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The long-puzzling, unphysical result that linear stability analyses
lead to no transition in pipe flow, even at infinite Reynolds
number, is ascribed to the use of stick boundary conditions,
because they ignore the amplitude variations associated with the
roughness of the wall. Once that length scale is introduced (here,
crudely, through a corrugated pipe), linear stability analyses lead
to stable vortex formation at low Reynolds number above a finite
amplitude of the corrugation and unsteady flow at a higher
Reynolds number, where indications are that the vortex dislodges.
Remarkably, extrapolation to infinite Reynolds number of both of
these transitions leads to a finite and nearly identical value of the
amplitude, implying that below this amplitude, the vortex cannot
form because the wall is too smooth and, hence, stick boundary
results prevail.

This work explores the effect of wall roughness on the long
known contradiction between the linear stability analysis

result of infinitely stable flow in pipes with smooth boundaries
and the experimental observation (1) that flows become unsta-
ble at a Reynolds number of �2,000 for ordinary pipes (2–4). A
hint that wall roughness may be important can be gathered from
experiments which show that for smoothed pipes, the onset of the
instability can greatly exceed 2,000 (5). The present work should
serve as a general warning that stick boundary conditions—for
example, in narrow biological channels where the surface rough-
ness of the wall can be a significant fraction of the channel width,
or, as another example, in the drag reduction problem—may be
inappropriate. For the smooth-wall case, there exists a rigorous
proof of stability for axisymmetric disturbances (6) and strong
evidence (cf. refs. 7 and 8) that all linear perturbations decay for
all values of the Reynolds number and axial and azimuthal
wavenumbers. Thus, there remains much interest in the cause of
this transition and how one may affect the Reynolds number at
which transition occurs.

Most previous flow field calculations in modified channels
(9–15) deal with heat and mass transfer augmentation, whereas
stability calculations have mostly concentrated on flow between
two infinite plates with varying cross-sections (16–21). In the
recent linear stability work (21) for the modified parallel plate
case, sinuous and square wave wall distortions are considered,
with results showing that the base flow is significantly destabi-
lized with respect to the smooth-wall case, and that the critical
Reynolds number is only slightly affected by the shape of the wall
distortions. However, as opposed to the pipe, the parallel plate
configuration with constant cross-section leads to a finite Reyn-
olds number instability. The primary focus of this work is to show
that wall topography significantly alters the linear stability
condition and to show that there may be a wall amplitude below
which linear stability analysis gives results similar to those of the
smooth-wall case. To date, the only previous linear stability work
on wavy pipes is for a very restricted range of parameters (22)
not including the small-amplitude case of interest here.

The flow of an isothermal constant property incompressible
fluid in a corrugated pipe is governed by the Navier–Stokes
equations (i.e., conservation of mass and linear momentum)
which are made dimensionless by scaling the radial and axial
directions by the mean radius (R� ) and corrugation wavelength
(�), respectively, while time, pressure, and velocity are scaled
using the density (�), R� , and a characteristic axial velocity (Vz �

[(��)/(��)]1/3), where � is the mean axial pressure gradient used
to drive the flow, � � �/� is the kinematic viscosity, � is the
dynamic viscosity, and � � R� /� is the aspect ratio. A linear
decomposition is used for the pressure P(R, Z) � P̂(R, Z) � �Z,
where P̂ is axially periodic with the imposed corrugation wave-
length. This decomposition has previously been used for the case
of pressure-driven flow in a grooved channel and constricted
pipe (12, 16, 22) and is consistent with axial periodicity of the
velocity, as only the gradient of the pressure enters into the
problem. The dimensionless wall radius is given by rw(z) � 1 �
� cos(2�z), where � is the dimensionless amplitude of the wall
corrugation. Given the nondimensionalization above, the flow is
driven by specifying the dimensionless mean axial pressure
gradient �z � [(��R� 2)/(��2)]1/3.

The base flow is steady, axisymmetric, and axially periodic
with the imposed corrugation wavelength and has no azimuthal
velocity component. The boundary conditions are no slip on the
pipe wall and boundedness at the centerline. The quadratically
nonlinear system of differential equations governing the base
flow is solved numerically using finite-element methods (23). A
consistent penalty method is used to satisfy incompressibility,
while quadrilateral elements (using an isoparametric mapping)
with quadratic velocity and discontinuous linear pressure inter-
polation (cf. refs. 24 and 25) and 5 � 5 Gaussian quadrature are
used for numerical integration. Discretization of the equations
leads to a quadratically nonlinear algebraic system of equations
which is solved by Newton iteration, where solutions at each
Reynolds number are used as the initial iterate for the next
highest value (i.e., zeroth order continuation). For regions of
parameter space in which the use of zeroth order continuation
is unable to converge to a solution, first order continuation (23)
is used. To validate the base flow code, comparison was made to
previous numerical results (9, 14, 15, 22), where authors have
shown that the higher the wall corrugation amplitude, the earlier
the vortex formation in the bulge region, that the vortex initially
forms on the upstream portion of the bulge region, and that as
the Reynolds number increases, the vortex core migrates toward
the downstream boundary of the bulge region. These features
of the base flow are consistent with the current results (see Fig.
1), and furthermore, the axisymmetric and axially invariant
unidirectional solution of circular Poiseuille flow is recovered
for the limiting case of no corrugation (i.e., � � 0).

To investigate the linear stability of the base flow, a standard
normal mode analysis (20, 21) is used which results in a system
of homogeneous linear differential equations in the radial and
axial coordinate for the velocity and pressure eigenfunctions.
The disturbance velocity boundary conditions are zero on the
pipe wall and again boundedness at the centerline. Since the
coefficients of this system are 2�-periodic in the axial direction,
Floquet theory (20, 21, 26) is used to consider disturbances
whose structure is independent of the corrugation wavelength.
Thus, in the computations, the velocity and pressure eigenfunc-
tions have the form exp(� t � ikZ � im�) f (R, Z), where f (R,
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Z) is 2�-periodic in Z, the temporal eigenvalue � � �r � i�i is
complex, the disturbance axial wavenumber k is taken to be real,
the azimuthal wavenumber m is taken to be an integer, and � is
the azimuthal coordinate. Discretization of the disturbance
equations using finite-element methods (see the above base flow
discussion) leads to a sparse generalized algebraic eigenvalue
problem, where for fixed �, �, and m a minimum Reynolds
number is sought for which at least one temporal eigenvalue has
�r � 0 for some k, and all other values of � lie in the left
half-plane for all k. The analysis is restricted to positive m and
k without loss of generality, while the method used to locate
critical values has been validated in previous work (27).

The current results of f low in a wavy pipe driven by an axial
pressure gradient are given in terms of the aspect ratio (�) which
is used to vary the corrugation wavelength, the corrugation
amplitude (�), and a Reynolds number [Re � (V� zR� )/	] based on
the mean pipe radius and the mean axial velocity evaluated at the
wall corrugation minimum (i.e., z � 0). The case of � � 1 is
considered for simplicity, and a cursory investigation into the
effects of nonaxisymmetric disturbances is performed to show
that in the limit of small �, only m � 0 (i.e., axisymmetric
disturbances) needs to be considered.

For this case, results show that for fixed � and small Re, the
base flow is primarily unidirectional with significant streamline
curvature seen only near the bulge and no vortex present in the
domain (as opposed to the higher Re results shown in Fig. 1). As
shown by the dashed curve in Fig. 2, for sufficiently large
Reynolds number, the onset of vortex formation is observed in
the bulge region; however, the flow is stable according to linear
stability analysis both above and below this Reynolds number.
There are various methods available to decide when a vortex is
present (cf. ref. 28); however, only the simplest method avail-
able—namely, looking for negative axial velocity in the bulge
region—has been employed. Because this method is slightly
grid-dependent and one must set a threshold value (ideally set to
machine precision but in the current study set to 10�10), grid
convergence studies have been performed for each geometry in

an attempt to get fairly grid-independent values. Although
separation in the bulge region is not the primary focus of the
present work, results seem to suggest the existence of a critical
amplitude below which no vortex forms in the bulge region. If the
Reynolds number is increased beyond this first transition, a value
of Re is reached at which the steady and axisymmetric bulge
vortex flow transitions to an unsteady flow (�i 	 0) with different
axial wavenumber than the wall corrugation wavenumber of 2�
as shown in Fig. 3. There are no critical disturbances for which
k � 0; however, for large enough corrugation amplitude, there
is a value of Re for which the base flow becomes unstable to k �
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Fig. 1. Base flow velocity contours for � � 1, � � 0.1, and Re � 6,177. The upper portion shows axial velocity shading and streamlines, while the lower portion
shows radial velocity shading and streamlines.
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Fig. 2. Critical Reynolds number (upper curve) and the Reynolds number at
which a vortex forms in the bulge (lower curve) versus � for � � 1 and m � 0,
where S indicates that the base flow is linearly stable with no vortex present
in the bulge, S
 indicates that the base flow is linearly stable with a vortex
present in the bulge, and US indicates that the base flow is linearly unstable.
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0 disturbances, but this value does not represent the global
minimum. Furthermore, as � decreases, the critical axial wave-
number seems to be decreasing toward the corrugation wave-
number (2�), as expected (see Fig. 3).

Because we are primarily interested in the small amplitude
limit, we have only performed a cursory investigation into the
effects of nonaxisymmetric disturbances (i.e., m 	 0) to show
that only axisymmetric disturbances need be considered in this
limit. Thus, results show that the critical azimuthal wavenumber
depends strongly on the value of � and that mcrit � 2 for 0.16 

� 
 0.2, mcrit � 1 for 0.1 � � � 0.16, and mcrit � 0 for � 
 0.1.
For example, for � � 0.2 the difference between the second
transition Reynolds number (i.e., Recrit) for m � 2 and m � 0 is
�14%.

As shown in Fig. 2, the critical Reynolds number is a very
strong function of �, increasing rapidly with decreasing ampli-
tude and suggesting the presence of a nonzero value of � below
which the base flow is linearly stable for all Reynolds numbers.
As can be seen in Fig. 4, for small corrugation amplitudes, 1/Recrit
varies nearly linearly with �. Extrapolation of a linear least-
squares fit to the � dependence of 1/Recrit for the four and five
smallest values of � for which the critical Reynolds number was
computed gives �* � 0.006, while extrapolation by quadratic
least-squares for the four and five smallest values of � gives �* �
0.005. On the other hand, extrapolation of a nonlinear least-
squares fit of the form Re � a(� � �*)b to all of the data gives

�* � 0.006, where the exponent b is approximately �1. We note
that varying which subset of points is used in the extrapolation
does not significantly change the linear and quadratic results,
although for the nonlinear fit, one does see some variation.

In summary, these results suggest that for the rather large wall
distortion (having a wavelength of the same order as the pipe
diameter) investigated so far, the critical amplitude below which
the base flow is linearly stable is somewhere around 0.006. Thus,
below this amplitude, the current linear stability results are
consistent with those for a smooth-walled pipe, where the flow
is also linearly stable for all Reynolds numbers. This critical
amplitude also seems to be close or nearly identical to the value
below which no vortex forms in the bulge region at low Reynolds
number. This suggests that the instability is directly tied to the
formation of a vortex in the bulge region and that when the
vortex cannot form, the flow is stable to infinitesimal distur-
bances, but that when it does form, the cause of the instability
is likely to be vortex separation. In an attempt to understand the
cause of the instability, critical conditions are recomputed after
eliminating terms from the disturbance equations, and results
show that fluctuations in the radial velocity component created
as a result of the coupling between the radial derivative of the
base flow axial velocity component and the radial perturbation
velocity component lead to significant destabilization.
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Fig. 3. Critical axial wavenumber versus � for � � 1 and m � 0, where the
corrugation wavenumber is 2�.
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Fig. 4. Inverse critical Reynolds number versus � for � � 1 and m � 0.
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Corrections and Retraction

CORRECTIONS

INAUGURAL ARTICLE, GEOPHYSICS. For the article ‘‘Gravitational
dynamos and the low-frequency geomagnetic secular variation,’’
by P. Olson, which appeared in issue 51, December 18, 2007, of
Proc Natl Acad Sci USA (104:20159–20166; first published
November 29, 2007; 10.1073�pnas.0709081104), the author notes
that on page 20160, left column, last paragraph, line 9, ‘‘then
� � �1 in Eq. 3’’ should instead read: ‘‘use � � �1/�4� in
Eq. 3.’’ This error does not affect the conclusions of the article.

www.pnas.org�cgi�doi�10.1073�pnas.0800480105

APPLIED PHYSICAL SCIENCES. For the article ‘‘Instability in pipe
flow,’’ by D. L. Cotrell, G. B. McFadden, and B. J. Alder, which
appeared in issue 2, January 15, 2008, of Proc Natl Acad Sci USA
(105:428–430; first published January 4, 2008; 10.1073�
pnas.0709172104), due to a printer’s error, the year of publica-
tion appeared incorrectly in the footer. The correct publication
date is ‘‘January 15, 2008.’’ The online version has been
corrected.

www.pnas.org�cgi�doi�10.1073�pnas.0801024105

BIOCHEMISTRY. For the article ‘‘The globular tail domain puts on
the brake to stop the ATPase cycle of myosin Va,’’ by Xiang-
dong Li, Hyun Suk Jung, Qizhi Wang, Reiko Ikebe, Roger Craig,
and Mitsuo Ikebe, which appeared in issue 4, January 29, 2008,
of Proc Natl Acad Sci USA (105:1140–1145; first published
January 23, 2008; 10.1073�pnas.0709741105), the authors note
that, due to a printer’s error, ref. 25 contained an incorrect
volume number. The corrected reference appears below.

25. Burgess SA, Yu S, Walker ML, Hawkins RJ, Chalovich JM, Knight PJ (2007) J Mol Biol
372:1165–1178.

www.pnas.org�cgi�doi�10.1073�pnas.0801004105

DEVELOPMENTAL BIOLOGY. For the article ‘‘Linking pattern forma-
tion to cell-type specification: Dichaete and Ind directly repress
achaete gene expression in the Drosophila CNS,’’ by Guoyan
Zhao, Grace Boekhoff-Falk, Beth A. Wilson, and James B.
Skeath, which appeared in issue 10, March 6, 2007, of Proc Natl
Acad Sci USA (104:3847–3852; first published February 26, 2007;
10.1073�pnas.0611700104), the authors note the following: ‘‘On
page 3851, right column, first paragraph, line 9, in the sentence
‘For example, Sox1 can bind directly to the HES1 promoter and
suppress its transcription (24, 32),’ the references were cited in
error. The correct reference is Kan L, Israsena N, Zhang Z, Hu
M, Zhao LR, Jalali A, Sahni V, Kessler JA (2004) Dev Biol
269:580–594. Additionally, please note that ref. 24 is a duplicate
of ref. 10. Finally, ref. 4 was cited in error on page 3852, left
column, paragraph 3, line 4, and right column, paragraph 2, line
1, and should be removed from both locations. We apologize for
any confusion these errors may have caused.’’

www.pnas.org�cgi�doi�10.1073�pnas.0800385105

RETRACTION

PLANT BIOLOGY. For the article ‘‘Arabidopsis myosin XI mutant is
defective in organelle movement and polar auxin transport,’’ by
Carola Holweg and Peter Nick, which appeared in issue 28, July
13, 2004, of Proc Natl Acad Sci USA (101:10488–10493; first
published July 6, 2004; 10.1073�pnas.0403155101), the authors
wish to note the following: ‘‘We must retract the results pub-
lished in the article. In further investigations of the mya2-1
knockout (SAIL�414�C04), we detected a second deletion up-
stream and adjacent to the MYA2 locus, and a complementation
assay performed with the whole genomic sequence of MYA2,
including the promoter (10.5 kb), revealed no significant differ-
ences between the dwarf phenotype of the original mutant line
and the mya2-rescued line. The analysis included parameters
such as shoot length, cytoplasmic streaming, hypocotyl length,
epidermal cell length, and root hair length. Therefore, the
phenotype of the original knockout line was probably due to the
second deletion upstream of the MYA2 gene. Since our original
publication, and consistent with our new results, others have
observed no major defects resulting from inactivation of any of
the 13 myosin XI genes in the Arabidopsis thaliana genome (1–3);
inactivation of the MYA2 and XI-K genes resulted only in defects
in root hair growth and organelle trafficking (2, 3).’’

Carola Holweg
Peter Nick

1. Hashimoto K, et al. (2005) Peroxisomal localization of myosin XI isoform in Arabidopsis
thaliana. Plant Cell Physiol 46:782–789.

2. Ojangu EL, Järve K, Paves H, Truve E (2007) Arabidopsis thaliana myosin XIK is involved
in root hair as well as trichome morphogenesis on stems and leaves. Protoplasma
230:193–202.

3. Peremyslov VV, Prokhnevsky AI, Avisar D, Dolja VV (2008) Two class XI myosins function
in organelle trafficking and root hair development in Arabidopsis thaliana. Plant
Physiol, 10.1104/pp.107.113654.
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