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The properties of statistical procedures based on occurrences of aperiodic patterns in a random text
are summarized. Accurate asymptotic formulas for the expected value of the number of aperiodic
words occurring a given number of times and for the covariance matrix are given. The form of the
optimal linear test based on these statistics is established. These procedures are applied to testing for
the randomness of a string of binary digits originating from block ciphers, US government-approved
random number generators or classical transcendental numbers.
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1. Introduction

Consider a random text formed by realizations of letters chosen from a finite alphabet. For a
given word (pattern), it is of interest to determine the distribution of the number of (overlapping)
occurrences of this pattern in the text. This problem appears in different areas of information
theory such as source coding and code synchronization. It is also important in molecular
biology in DNA analysis and for gene recognition.

One of the most important applications of this distribution is in testing for randomness of
the underlying text. A number of classic tests of randomness are reviewed in ref. [1]. However,
some of these tests turn out to be rather weak as they pass patently non-random sequences
(see discussion in [2]). Most conventional pseudo-random number generators show patterning
because of their deterministic recursive algorithms. Because of this fact, it is natural to employ
statistical tests based on the occurrences of words of a given length, say m. The counts of
appearances of the patterns in a random text have been used in a battery of statistical tests to
assess the quality of different random number generators (RNGs) [3].
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1132 A. L. Rukhin and Z. Volkovich

The tests discussed here utilize the observed frequencies of aperiodic words which appear
in a random text a prescribed number of times (i.e. which are missing, appear exactly once,
exactly twice and so on). In practice, these statistics are easier to evaluate than the entire
empirical distribution of occurrences of all m-words. A mathematical advantage of aperi-
odic words is that a Poisson limit theorem for the number of occurrences of such words
holds [4]. Also, the normal approximation discussed in section 3 is more accurate for aperiodic
words.

Denote byY = (Y1, . . . , Yn) a sequence of i.i.d. discrete random variables each taking values
in the finite set {1, . . . , q} such that P(Yi = k) = pk, k = 1, . . . , q. Thus, the probability of
the word ι = (i1 · · · im) is P(ι) = pi1 · · · pim . The situation when pk ≡ q−1 corresponds to
the randomness hypothesis. The word ι = (i1 · · · im) is aperiodic if for every k, 1 ≤ k ≤ m,
(im−k+1 · · · im) �= (i1 · · · ik). Thus, when m = 2, aperiodic patterns are merely formed by two
different letters, but their number grows as qm − qm−1 as m increases (see section 2).

To find words with unexpected frequencies, one can use asymptotically normal estimates
of word probabilities or the exact distributions obtained from generating functions (see, for
example, refs. [5, 6, section 7.6]). These results suggest that, under the condition of i.i.d.
sequence, the probability for a given word ι to appear exactly r times in the string of length n

can be approximated by the Poisson probability of the value r , when the Poisson parameter is
nP (ι). Thus, the distribution of the number of words with prescribed r must be approximately
equal to that of the sum of Bernoulli random variables whose success probability is this Poisson
probability. However, further information about this distribution particularly the covariance
structure for several random variables corresponding to different patterns needed in the study
of large sample efficiency is not clear.

The approximate Poisson distribution for the number of missing words is alluded to in
ref. [7]. It forms the basis of the so-called OPSO test of randomness in the Diehard Battery [8].
Rukhin [9] developed asymptotic formulas for the expected number of words and for the
covariance of words with given occurrences. We show here that these formulas are applicable
(and, in fact, are more exact) when only aperiodic words are considered.

Section 2 deals with the expected value of the number of words occurring a given number of
times and the covariance structure of corresponding random variables. In section 3, asymptotic
normality of these variables is stated and the form of the optimal linear test based on such
statistics is established. These results are applied to a practical problem of testing block
ciphers in section 4. The example of two advanced encryption standard (AES) competitors is
examined there along with the results of numerical experiments on unirnd Matlab function
on files generated with a HG400 RNG and on a physical random bit generator. The National
Institute of Standards and Technology (NIST)-recommended RNGs are also discussed. In
addition, we study randomness of binary digits in expansions of classical numbers e, π ,

√
2

and
√

3 by evaluating the P -values of a test statistic.

2. Asymptotic formulas for the expected number and the covariance of
aperiodic words with given occurrences

We will need formulas for the probabilities that a given m-pattern appears a prescribed number
of times in a series of length n formed by q-valued independent bits. Assume that both n → ∞
and q → ∞, so that n/qm → α with a fixed positive α. To implement this setting in the case
of binary alphabet, take non-overlapping substrings formed by zeros and ones of given length
p to represent the letters of the new alphabet, so that there are q = 2p new letters. Then,
the number of m-letter patterns (the original substrings of length mp) with a given number
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Testing randomness via aperiodic words 1133

of occurrences is evaluated. (In the Diehard test m = 2, p = 10, q = 210.) Of course, then
n = n′/p, where n′ is the length of the original binary string.

In the study of asymptotic efficiency of tests for randomness, the distribution of the alphabet
letters under the alternative hypothesis is commonly supposed to be close to the uniform.
Typically, for any letter k, pk − q−1 ∼ q−s with s > 1. It is known that a judicious choice
of s may depend on m. For example, for the efficient test based on the number of missing
patterns, s = 1 + m/4. Similar conditions are required in the Poisson approximation of the
probability that given patterns are missing [10, Chapter 3, section 1]. To determine efficient
tests, we assume that

pk = 1

q
+ ηk

q3/2
, k = 1, . . . , q, (1)

∑q

k=1 ηk = 0, so that as n → ∞ and q → ∞
1

q

∑
k

η2
k −→ B,

with uniformly bounded sequences ηk , k = 1, . . . , q. Then, nP (ι) → α.
Denote by πr

ι (n) the probability that a word ι appears exactly r times in a string of size n

and by pr(α) = αre−α/r!, r = 0, 1, . . . , the Poisson probabilities. According to Rukin [4],
for r = 0, 1, . . . ,

πr
ι (n) = pr(α)

[
1 − (α − r)

∑
k ηik

q1/2

+ ((α − r)2 − r)(
∑

k ηik )
2 − 2(α − r)

∑
1≤k<j≤m ηikηij

2q
+ O

(
1

q3/2

)]
. (2)

The form of the probabilities (2) leads to the formula for the expected value of the number of
aperiodic m-words, which occur r times in a sequence of i.i.d. random bits of size, n, Xr = Xr

n.
Indeed, the number Lm of aperiodic words of length m satisfies the recurrent relation,

Lm +

m/2�∑
k=o

Lkq
m−2k = 2qm, L0 = 1,

which follows from [11, Theorem 7.1, p 31]. According to this formula, L1 = q, L2 = q2 − q,
L3 = q3 − q2, L4 = q4 − q3 − q2 + q. For m > 4,

Lm = qm − qm−1 + O(qm−2).

As �ι�k<jηikηij = 0, one has �ι(�kηik )
2 = �ι�kη

2
ik
mqm−1�

q

�=1η
2
k = mqmB. Therefore,

with πr
ι (n) determined from equation (2) for r = 0, 1 . . .

EXr = Lmπr
ι (n)

= αre−α

r! qm

[
1 + mB

2q
(α2 − (2α + 1)r + r2) − 1

q
+ O

(
1

q3/2

)]
. (3)

Observe that this formula is different from formula (4.3) for the expected number of all
m-words, which occur r times in [9].
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1134 A. L. Rukhin and Z. Volkovich

The formula for the covariance can be obtained from the fact that Xr = �jx
r
j , where xr

j is
0 or 1 according to the occurrence of the word j exactly r times in the string of length n. As

Exr
ι x

t
j = πrt

ιj (n) = P(ι appears r times, j appears t times),

one gets

Var(Xr) =
∑

ι

Var(xι) +
∑
ι�=j

Cov(xι, xj )

=
∑

ι

πr
ι (n)

[
1 − πr

ι (n)
] +

∑
ι�=j

[
πrr

ιj (n) − πr
ι (n)πr

j (n)
]
. (4)

For r �= t ,

Cov(Xr, Xt) =
∑
ι=j

[
πrt

ιj (n) − πr
ι (n)πt

j (n)
] −

∑
ι

πr
ι (n)πt

ι (n). (5)

The probabilities πr
ι (n) have been determined in equation (2).

The formulas for the probabilities πrt
ιj (n) are given in ref. [9],

πrt
ιj (n) − πr

ι (n)πt
j (n) = −e−2n[P(ι)+P(j)][nP (ι)]r [nP (j)]t (α − r)(α − t)

αr!t !
×

[
2m − 1

qm
+ O

(
1

qm+1

)]
. (6)

It has been noticed there that the main contribution to the sums in equations (4) and (5) (of order
qm) is due to the pairs of uncorrelated aperiodic words. It follows now from equation (6) that,
for r �= t ,

Cov(Xr, Xt) = −qmpr(α)pt (α)

[
(2m − 1)

(
α − r − t + rt

α

)
− 2(m − 1)

× (α − r)(α − t)

α
+ 1

]
+ O(qm−1)

= −qmpr(α)pt (α)

[
(α − r)(α − t)

α
+ 1

]
+ O(qm−1). (7)

Similarly,

Var(Xr) = −qmpr(α)

[
1 − e−ααr

r!
(

(α − r)2

α
+ 1

)]
+ O(qm−1). (8)

We summarize the results of this section.

THEOREM 2.1 Assume that the q-valued random variables Y1, . . . , Yn are independent with
probabilities satisfying equation (1). Let, for n → ∞, n/qm → α with a fixed positive α. Then,
the probability πr

ι (n) admits the asymptotic representations equation (2). If Xr denotes the
number of aperiodic words appearing r times in the sequence Y1, . . . , Yn, then the expected
value EXr has the asymptotic expression (3). The covariance between the number of such
words appearing exactly r and t times, Cov(Xr, Xt), is of the form (7) and the variance of
the number of aperiodic words appearing exactly r times, Var(Xr), has the form (8).
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Testing randomness via aperiodic words 1135

Kolchin et al. [10, Chapter 3, Theorem 6] gave the formulas for the first two moments of
the joint distribution of the words appearing a prescribed number of times when their frequen-
cies are independent, i.e. when the occurrences of words are counted in the non-overlapping
m-blocks. A rather surprising fact is that the asymptotic behavior of the expected value and of
the covariance matrix is the same for overlapping and non-overlapping occurrences. There-
fore, the form of the optimal linear test discussed in the next section, which is determined by
these characteristics, coincides with that in [10, Chapter V, Theorem 2].

3. Asymptotic normality and the optimal linear test

The theoretical justification for approximate normality of the distribution of Xr when
n → ∞, n/qm ∼ α, is provided by a result of Mikhailov [12]. According to Theorem 2.1,
Var(Xr) → ∞, so that the crucial condition in Mikhailov’s theorem is satisfied.

For a fixed positive integer R, denote by � the covariance matrix of the limiting distribution
of the random variables X0, X1, . . . , XR . The elements of matrix � have the form

σrr = pr(α)

[
1 − pr(α)

(
(α − r2)

α
+ 1

)]
, (9)

and for r �= t ,

σrt = −pr(α)pt (α)

[
(α − r)(α − t)

α
+ 1

]
. (10)

THEOREM 3.1 Under conditions of Theorem 2.1, the random number of m-letter aperiodic
words, Xr = Xr

n, which appears exactly r times in a string of length n, is asymptotically normal
with the asymptotic mean given by equation (3) and the variance determined by equation (8).
The asymptotic joint distribution of the random variables X0, X1, . . . , XR is normal with the
covariance matrix � determined by equations (9) and (10).

Thus, the vector q−m/2[(X0, X1, . . . , XR) − E(X0, X1, . . . , XR)] has approximate multi-
variate normal distribution with mean 0 and the covariance matrix �. We use Theorem 3.1 to
derive the optimal test of the null hypothesis H0: η ≡ 0 within the class of linear test statistics
of the form

S =
R∑

r=0

wr(X
r − EXr).

Indeed, this theorem can be used to find the Pitman efficiency of this statistic, as it is asymp-
totically normal both under the null hypothesis and the alternative H1: B > 0. The efficacy of
the corresponding statistical test is determined by the normalized distance between the means
under the null hypothesis and under the alternative, divided by the standard deviation (which
is common to the null hypothesis and the alternative),

eff(S) = | ∑R
r=0 wrpr(α)[(α − r)2 − r]|

(
∑

r,t σrtwrwt )1/2
= |wbT|√

wT�w
.

Here, (R + 1)-dimensional vector w has coordinates w0, . . . , wR and b has coordinates
pr(α)(α2 − 2αr + r(r − 1)) = α2[pr(α) − 2pr−1(α) + pr−2(α)], r = 0, 1, . . . , R.
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1136 A. L. Rukhin and Z. Volkovich

Maximization of this ratio gives the formula for the coordinates of w,

wr = α2 − 2αr + r(r − 1) + (α − r)θ

[
(α − R)2 + αθ(α − R) + R

]
d

+ (α − R + αθ)αθ

d
, (11)

where θ = pR(α)
[ ∑∞

r=R+1 pr(α)
]−1

and d = 1 + (R − α + 1)θ − αθ2, so that

bT�−1b = bTw

= 2α2
R−1∑

0

pr(α) + αpR(α)
(α − R + αθ)[(α − R)2 + αθ(α − R) + R]

d
. (12)

THEOREM 3.2 The weights wr of the optimal linear test statistic

S =
R∑

r=0

wr (X
r − EXr) (13)

of H0: pk ≡ 1/q are given by equation (11) with the corresponding efficacy determined by
equation (12).

Table 1 gives the value of α = α∗ for R = 0, . . . , 8, which maximizes the efficacy and the
corresponding optimal weights normalized so that their sum is equal to one.

For moderate values of R(≤100), the optimal value α∗ admits a remarkably accurate linear
approximation α∗ = 3.60 + 1.09R (figure 1). However, α∗/R → 1.

To implement this test on the basis of a string of binary bits for a fixed R, choose a positive
integer p, such that n ≈ 2mpα∗, and take all strings of length p formed by zeros and ones
to represent the letters of the new alphabet of the size q = 2p. The numbers Xr of aperiodic
m-letter patterns (the original non-overlapping consecutive substrings of length pm), which
occurred r times are combined with the weights from the table leading to the asymptotically
optimal test. Actually, this test is asymptotically optimal not only within the class of linear
functions but also in the class of all statistics based on X0, . . . , XR .

In particular, the most efficient test based on the number of missing aperiodic words arises
when α∗ = 3.594 . . . , which means that the best relationship between q and n is n ≈ 3.6q2.
This formula is used in section 4 to determine the size 231 K of the data array when m = 2
and q = 28.

One can also use Theorem 3.1 to compare several, say, M different independent strings. Let
Ui = (X0

i , X
1
i , . . . , X

R
i )T denote the (R + 1)-dimensional vector of frequencies of m-letter

Table 1. The optimal values α∗ and weights w for small R.

R α∗ w

0 3.59 1
1 4.77 [0.62, 0.38]
2 5.89 [0.47, 0.33, 0.20]
3 6.98 [0.37, 0.29, 0.20, 0.14]
4 8.06 [0.33, 0.25, 0.19, 0.14, 0.09]
5 9.13 [0.29, 0.23, 0.18, 0.14, 0.09, 0.07]
6 10.17 [0.25, 0.21, 0.18, 0.14, 0.09, 0.07, 0.06]
7 11.21 [0.23, 0.19, 0.17, 0.14, 0.09, 0.07, 0.06, 0.05]
8 12.24 [0.21, 0.18, 0.16, 0.14, 0.09, 0.07, 0.06, 0.05, 0.04]
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Testing randomness via aperiodic words 1137

Figure 1. The plot of the optimal value α∗ and its linear approximation.

aperiodic words appearing in the ith string, i = 1, . . . , M . Assuming equal sample sizes,
a test of the null hypothesis H0: EU1 = EU2 = · · · = EUM can be based on the statistic
W = �i(Ui − Ū )T�−1(Ui − Ū ), with � defined by equations (9) and (10). Under the null
hypothesis, W has approximate χ2-distribution with (R + 1)(M − 1) degrees of freedom.

4. An example: testing block ciphers and other randomness sources

We start this section with testing of randomness applied to block ciphers. These ciphers are
widely used and are important in cryptographic applications. Recently, the NIST carried out
a competition for the development of the AES. Its goal was to find a new block cipher which
could be used as a standard. Among the requirements was that its bit output sequence should
look like a random string even when the input is not random.

Indeed, one of the basic hurdles for the 15 AES candidates was ‘Randomness Testing
of the AES Candidate Algorithms’, whose aim was to evaluate these candidates by their
performance as RNGs [13]. It is worth mentioning that some aperiodic words (namely, the
templates 010111011, 110001010, m = 9, and 01011011, m = 8) have been used at earlier
stages of the AES testing (in the so-called 128-bit key avalanche set), but in conjunction with
the χ2-statistic (as opposed to the Poisson approximation).

The winner of the competition, the Rijndael algorithm, and a runner-up, the Serpent
algorithm, were used in our experiment involving randomness testing of their outputs by
using the procedure described earlier with m = −2, R = 5. Both of these algorithms were
implemented in C++MFC on two files of size 231 K each, 1000 times each. Each of the
1000 trials used a different 128-bit randomly chosen key. (In fact, the keys were chosen by
self-encrypting the initial key as they passed randomness tests.)
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1138 A. L. Rukhin and Z. Volkovich

Two modes of encryption were used. In the Electronic Code Book (ECB) mode, the input
data were divided into equal size 128-bit blocks, and each block was encrypted one at a time.
(Separate encryptions within different blocks are independent of other.) ECB is the weakest
mode because no additional security measures are implemented besides the basic algorithm.

In the cipher block chaining (CBC) mode, the plaintext is also divided into equal size 128-
bit blocks, but each encrypted block is xored with the next data block. This procedure makes
each block dependent on previous blocks. Thus, to find the plaintext of a particular block, one
needs to know the ciphertext, the key and the ciphertext of the previous block.

The first (non-random) text was a regular English text which happens to contain only 1116
different aperiodic pairs out of possible 65, 280. The expected numbers of frequencies of
aperiodic words under the randomness hypothesis are as follows.

0 1 2 3 4 5
1791 6446 11604 13924 12532 9023

Encryption in the ECB mode by Rijndael after one round did not make it look much more
random (table 2). Even after eight rounds, the numbers of aperiodic two-letter patterns were
very far from those corresponding to the randomness hypothesis (table 3). (The P -values in the
following tables are obtained from the normal approximation in Theorem 3.1 for a two-sided
alternative.)

Just one round encryption in the CBC mode led to statistics confirming the randomness
hypothesis. Indeed, the value of statistic S/

√
wT�w is −0.09 with a large P-value.

The results for the Serpent algorithm turned out to be very similar, although randomness-
like statistics were not attained after the first iteration in the CBC mode. Note that the Rijndael
algorithm uses the key size and the block size to be 128, 192 or 256 bits and has a variable
number of rounds. This number is 10 if both the block and the key are 128-bit long, it is 12 if the
maximal length of the block or the key is 192 and it is 14 otherwise. There is an initial round
key addition followed by these rounds. The Serpent algorithm encrypts a 128-bit plaintext
into the 128-bit ciphertext in 32 rounds. Thus, Rijndael seems to achieve randomness faster,
although the ‘complexity’ of the rounds plays a role too. Still the statistical characteristics of
both algorithms did not change much after two rounds.

The second text was a file of zeros. As the ECB mode cannot be expected to lead to good
results, we did not try it and give here the results only for the CBC encryption with two rounds.

One can see that the entries in tables 4–6 are very close to the theoretical values. Although
all individual P-values (for a two-sided alternative) in these tables are fairly large, the values of

Table 2. Characteristics of the number of aperiodic words under encryption in the ECB
mode by Rijndael after one round.

0 1 2 3 4 5

Mean 51844 2381 1995 996 766 614
Standard deviation 632 161 126 54 42 32
P -value 0.00 0.00 0.00 0.00 0.00 0.00

Table 3. Characteristics of the number of aperiodic words under encryption in the ECB mode
by Rijndael after eight rounds.

0 1 2 3 4 5

Mean 5266 8265 11279 11058 9683 7319
Standard deviation 62 77 93 93 87 77
P-value 0.00 0.00 0.00 0.00 0.00 0.00
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Testing randomness via aperiodic words 1139

Table 4. Characteristics of the number of aperiodic words under encryption in the CBC mode by
Rijndael after one round.

0 1 2 3 4 5

Mean 1789 6443 11606 13929 12529 9023
Standard deviation 39 69 91 104 101 86
P-value 0.58 0.40 0.86 0.98 0.50 0.23

Table 5. Characteristics of the number of aperiodic words under encryption in the CBC mode by
Rijndael after two rounds.

0 1 2 3 4 5

Mean 1795 6457 11,609 13,928 12,523 9018
Standard deviation 39 69 87 101 99 84
P-value 0.79 0.75 0.47 0.89 0.87 0.60

Table 6. Characteristics of the number of aperiodic words under encryption in the CBC mode by
Serpent after two rounds.

0 1 2 3 4 5

Mean 1784 6419 11,556 13,873 12,481 8989
Standard deviation 41 67 86 101 97 81
P-value 0.46 0.93 0.29 0.74 0.86 0.90

statistic S/
√

wT�w in tables 5 and 6 are quite different: 0.62 and −3.68, respectively. It hap-
pens because the Serpent algorithm seems to produce fewer aperiodic words than randomness
dictates, and this again gives an edge to Rijndael.

The results seem to confirm not only other methods that determined the AES competition
winner, but also good qualities of our testing procedure, which is fairly easy to implement.

We also performed numerical experiments on several available generators.A random source
of binary strings of length p can be obtained from a RNG which produces integer random
numbers in the interval [0, 2p − 1].

As the first example built in the MATLAB system, RNG unidrnd function was tested. One
hundred sequences having size of 231 kB were created by integer random numbers in [0, 255]
generated by the function. The outcomes of 10 sequences are presented in table 7.

In the next example, we took 10 random files generated with an HG400 RNG –
HG432 (at speed of 32 Mbit/s) whose files of size of 1024 kB are available at
http://www.random.com.hr/products/hg400/data/.

The inner working of HG432 is described by Stipcevic [14]. The testing was performed
with the same value of q. The cases for which the null hypothesis would be rejected at the
significance level 0.05 are boldfaced (table 8).

Work is on the way at theANSI X9F1 standards committee to develop and standardize a RNG
that would use certain properties of the physical processes, such as the rates of the radioactive
decay, to produce random numbers. The techniques described in this article could be useful
in evaluating the properties of such generators. Indeed, one physical random bit generator is
given by Jakobsson et al. [15], with the supporting data set in a form of binary file of the 92
million random bits (11,468,800 bytes) available at http://www.cs.nyu.edu/symbo1126. This
file was divided into successive subfiles of the size 231 kB, which were analyzed with q = 29

and q = 210, with 3.6q2 leading bits of the file (table 9).
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Table 7. Outcomes of the MATLAB RNG testing.

0 1 2 3 4 5

Theoretical values 1790.7 6446.5 11604 13924 12532 9023

First sequence 1749 6495 11482 13994 12463 8961
P-values 0.1623 0.7272 0.1294 0.7224 0.2690 0.2570
Second sequence 1808 6406 11467 13918 12425 9042
P-values 0.6588 0.3071 0.1023 0.4784 0.1697 0.5793
Third sequence 1803 6455 11567 13922 12339 8952
P-values 0.6145 0.5423 0.3668 0.4919 0.0424 0.2274
Fourth sequence 1806 6498 11427 13871 12527 9032
P-values 0.6413 0.7395 0.05051 0.3255 0.4824 0.5377
Fifth sequence 1756 6486 11537 13953 12432 8976
P-values 0.2062 0.6888 0.2680 0.5958 0.1860 0.3104
Sixth sequence 1873 6271 11583 13973 12422 8966
P-values 0.9741 0.0144 0.4240 0.6598 0.1630 0.2742
Seventh sequence 1767 6421 11415 13891 12693 9045
P-values 0.2878 0.3755 0.03994 0.3886 0.9249 0.5916
Eighth sequence 1743 6357 11711 13793 12603 9009
P-values 0.1299 0.1326 0.8405 0.1328 0.7372 0.4414
Ninth sequence 1809 6521 11578 13646 12476 9080
P-values 0.6674 0.8234 0.4059 0.00919 0.3086 0.7258
Tenth sequence 1785 6330 11686 13881 12491 8948
P-values 0.4465 0.07344 0.7777 0.3566 0.3573 0.2149

Table 8. Results of the testing of the HG432 generator.

0 1 2 3 4 5

Theoretical values 0.0107 0.1677 1.3099 6.8224 26.65 83.281

First file 0 0 0 7 32 75
P-values 0.4588 0.3411 0.1262 0.5271 0.8500 0.1821
Second file 0 0 0 7 25 91
P-values 0.4588 0.3411 0.1262 0.5271 0.3746 0.8012
Third file 0 1 0 6 21 84
P-values 0.4588 0.9790 0.1262 0.3764 0.1369 0.5314
Fourth file 1 0 1 4 22 87
P-values 1 0.3411 0.3933 0.1400 0.1839 0.6582
Fifth file 0 0 2 8 19 61
P-values 0.4588 0.3411 0.7267 0.6740 0.0692 0.00731
Sixth file 0 0 2 7 22 75
P-values 0.4588 0.3411 0.7267 0.5271 0.1839 0.1821
Seventh file 0 0 1 9 18 81
P-values 0.4588 0.3411 0.3933 0.7978 0.0469 0.4013
Eighth file 1 0 2 9 26 84
P-values 1 0.3411 0.7268 0.7978 0.4499 0.5314
Ninth file 0 0 4 6 26 72
P-values 0.4588 0.3411 0.9906 0.3764 0.4499 0.1082
Tenth file 0 0 1 7 29 69
P-values 0.4588 0.3411 0.3933 0.5271 0.6755 0.0588

Table 9. Results of a physical random bit generator testing (q = 210).

0 1 2 3 4 5

Theoretical values 28651 103144 185658 222790 200511 144368
Data 28463 102739 185574 223542 199841 144246
P-values 0.1333 0.1038 0.4222 0.9444 0.0672 0.3741
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Testing randomness via aperiodic words 1141

The US government requires that all cryptographic modules used by the US Federal Agen-
cies to protect sensitive data get validated to the FIPS 140-2 standard. This standard currently
allows three RNGs; complying with at least one of them is mandatory. The results of this
article can be used by standards developers to demonstrate the real strength of three currently
adopted RNGs whose technical description can be found in Annex C of Federal Security stan-
dard FIPS 140-2 [16–18]. These three generators have passed the test based on equation (13)
with similar P-values as in table 7.

To further study the aperiodic words test properties, the P-values of test statistics based on
their frequencies for binary expansions of e, π,

√
2 and

√
3 were evaluated.

As consecutive P-values were sought, it was more convenient to employ a χ2-statistic based
on the pseudo-inverse of the limiting covariance matrix of the joint distribution of aperiodic
word frequencies. In figure 2, the P-values are plotted against the first 50,000 digits of binary
expansions of

√
2,

√
3, π and e. According to this data, P-values corresponding to

√
3 and e

are somewhat smaller than those of
√

2 and π . The smallest P-values for
√

3 binary expansion
occur in the block from 3447th to 3453th digits, (of order 0.03). Because of the multiple nature
of the testing problem, they lack statistical significance to reject the random nature of these
digits. Our results do not support the conjecture about the non-random appearance of digits in
the expansion of

√
3 [19]. Notice that Good and Gover [20] applied the serial test to the study

of binary digits in the expansion of
√

2, and Rukhin [3] employed the approximate entropy test.
Similar to

√
3, these tests occasionally led to small P-values (about 0.0025), which, however,

do not provide enough statistical significance against the randomness hypothesis.

Figure 2. Consecutive P -values for binary expansions of
√

2 (the line marked by +),
√

3 (dashed line), π (dotted
line) and e (solid line) when m = 3.
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1142 A. L. Rukhin and Z. Volkovich

To sum up, the aperiodic words test could be a useful addition to the existing suite of tests
for randomness [21].
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