, is limited. Quality measurement naturally
lags recognition algorithm development, but has emerged as
it is realized that biometric systems fail on certain patholo-
gical samples. The primary use of a quality measure is as a
means of detecting a bad sample and initiating recapture of
the live subject. “Bad” in this context refers to any property or
defect associated with a sample that would cause perfor-
mance degradation.

This paper proposes testing quality measurement algo-
rithms in large scale offline trials which offer repeatable,
statistically robust means of evaluating core algorithmic
capability. Alonso-Fernandez et al. [6] reviewed five algo-
rithms and used the fingerprints of the multimodal MCYT
corpus [7] to compare the distributions of the algorithms’
quality assignments with the result that most of the
algorithms behave similarly. We note that finer grained
aspects of sample quality can be addressed. For instance, Lim
et al. [8] trained a fingerprint quality system to predict the
accuracy of minutia detection. However, such methods rely
on the manual annotation of a data set and this is impractical
for all but small data sets, not least because human examiners
will disagree in this respect. The virtue of relating quality to
performance is that matching trials can be automated and
conducted in bulk. We note further that quality algorithms
that relate to human perception of a sample quantify
performance only as much as the sensitivities of the human
visual system are the same as those of a biometric matcher.
One further point is that performance related quality
evaluation is agnostic on the underlying technology: It
would be improper to force a fingerprint quality algorithm to
produce low quality values for an image with few minutia
when the target matching algorithm is non-minutia-based, as
is the case for pattern-based methods [9].

We formalize the concept of sample quality as a scalar
quantity that is related monotonically to the performance of
biometric matchers, under the constraint that at least two
samples with their own qualities (as opposed to a pairwise
quality) are being compared. We do this in the context of
enrollment, verification, and identification use-cases. We
consider the common and useful case of a quality measure
tuned to predict performance of one matcher and the more

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 4, APRIL 2007 1

. P. Grother is with the Image Group, Information Access Division,
Information Technology Laboratory, National Institute of Standards and
Technology, 100 Bureau Drive, Bldg 225, Room A203, MS 8940,
Gaithersburg, MD 20899. E-mail: pgrother@nist.gov.

. E. Tabassi is with the Image Group, Information Access Division,
Information Technology Laboratory, National Institute of Standards and
Technology, 100 Bureau Drive, MS 8940, Bldg 225, Room A207,
Gaithersburg, MD 20899. E-mail: tabassi@nist.gov.

Manuscript received 31 Jan. 2006; revised 22 June 2006; accepted 28 Aug.
2006; published online 13 Feb. 2007.
Recommended for acceptance by S. Prabhakar, J. Kittler, D. Maltoni,
L. O’Gorman, and T. Tan.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org and reference IEEECSLog Number TPAMISI-0075-0106.
Digital Object Identifier no. 10.1109/TPAMI.2007.1019.

US Government Work Not Protected by US Copyright



difficult case of one that generalizes to other matchers or
classes of matchers.

In Section 2, we consider how sample quality is actually
used and this establishes context for the desirable properties
of a quality measure that we present in Section 3. This
precedes the main contribution on evaluation in Section 4,
which discusses the appropriateness of various performance
measures as prediction targets for a quality algorithm and
then as metrics themselves. In Section 5, we discuss what
data should be used for testing a quality algorithm and
document a procedure to construct a reference target
database. Conclusions follow in Section 6.

The evaluation protocols proposed assume only that the
quality algorithm is claimed to predict performance: We do
not assume that the algorithm has been standardized nor that
its output has any particular distribution. We test the claim by
relating quality values to empirical matching results. How-
ever, we consider the algorithm to be a black box whose
design and intended outputs are determined solely by its
author and we make no assumption of its internal operation.

2 USES OF BIOMETRIC QUALITY VALUES

This section describes the roles of a sample quality measure
in the various contexts of biometric operations. The quality
value here is simply a scalar summary of a sample that is
taken to be some indicator of matchability.

2.1 Enrollment Phase Quality Assessment

Enrollment is usually a supervised process and it is common
to improve the quality of the final stored sample by acquiring
as many samples as are needed to satisfy either an automatic
quality measurement algorithm (the subject of this paper), a
human inspector (a kind of quality algorithm), or a matching
criterion (by comparison with a second sample acquired
during the same session). Our focus on automated systems’
needs is warranted regardless of analyses of these other
methods, but we do contend that naive human judgment will
only be as predictive of a matcher’s performance as the
human visual system is similar to the matching system’s
internals and it is not evident that human and computer
matching are functionally comparable. Specifically, human
inspectors may underestimate performance on overtly
marginal samples. Certainly, human inspectors’ judgment
may be improved if adequate training on the failure modes
and sensitivities of the matcher is given to the inspector, but
this is often prohibitively expensive or time consuming and
not scalable. Immediate matching also might not be pre-
dictive of performance over time because same-session
samples usually produce unrealistically high match scores.
For instance, Fig. 1 shows an example of two same-session
fingerprint images that were matched successfully by three
commercial vendors despite their obvious poor quality. That
said, this paper does not take a position on the merits of doing
this. Instead, we answer the question, if a quality apparatus is
used, is it actually performing?

In any case, by viewing sample acquisition as a
measurement and control problem in which the control
loop is closed on the quality measure, a system gains a
powerful means of improving overall sample quality. We
demonstrate this in Section 4.2.

2.2 Quality Assurance

QMAs may be used to monitor quality across multiple sites
or over time. This is useful to signal possible performance
problems ahead of some subsequent matching operation.
Quality values may be aggregated and compared with some
historical or geographic baselines. Use of quality values in
this role has been documented in [1].

2.3 Verification Quality Assessment

During a verification transaction, quality can be improved
by closing an acquire-reacquire loop on either a match-score
from comparison of new and enrollment samples or on a
quality value generated without matching. Indeed, it is
common to implement an “up to three attempts” policy in
which a positive match is a de facto statement that the
sample was of good quality—even if the individual
happens to be an impostor. Depending on the relative
computational expenses of sample matching, reacquisition,
and quality measurement, the immediate use of a matcher
may not be the best solution.

The key difference here (as compared to the enrollment-
phase) is that quality values of both the enrollment and
verification samples can be used to predict performance.
This two-dimensional problem is distinct from the enroll-
ment case where only one quality value is used.

2.4 Identification Quality Assessment

Quality measurement in identification systems is important
for at least three reasons. First, many users often do not have
an associated enrollment sample. So, a one-to-many match
will be an inefficient and inconclusive method of stating
whether the authentication sample had high quality. Second,
in negative identification systems where users with an
enrolled sample are motivated to evade detection, quality
measurement can be used to detect and prevent submission
of samples likely to perform poorly [10], which may help
prevent attempts at spoofing or defeating detection. Third,
identification is a difficult task: It is imperative to minimize
both the false nonmatch rate (FNMR) and the false match rate
(FMR). To the extent that consistently high quality samples
will produce high genuine scores, a high matching threshold
can be used and this will collaterally reduce FMR. But, in
large populations, FMR becomes dominant and this raises the
question: Can a quality apparatus be trained to be directly
predictive of false match likelihood? The authors can find no
publications in this area.
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Fig. 1. Example of same session captures of a single finger that, despite
their poor quality ðNFIQ ¼ 5Þ, were matched correctly by three leading
commercial matchers. (a) First. (b) Second.



2.5 Differential Processing

Quality measurement algorithms can be used to alter the
subsequent processing of a sample. Such conditional activ-
ities are categorized as follows:

1. Preprocessing Phase. An identification system might
apply image restoration algorithms or invoke differ-
ent feature extraction algorithms for samples with
some discernible quality problem.

2. Matching Phase. Certain systems may invoke a slower
but more powerful matching algorithm when low-
quality samples are compared.

3. Decision Phase. The logic that renders acceptance or
rejection decisions may depend on the measured
quality of the original samples. This might involve
changing a verification system’s operating threshold
for poor quality samples. For example, in multimodal
biometrics, the relative qualities of samples of the
separate modes may be used to augment a fusion
process [11], [12].

4. Sample Replacement. To negate the effects of template
aging, a quality measurement may be used to
determine whether a newly acquired sample should
replace the enrolled one. An alternative would be to
retain both the old and new samples for use in a multi-
instance fusion scheme.

5. Template Update. Again, to address template aging,
some systems instead combine old and new sample
features. Quality could be used in this process.

3 PROPERTIES OF A QUALITY MEASURE

This section gives needed background material, including
terms, definitions, and data elements, to support quantify-
ing the performance of a quality algorithm.

Throughout this paper, we use low quality values to
indicate poor sample properties. This is at odds with some
systems (for example, the NIST Fingerprint Image Quality
(NFIQ) algorithm [13]), for which low values indicate good
“quality.” Accordingly, this paper transforms the raw NFIQ
values 1 . . . 5 using Q ¼ 6�NFIQ.

3.1 Quality as Summary Statistic

Consider a data set D containing two samples, d
ð1Þ
i and d

ð2Þ
i

collected from each of i ¼ 1; . . . ; N individuals. The first
sample can be regarded as an enrollment image, the second
as a user sample collected later for verification or
identification purposes. The appropriate composition of
this data set for quality measurement algorithm assessment
is discussed later in Section 5. For now, consider that a
quality algorithm Q can be run on the ith enrollment
sample to produce a quality value

q
ð1Þ
i ¼ Q d

ð1Þ
i

� �
ð1Þ

and likewise for the authentication (use-phase) sample

q
ð2Þ
i ¼ Q d

ð2Þ
i

� �
: ð2Þ

We have thus far suggested that these qualities are scalars, as
opposed to vectors, for example. Operationally, the require-
ment for a scalar is not necessary: A vector could be stored and
could be used by some predictor. The fact that quality has
historically been conceived of as scalar is a widely manifested

restriction. For example, BioAPI [14] has a signed single byte
value, BioAPI_QUALITY; and the headers of the ISO/IEC
biometric data interchange format standards [15] have one or
two byte fields for quality. We do not further address the issue
of vector quality quantities other than to say that they could be
used to specifically direct reacquisition attempts (e.g., camera
settings), they have been considered (e.g., the defect fields of
[3]), and their practical use would require application of a
discriminant function.

3.2 Relationship to Matching

We now formalize our premise that biometric quality
measures should predict performance. That is, we formalize
quality values qi that are related to recognition error rates. A
formal statement of such requires an appropriate, relevant,
and tractable definition of performance. ConsiderK verifica-
tion algorithms, Vk, that compare pairs of samples (or
templates derived from them) to produce match (i.e.,
genuine) similarity scores,

s
ðkÞ
ii ¼ Vk d

ð1Þ
i ; d

ð2Þ
i

� �
; ð3Þ

and, similarly, nonmatch (impostor) scores,

s
ðkÞ
ij ¼ Vk d

ð1Þ
i ; d

ð2Þ
j

� �
i 6¼ j: ð4Þ

If we now posit that two quality values can be used to
produce an estimate of the genuine similarity score that
matcher k would produce on two samples

s
ðkÞ
ii ¼ P q

ð1Þ
i ; q

ð2Þ
i

� �
þ �

ðkÞ
ii ; ð5Þ

where the function P is some predictor of a matcher k’s
similarity scores, and �ii is the error in doing so for the
ith score. Substituting (1) gives

s
ðkÞ
ii ¼ P Q d

ð1Þ
i

� �
; Q d

ð2Þ
i

� �� �
þ �

ðkÞ
ii ð6Þ

and it becomes clear that, together, P andQwould be perfect
imitators of the matcher Vk in (3) if it was not necessary to
applyQ to the samples separately. This separation is usually a
necessary condition for a quality algorithm to be useful
because, at least half of the time (i.e., enrollment), only one
sample is available, see Section 2. Thus, the quality problem is
hard, first, because Q is considered to produce a scalar and,
second, because it is applied separately to the samples. The
obvious consequence of this formulation is that it is inevitable
that quality values will imprecisely map to similarity scores,
i.e., there will be a scatter of the known scores, sii, for the
known qualities q

ð1Þ
i and q

ð2Þ
i . For example, Fig. 2 shows the

raw similarity scores from a commercial fingerprint matcher
versus the transformed integer quality scores from the NFIQ
algorithm [5], where NFIQ native scores are mapped to
Q ¼ 6�NFIQ. Fig. 2a also includes a least squares linear fit
and Fig. 2b shows a cubic spline fit of the same data. Both
trend in the correct direction: worse quality gives lower
similarity scores. However, even though the residuals in the
spline fit are smaller than those for the linear, they still are not
small. Indeed, even with a function of arbitrarily high order, it
will not be possible to fit the observed scores perfectly if
quality values are discrete (as they are for NFIQ). By including
the two fits of the raw data, we do not assert that scores should
be linearly related to the two quality values (and certainly not
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locally cubic). Accordingly, we conclude that it is unrealistic
to require quality measures to be linear predictors of the
similarity scores; instead, the scores should be a monotonic
function (higher quality samples give higher scores).

Thus, our conclusion is that it is futile to consider
regression methods because the residuals of (5) will not
generally have the needed properties for any fit to hold.

3.3 Quantized Quality Values

Biometric standards quite reasonably recommend quality
values in the range of [0, 100] with the implication that there
are that many distinct values (i.e., between 6 and 7 bits).
Practically, this may not be the case and a coarser quantiza-
tion, corresponding to L < 100 statistically separate levels, is
usually achieved. Indeed, although BioAPI [14] states that
“no universally accepted definition of quality exists,” it goes
on to specify four ranges ([0, 25], [26, 50], [51, 75], [76, 100])
with associated meanings: unacceptable, marginal, adequate,
and excellent. This is a tacit acknowledgment that the range
[0, 100] is too fine and that an integer quality value on the
range [1, 4] is effectively all that may be needed (or possible).
If quality algorithms do not provide 100 statistically distinct
levels, an evaluation using L� 100 would be appropriate.
Indeed, quantization of a continuous quality metric down to
fewer levels may make evaluation easier and/or more robust.
For now, we avoid the details of the mapping (i.e., from [1,
100] to [1, L]) and on whether the tester or the algorithm
author should have the responsibility for this and instead
suggest that BioAPI’s use of L ¼ 4 is a tractable operational
definition.

This is ad hoc, and, clearly, a mathematical rationale for L
(for example, a criterion against whichL can be optimized) is
preferable. This could be something like the knees of the
distribution functions of the genuine and impostor scores, or
L levels based on the separation of the two distributions. An
alternative might be to let L be a free parameter in a fitting
process, analogous to some discovered intrinsic precision.
Regardless of howL is determined, for a quality algorithm to
be effective and operationally meaningful, itsL quality levels
shall be statistically separate.

4 EVALUATION

This paper’s main assertion, that quality should be predictive
of performance,hasstoodsofar withouta formal specification

of how performance should be quantified and whether such
performance measures are viable and appropriate. This
paper’s assumption is that quality measurement algorithms
are designed to target application-specific performance
variables. For verification, these would be the false match
and nonmatch rates. For identification, the metrics would
usually be FNMR and FMR [16], but these may be augmented
with rank and candidate-list length criteria. Closed-set
identification is operationally rare and is not considered here.

Verification is a positive application, which means
samples are captured overtly from users who are motivated
to submit high quality samples. For this scenario, the relevant
performance metric is the false nonmatch rate (FNMR) for
genuine users because two high quality samples from the
same individual should produce a high score. For FMR, it
should be remembered that false matches should occur only
when samples are biometrically similar (with regard to a
matcher) as, for example, when identical twins’ faces are
matched. So, high quality images should give very low
impostor scores, but low quality images should also produce
low scores. Indeed, it is an undesirable trait for a matching
algorithm to produce high impostor scores from low quality
samples. In such situations, quality measurement should be
used to preempt submission of a deliberately poor sample
(see the uses discussion in Section 2).

For identification, FNMR is of primary interest. It is the
fraction of enrollee searches that do not yield the matching
entry on the candidate list. At a fixed threshold, FNMR is
usually considered independent of the size of the enrolled
population because it is simply dependent on one-to-one
genuine scores. However, because impostor acceptance, as
quantified by FMR, is a major problem in identification
systems, it is necessary to ascertain whether low or high
quality samples tend to cause false matches.

For a quality algorithm to be effective, an increase in
FNMR and FMR is expected as quality degrades. The plots in
Fig. 3 show the relationship of transformed NFIQ quality
levels to FNMR and FMR. Figs. 3a and 3c are boxplots of the
raw genuine and impostor scores for each of the five NFIQ
quality levels. The scores were obtained by applying a
commercial fingerprint matcher to left and right index finger
impressions of 34,800 subjects. Also shown are boxplots of
FNMR and FMR. The result, that the two error rates decrease
as quality improves, is expected and beneficial. The FMR
shows a much smaller decline. The nonoverlap of the notches
in plots of Figs. 3a and 3b demonstrates “strong evidence“
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Fig. 2. Dependence of raw genuine scores on the transformed NFIQ qualities of the two input samples. (a) Linear fit. (b) Spline fit.



that the medians of the quality levels differ [25]. If the QMA
had more finely quantized its output, to L > 5 levels, this
separation would eventually disappear. This issue is dis-
cussed further in Section 4.6.

4.1 Combining Two Samples’ Quality Values

Biometric matching involves at least two samples and the
challenge is then to relate performance to quality values qð1Þ

and qð2Þ. This empirical dependence of performance on two
values was shown in Fig. 2. We simplify the analysis by
combining the two qualities

qi ¼ H q
ð1Þ
i ; q

ð2Þ
i

� �
: ð7Þ

As discussed in Section 2, it is usually the case that,
operationally, a QMA can be used to ensure that an
enrollment sample is of high quality. This will be compared
later with a sample that typically is of less controlled quality.
To capture this concept, we considerHðx; yÞ ¼ minðx; yÞ, i.e.,
the worse of two samples drives the similarity score. We also
consider the arithmetic and geometric means, Hðx; yÞ ¼
ðxþ yÞ=2 and Hðx; yÞ ¼ ffiffiffiffiffiffi

xy
p

(see [17]), and the difference
function Hðx; yÞ ¼ jx� yj to investigate dependence of

similarity score on samples of different quality. We acknowl-

edge that choices for H() are not limited to min(), arithmetic,

and geometric mean. We considered those for their relevance

to operational scenarios and ease of implementation. We note

that, whatever H is used, it should be well defined for

allowed values of x and y (e.g., positive values for the

geometric mean).

We now describe four methods for the evaluation of

quality. All four consider the use of combination functions,H,

which are specifically compared in Section 4.3.

4.2 Rank-Ordered Detection Error Trade-Off
Characteristics

A quality algorithm is useful if it can at least give an

ordered indication of an eventual performance. For exam-

ple, for L discrete quality levels, there should notionally be

L DET characteristics.1 In the studies that have evaluated
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Fig. 3. Boxplots of genuine scores, FNMR, impostor scores, and FMR for each of five transformed NFIQ quality levels for scores from a
commercial matcher. Each quality bin, q, contains scores from comparisons of enrollment images with quality qð1Þ � q and subsequent use-phase
images with qð2Þ ¼ q, per the discussion in Section 4.2. The boxplot notch shows the median; the box shows the interquartile range and the
whiskers show the extreme values. Notches in (d) are not visible because the medians of FMRs are zero and, therefore, outside the plot range.
(a) Genuine. (b) FNMR. (c) Impostor. (d) FMR.

1. The DET used here plots FNMR versus FMR on log scales. It is
unconventional in that it does not transform the data by the CDF of the
standard normal distribution. The receiver operating characteristic plots
1-FNMR on a linear scale instead. These characteristics are used
ubiquitously to summarize verification performance.



quality measures [4], [13], [16], [17], [23], [24], DETs are the

primary metric. We recognize that DET’s are widely

understood, even expected, but note three problems with

their use: Being parametric in threshold, t, they do not show

the dependence of FNMR (or FMR) with quality at fixed t,

they are used without a test of the significance of the

separation of L levels, and partitioning of the data for their

computation is underreported and nonstandardized.
We examine three methods for the quality-ranked DET

computation. All three use N paired matching images with

integer qualities q
ð1Þ
i and q

ð2Þ
i on the range [1, L]. Associated

with these are N genuine similarity scores, sii, and up to

NðN � 1Þ impostor scores, sij, where i 6¼ j, obtained from

some matching algorithm. All three methods compute a DET

characteristic for each quality level k. For all thresholds s, the

DET is a plot of FNMRðsÞ ¼MðsÞversus FMRðsÞ ¼ 1�NðsÞ,
where the empirical cumulative distribution functions MðsÞ
and NðsÞ are computed, respectively, from sets of genuine

and impostor scores. The three methods of partitioning differ

in the contents of these two sets. The simplest case uses scores

obtained by comparing authentication and enrollment

samples whose qualities are both k. This procedure (see, for

example, [18]) is common but overly simplistic. By plotting

FNMRðs; kÞ ¼
sii : sii � s; q

ð1Þ
i ¼ q

ð2Þ
i ¼ k

n o���
���

sii : sii � 1; q
ð1Þ
i ¼ q

ð2Þ
i ¼ k

n o���
���
;

FMRðs; kÞ ¼
sij : sij > s; q

ð1Þ
i ¼ q

ð2Þ
j ¼ k; i 6¼ j

n o���
���

sij : sij > �1; q
ð1Þ
i ¼ q

ð2Þ
j ¼ k; i 6¼ j

n o���
���
;

ð8Þ

the DETs for each quality level can be compared. Although

a good QMA will exhibit an ordered relationship between

quality and error rates, this DET computation is not

operationally representative because an application cannot

usually accept only samples with one quality value. Rather,

the DET may be computed for verification of samples of

quality k with enrollment samples of quality greater than or

equal to k,

FNMRðs; kÞ ¼
sii : sii � s; q

ð1Þ
i � k; q

ð2Þ
i ¼ k

n o���
���

sii : sii � 1; qð1Þi � k; q
ð2Þ
i ¼ k

n o���
���
;

FMRðs; kÞ ¼
sij : sij > s; q

ð1Þ
i � k; q

ð2Þ
j ¼ k; i 6¼ j

n o���
���

sij : sij > �1; q
ð1Þ
i � k; q

ð2Þ
j ¼ k; i 6¼ j

n o���
���
;

ð9Þ

we model the situation in which the enrollment samples are

at least as good as the authentication (i.e., user submitted)

samples. Such a use of quality would lead to failures to

acquire for the low quality levels.
If, instead, we compare performance across all authenti-

cation samples against enrollment samples of quality

greater than or equal to k,

FNMRðs; kÞ ¼
sii : sii � s; q

ð1Þ
i � k

n o���
���

sii : sii � 1; qð1Þi � k
n o���

���
;

FMRðs; kÞ ¼
sij : sij > s; q

ð1Þ
i � k; i 6¼ j

n o���
���

sij : sij > �1; q
ð1Þ
i � k; i 6¼ j

n o���
���
;

ð10Þ

we model the situation where quality control is applied only
during enrollment. If repeated enrollment attempts fail to
produce a sample with quality above some threshold, a
failure-to-enroll (FTE) would be declared. This scenario is
common and possible because enrollment, as an attended
activity, tends to produce samples of better quality than
authentication.

The considerable differences between these three formula-
tions are evident in the DETs of Fig. 4 for which the NFIQ
algorithm [5] for the predicting performance of a commercial
fingerprint system was applied to over 61,993 genuine and
121,997 impostor comparisons (NFIQ native scores were
transformed to Q ¼ 6�NFIQ). In all cases, the ranked
separation of the DETs is excellent across all operating points.
We recommend that (9), as shown in Fig. 4b, be used because
of it is a more realistic operational model.

However, as relevant as DET curves are to expected
performance, we revisit here a very important complication.
Because DET characteristics quantify the separation of the
genuine and impostor distributions and combine the effect of
quality on both genuine and impostor performance, we lose
sight of the separate effects of quality on FNMR and FMR.

That quality should be evaluated at all in relation to
impostor performance (i.e., FMR) is dubious. For example,
does a biometric recognition system produce a low
impostor score when the two samples are of low quality?
Perhaps, but does it also produce lower impostor scores
when the samples are of high quality? Under what
circumstances are the impostor scores high? (Such ques-
tions may be simpler to answer for a fingerprint quality
apparatus that predicts a minutiae-based matcher’s perfor-
mance on the basis of number and type, etc., of minutia.)

In any case, we conclude that DETs, while familiar and
highly relevant, confound genuine and impostor scores. The
alternative is to look at the specific dependence of the error
rates on quality at some fixed threshold. Indeed, for
verification applications, the variation in FNMR with
quality is key because the majority of transactions are
genuine attempts. For negative identification systems (e.g.,
watchlist applications) in which users are usually not
enrolled, the variation of FMR with quality is critical. This
approach is followed in the next section.

4.3 Error versus Reject Curves

In this section, we propose using error versus reject curves
as an alternative means of evaluating QMAs. The goal is to
state how efficiently rejection of low quality samples results
in improved performance. This again models the opera-
tional case in which quality is maintained by reacquisition
after a low quality sample is detected. Consider that a pair
of samples (from the same subject), with qualities q

ð1Þ
i and

q
ð2Þ
i , are compared to produce a score s

ðkÞ
ii , and this is

repeated for N such pairs.
We introduce thresholds u and v that define levels of

acceptable quality and define the set of low quality entries as
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Rðu; vÞ ¼ j : q
ð1Þ
j < u; q

ð2Þ
j < v

n o
: ð11Þ

The FNMR is the fraction of genuine scores below threshold
computed for those samples not in this set

FNMRðt; u; vÞ ¼
sjj : sjj � t; j =2 Rðu; vÞ
� ��� ��
sjj : sjj � 1; j =2 Rðu; vÞ
� ��� �� : ð12Þ

The value of t is fixed2 and u and v are varied to show the
dependence of FNMR on quality.

For the one-dimensional case when only one quality
value is used (see Section 4.1), the rejection set is

RðuÞ ¼ j : Hðqð1Þj ; q
ð2Þ
j Þ < u

n o
: ð13Þ

FNMR is false nonmatch performance as the proportion of
nonexcluded scores below the threshold.

FNMRðt; uÞ ¼
sjj : sjj � t; j =2 RðuÞ
� ��� ��
sjj : sjj � 1; j =2 RðuÞ
� ��� �� : ð14Þ

If the quality values are perfectly correlated with the genuine
scores, then when we set t to give an overall FNMR of x and
then reject proportion x with the lowest qualities, a
recomputation of FNMR should be zero. Thus, a good
quality metric correctly labels those samples that cause low
genuine scores as poor quality. For a good quality algorithm,
FNMR should decrease quickly with the fraction rejected.

The results of applying this analysis are shown in Fig. 5. Note
that the curves for each of the three fingerprint quality
algorithms trend in the correct direction, but that, even after
rejection of 20 percent, the FNMR value has fallen only by
about a half from its starting point. Rejection of 20 percent is
probably not an operational possibility unless an immediate
reacquisition can yield better quality values for those people.
Yoshida and Hara, using the same approach, reported
similar figures [19]. Note, however, that, for NFIQ, the
improvement is achieved after rejection of just 5 percent. In
verification applications such as access control, the prior
probability of an impostor transaction is low and, thus, the
overall error rate is governed by false nonmatchers. In such
circumstances, correct detection of samples likely to be
falsely rejected should drive the design of QMAs.

Fig. 6 shows error versus reject behavior for the NFIQ
quality method when the various Hðq1; q2Þ combination
functions of Section 4.1 are used. Between the minimum,
mean, and geometric mean functions there is little differ-
ence. The geometric mean is best (absent a significance test)
with steps occurring at values corresponding to the square
roots of the product of NFIQ values. The gray line in the
figure shows H ¼ ffiffiffiffiffiffiffiffiffi

q1q2
p þNð0; 0:01Þ, where the Gaussian

noise serves to randomly reject samples within a quality
level and produces an approximation of the lower convex
hull of the geometric mean curve. The green line result, for
H ¼ jq1 � q2j, shows that the transformed genuine compar-
ison score is unrelated to the difference in the qualities of
the samples. Instead, the conclusion is that FNMR is related
to monotonic functions of the two values. The applicability
of this result to other quality methods is not known.
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2. Any threshold may be used. Practically, it will be set to give some
reasonable false nonmatch rate, f , by using the quantile function, the
empirical cumulative distribution function of the genuine scores,
t ¼M�1ð1� fÞ.

Fig. 4. Quality ranked detection error trade-off characteristics. Each plot shows five traces corresponding to five transformed NFIQ levels. (a) qð1Þ ¼ i,
qð2Þ ¼ i. (b) qð1Þ � i, qð2Þ ¼ i. (c) qð1Þ ¼ i, qð2Þ � �1.



4.4 Generalization to Multiple Matchers

It is a common contention that the efficacy of a quality

algorithm is necessarily tied to a particular matcher. We

observe that this one-matcher case is commonplace and

useful in a limited fashion and should therefore be subject

to evaluation. However, we also observe that it is possible

for a quality algorithm to be capable of generalizing across

all (or a class of) matchers and this too should be evaluated.
Generality to multiple matchers can be thought of as an

interoperability issue: Can supplier A’s quality measure be

used with supplier B’s matcher? Such a capability will exist to

the extent that pathological samples do present problems to

both A and B’s matching algorithms. However, the desirable

property of generality exposes another problem: We cannot

expect performance to be predicted absolutely because there

are good and bad matching systems. A system here includes

all of the needed image analysis and comparison tasks.

Rather, we assert that a quality algorithm intended to predict

performance generally need only be capable of giving a

relative or rank ordering, i.e., low quality samples should give

lower performance than high quality samples.

The plots of Fig. 7 quantify this generalization for the NFIQ
system using the error versus reject curves of Section 4.3.
Fig. 7a includes five traces, one for each of five verification
algorithms. The vertical spread of the traces indicates some
disparity in how well NFIQ predicts the performance of the
five matchers. A perfectly general QMA would produce no
spread.

4.5 Number of Levels of Quality

A quality metric is more useful if, operationally, it may be
thresholded at one of many distinct operating points. Thus, a
discrete-valued quality measure is better if performance is
significantly different for level qk than for qk�1 for all levels
1 � k � K. Having already stated that FNMR should be
monotonic in the quality value, FNMRk � FNMRk�1, we now
additionally require that the quality levels be statistically
distinct. If they are not, they could be mapped to fewer levels
that are statistically distinct. Real values can be quantized.
Formally, we propose testing this by using the Kolmogorov
Smirnov (KS) test to determine whether the distribution of
the genuine scores for level qk is distinct from that of qk�1. The
KS test is nonparametric, distribution-free, and simple. The
KS statistic is simply the maximum absolute difference
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Fig. 5. Error versus reject performance for three fingerprint quality methods. (a) and (b) show reduction in FNMR and FMR at a fixed threshold as up

to 20 percent of the low quality samples are rejected. The similarity scores come from a commercial matcher. (a) Finger-FNMR. (b) Finger-FMR.

Fig. 6. Dependence of the error versus reject characteristic on the quality combination function H(.). The plots show, for a fixed threshold, the

decrease in FNMR as up to 60 percent of the low quality values are rejected. The similarity scores come from commercial matchers. The steps in

(a) are the result of the discrete quality metric. Continuous quality metrics such as in (b) do not usually exhibit such steps. (a) Finger. (b) Face.



between the two distributions’ cumulative distributions
functions.

Table 1 shows example results for two fingerprint quality
methods. In both cases, the observed KS statistic values are
smaller for higher quality levels (where performance is
always very high) and are significant: The p-value exceeds
10�7 on only one occasion. A higher p-value there would have
indicated that quality method Y’s level 5 and 6 are
insignificantly different. The results do not demonstrate such
behavior, presumably because the algorithms were created
with a reasonable number of levels as a design parameter.

4.6 Measuring Separation of Genuine and Impostor
Distributions

We can evaluate quality algorithms on their ability to
predict how far a genuine score will lie from its impostor
distribution. This means, instead of evaluating a quality
algorithm solely based on its FNMR (i.e., genuine score
distribution) prediction performance, we can augment the
evaluation by including a measure of FMR because correct
identification of an enrolled user depends both on correctly
finding the match and on rejecting the nonmatches. Note
also that a quality algorithm could invoke a matcher to

compare the input sample with some internal background
samples to compute sample mean and standard deviation.

The plots of Fig. 8 show, respectively, the genuine and
impostor distributions for adjusted NFIQ values 1, 3, and 5.
The overlapping of genuine and impostor distributions for
the poorest NFIQ means higher recognition errors for that
NFIQ level and vice versa; the almost complete separation
of the two distribution for the best quality samples indicates
lower recognition error. NFIQ was trained to specifically
exhibit this behavior.

We again consider the KS statistic. For better quality
samples, a larger KS test statistic (i.e., higher separation
between genuine and impostor distribution) is expected.
Each row of Table 2 shows KS statistics for one of the three
quality algorithms that we tested. KS statistics for each
quality levels u ¼ 1; ; 5 are computed by first computing
the genuine (i.e., fsii : ði; iÞ 2 RðuÞg) and impostor (i.e.,
fsij : ði; jÞ 2 RðuÞ; i 6¼ jg) empirical cumulative distributions,
where RðuÞ ¼ fði; jÞ : Hðqð1Þi ; q

ð2Þ
j Þ ¼ ug. Thereafter, the lar-

gest absolute difference between the genuine and impostor
distributions of quality u is measured and plotted. (Note that,
to keep quality algorithm providers anonymous, we only
reported the KS statistics of the lowest four quality levels.)
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Fig. 7. Error versus reject characteristics showing how NFIQ generalizes across (a) five verification algorithms and (b) three operational data sets.

The steps in (a) occur at the same rejection values because the matchers were run on a common database.

TABLE 1
KS Test for Separation of Quality-Specific Genuine Score Distributions

The data apply to 69,663 genuine fingerprint comparisons.



5 QUALITY REFERENCE DATA SETS

This section addresses two issues: what data should be used
for testing a quality apparatus and how to annotate the
samples of a reference corpus with quality values.

5.1 Data to Be Used for Testing

A quality measurement algorithm could be evaluated using
data specifically collected with deliberate defects. For
example, quality could be degraded by misfocusing the
camera. Such data have several notable uses: development of
a quality measurement algorithm, teaching best practice by
counterexample, and assessing the performance of a product
intended to test the conformity of an image or signal to an
underlying standard.3 However, we argue that this type of
data should not be used for evaluation for four reasons. First,
such data is, by definition, laboratory data and therefore
would lack application-specific operational relevance. Sec-
ond, by applying certain kinds of degradation to the images,
the evaluator is making assumptions about the performance

sensitivities of matching algorithms. For example, if the chin
is cropped from a face image, then this may be immaterial to a
face recognition algorithm. Third, it would be difficult or
impossible to collect samples that express all possible
combinations of quality defects and particularly with their
natural frequency and to their natural degree. Finally, the
laboratory data may not ordinarily be available in large
quantities.

Instead, this paper considers the use of operationally
representative data, i.e., samples harvested during real-
world usage or from a relevant scenario test [20]. By
definition, this has the advantage of having relevance to the
operation. We showed examples of such data in Section 4.3.
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Fig. 8. There is a higher degree of separation between the genuine and impostor distribution for better quality samples as measured by NFIQ.

(a) Best. (b) Middle. (c) Worst.

3. For example, the ISO/IEC 19794-5 Face Recognition Interchange
Format standard puts quantitative limits on the amount of quality related
degradation such as from blur, nonfrontal pose, and the number of gray
levels.

TABLE 2
KS Statistics for Quality Levels of Three Quality Algorithms



However, if a test compares quality algorithms or is
making a more general assessment of the technology, then
an aggregated corpus that spans the quality spectrum might
be employed. Such a set might include fingerprint images
gathered from employees during an access control enroll-
ment and, subsequently, authentication and also samples
collected outdoors and from persons detained in adverse
law enforcement environments. This construction, unlike
the dedicated laboratory collection described above, does
not manipulate the sample acquisition process.

To illustrate the importance of using an aggregated

corpus for evaluation, we use the Color FERET database

[21]. The frontal fa and fb images from each of 852 subjects

were used at full, half, and quarter resolutions. These are

input to a quality algorithm and a matching algorithm from

the same supplier. The reduction in image size forcibly

induces the reductions in both quality and match scores

evident in Fig. 9. Note, however, that, for any one of the

three point clouds in Fig. 9a, there is large variation in score

in relation to quality—a trend that is not improved by

plotting MðsÞ instead (Fig. 9b). This reflects the difficulty of

the face quality problem.

The final graph, Fig. 9c, shows the error versus reject

performance for each of the image sizes separately and for the

aggregate data set. This latter curve, in gray, is lower than the

others. This demonstrates the value of using composite sets

for evaluation purposes. Also worthy of note is that the error

versus reject performance at any of the three sizes is superior

to that in Fig. 6b, which uses the same algorithm on a more

uniform data set. Those images are about the same size as

the half-size FERET images but are more consistently posed

(i.e., frontal), sized, and compressed and all subjects do not

wear eyeglasses. The suggestion then is that the more

homogenous the corpus, the more difficult it is for a quality

algorithm to predict variation in similarity scores. We should

emphasize that the algorithm was provided to the authors

without any claim of efficacy or recommended domain of use.

5.2 Construction of a Reference Data Set

In this section, we advance a procedure for annotating a

sample corpus with target quality values. The strategy is to

assign values that are directly related to the results of

matching those samples. This is achieved by taking the

similarity scores from K � 1 matching algorithms, classify-

ing them, and, in the case of K > 1, taking a consensus. The

result is a reference set useful to quality algorithm developers.

It would be of use for the tuning of an operational quality

algorithm when the matcher and kind of data are known.
The input to the procedure is a representative sample

database. The output is an annotation of each sample with a

scalar quality target. The method presumes the availability

of a representative matching algorithm, which will be used

to compare samples to produce both genuine and impostor

similarity scores. It is therefore implied that two or more

samples per person are available.

5.2.1 Data

Data gathered in a target operational application would be
most realistic. Contemporary matchers perform extremely
well on most images and it is therefore necessary to
preferentially stack the reference set with samples that are
naturally problematic to the matcher. For example, for a
reference fingerprint data set to span the quality spectrum,
it should be balanced in terms of finger position (right/left
index/thumb/middle), finger impression (roll/plain/flat),
sex, age, and capture device. Lack of data often renders it
difficult to create such a balanced data set.

5.2.2 Target Quality Assignment

We seek to assign a ground-truth quality score to each image

in a reference data set. We ensure that the quality values

are representative of performance by associating the

image with similarity scores as follows: Consider a biometric

corpus containing two samples, d
ð1Þ
i and d

ð2Þ
i , for each of

N individuals, i ¼ 1; . . . ; N . The first samples represent

enrollment samples and the second samples represent those

for authentication. The following procedure assigns quality

values q
ð1Þ
i and q

ð2Þ
i to all images in the corpus.

For each person i:

1. Compare the first and second samples using the
kth matcher to produce a genuine score. Repeating
(3):

s
ðkÞ
ii ¼ Vk d

ð1Þ
i ; d

ð2Þ
i

� �
: ð15Þ
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Fig. 9. Scatter plots of scores and FNMR values versus quality and the error versus reject curves for a face quality metric applied to a face

database composed of images at full (blue), half (green), and quarter size (red). (a) Score versus minðq1; q2Þ. (b) FNMR versus minðq1; q2Þ. (c) Error

versus Reject.



2. Use the kth matcher to compare the first sample
from person i with the second sample from all j ¼
1; . . . ; N and i 6¼ j other persons. The result is J ¼
N � 1 impostor scores:

s
ðkÞ
ij ¼ Vk d

ð1Þ
i ; d

ð2Þ
j

� �
: ð16Þ

(This is essentially(4).)
3. Insert i into setT if its genuine score is larger than all of

its impostor scores, i.e., s
ðkÞ
ii > s

ðkÞ
ij 8j. This is a rank 1

condition.
4. For the first sample of each person d

ð1Þ
i , compute the

sample mean and standard deviation of its J asso-
ciated impostor scores

mi ¼ J�1
XJ

j¼1
s
ðkÞ
ij ; ð17Þ

�i ¼ ðJ � 1Þ�1
XJ

j¼1
s
ðkÞ
ij �mi

� �2
: ð18Þ

5. Normalize the genuine score from (15) using the
impostor statistics

zi ¼ ðsii �miÞ=�i: ð19Þ

Once all normalized similarity scores have been computed:

1. Compute two empirical cumulative distribution
functions: one for the top-ranked genuine scores of
set T ,

CðzÞ ¼ jfzi : i 2 T ; zi � zgj
jfzi : i 2 T ; zi � 1gj

; ð20Þ

and another for those not in that set.

WðzÞ ¼ jfzi : i=2T ; zi � zgj
jfzi : i=2T ; zi � 1gj

: ð21Þ

These cumulative distribution functions are plotted
in Fig. 10 for live-scan images of the right-index
fingers of 6,000 individuals and scores of a

commercial fingerprint matcher. These were pro-
duced in a US Government test using sequestered
operational data.

2. Bin the normalized match score range into K bins
based on quantiles of the normalized match score
distribution. One strategy, for K ¼ 5, is shown in
Table 3 in which F�1 is the quantile function and
F�1ð0Þ and F�1ð1Þ denote the empirical minima and
maxima, respectively. If W�1ð1Þ � C�1ð0:25Þ, an
appropriate quartile of CðzÞ must be selected.

3. Sample di is assigned target quality qi corresponding
to the bin of its normalized match score zi from (19).

4. The procedure is repeated for sampled
ð2Þ
i by swapping

indices 1 and 2 in (15) and (16). Since one sample will
have an impostor distribution different from another,
two different samples of the same subject may have
different normalized match scores and, therefore,
different quality values.

5. The procedure is repeated for scores of allV matchers.
6. Samples with identical quality assignments from all

V matchers become members of the Quality Reference
Data Set. Those without unanimity are discarded.

7. If, for some quality bins, no consensus was made
among all V matchers, the procedure could be started
from Step 2 above with modified bin boundaries.

This procedure has been used to form NFIQ training and
compliance set [22], only with different bin boundaries.
These were set by manual inspection to give useful
categorization of the normalized match score statistic.

6 CONCLUSION

Biometric quality measurement is an operationally important
and difficult problem that is nevertheless massively under-
researched in comparison to the primary feature extraction
and pattern recognition tasks. In this paper, we enumerated
the ways in which it is useful to compute a quality value from
a sample. In all cases, the ultimate intention is to improve
matching performance. We asserted, therefore, that quality
algorithms should be developed to explicitly target matching
error rates and not human perceptions of sample quality. To
this end, we defined a procedure for the annotation of a
reference sample set with target quality values. We gave
several means for assessing the efficacy of quality algorithms.
We reviewed the existing practice, cautioned against the use
of detection error trade-off characteristics as the primary
metrics, and, instead, advanced boxplots and error versus
reject curves as preferable. We suggest that algorithm
designers should target false nonmatch rate as the primary
performance indicator.
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Fig. 10. Empirical cumulative distribution functions for the top-ranked
genuine scores and for the impostor scores. The vertical lines are one
possible way of binning normalized match score. Samples are assigned
quality numbers corresponding to the bin of their normalized match
score.

TABLE 3
Binning Normalized Match Score



In conclusion, we posit that quality summarization as a

predictor of recognition performance is a difficult problem

and we encourage the academic community to consider the

problem and extend the quantitative methods of this paper

in advancing their work.
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