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We discuss several methods to produce superpositions of optical coherent states (also known as
“cat states”). Cat states have remarkable properties that could allow them to be powerful tools for
quantum information processing and metrology. A number of proposals for how one can produce
cat states have appeared in the literature in recent years. We describe these proposals and present
new simulation and analysis of them incorporating practical issues such as photon loss, detector
inefficiency, and limited strength of nonlinear interactions. We also examine how each would perform
in a realistic experiment.
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I. INTRODUCTION

For many years a primary goal for researchers in quan-
tum optics has been the generation of exotic quantum
states of light. These have included squeezed vacuum
states, photon number eigenstates (also known as Fock
states), and many examples of entangled sets of pho-
tons. States such as these have served well in many ba-
sic tests of the foundations of quantum theory, and they
may eventually prove to be useful for quantum computa-
tion, quantum communication, quantum metrology, and
lithography. [1] Therefore there is much interest in im-
proving methods to produce these states and to generate
other types of optical quantum states.

The particular quantum state of interest in this pa-
per is a superposition of two coherent states with oppo-
site phase, which is often referred to as a (Schrödinger)
cat state. Cat states may be used as the logical qubit
basis in a quantum computer [2, 3]. They may also
serve as input states to an interferometer that is able to
measure distances with greater accuracy than achievable
within the limits usually imposed by the light’s wave-
length [4]. Transforming a single coherent state into a
cat state through unitary evolution alone would require
a strong nonlinearity. Also, cat states are extremely
sensitive to decoherence from photon absorption. For
these reasons cat states containing more than one photon
on average have been produced only in cavity-quantum-
electrodynamic experiments in which an atom interacts
with the electromagnetic field confined to a high finesse
optical cavity [5, 6]. In experiments of this sort the cav-
ity confines the optical mode to a small volume so that
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it interacts very strongly with an atom passing through
the cavity. Unfortunately, because the cat state is con-
fined to a cavity, it can neither be manipulated with tools
such as beam splitters or phase shifters, nor be measured
with standard optical means such as photon counters or
homodyne detection. For the uses described in [2–4] we
require cat states that occupy freely propagating optical
modes.

In recent years researchers have proposed several
schemes to produce freely propagating cat states. The
purpose of this paper is to provide a comprehensive re-
view and critique of these schemes. We examine the
performance of these schemes in realistic experimental
environments subject to problems such as photon loss,
detector inefficiency and noise, and limited strength of
nonlinear interactions. We also make recommendations
for the design of cat production experiments. In this in-
troductory section we review the properties of cat states
and optical tools such as beam splitters and photon coun-
ters, which are commonly used in the cat production
schemes. The introduction also describes our model for
photon absorption, how photon absorption affects cat
states, and the difficulties of verifying that a cat state
has been produced in an experiment. Section 2 exam-
ines a method originally proposed by Yurke and Stoler
[7] to transform a coherent state into a cat state using
the optical Kerr effect. Section 3 briefly discusses the
suggestion by Wolinsky and Carmichael [8] that one may
make cat states using a degenerate parametric oscillator
in the strong coupling regime. Section 4 examines the
method proposed by Song, Caves and Yurke [9] to pro-
duce cat states based on an optical backaction evasion
measurement. Section 5 examines the method of photon
subtraction from a squeezed vacuum state proposed by
Dakna and co-authors [10]. Section 6 examines a method
from Lund, Jeong, Ralph, and Kim [11] by which one may
use small amplitude cat states, linear optical devices, and
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measurements to produce large amplitude cats. Section 7
examines two schemes [12, 13] that use a weak Kerr effect
followed by measurements to make high amplitude cats.
We conclude with some general observations in Section
8.

A few experiments have already demonstrated the pro-
duction of small cat states containing less than one pho-
ton [14–17]. These are sometimes called “Schrödinger
kittens” or simply “non-Gaussian states”. All of these
experiments use the photon subtraction method and will
be discussed in Section 4.

A. Properties of Cats

For a general introduction to the quantum properties
of light, we refer the reader to the text [18]. The elec-
tromagnetic field may be decomposed into independent
modes, each of which is defined by a particular polar-
ization, distribution of light frequencies, and direction of
propagation. Each mode is modeled as a quantum me-
chanical oscillator whose frequency is equal to the light’s
frequency ω. The number of photons occupying a mode
is equal to the number of quantized energy excitations in
that mode’s oscillator. Let â be the photon annihilation
operator, so â† is the creation operator, and â†â = n̂
is the operator corresponding to the photon number ob-
servable. We use |n〉 as the photon number eigenstate,
so n̂|n〉 = n|n〉. For cases in which we are interested in
more than one mode, we will distinguish the operators
and states with subscripts labeling each mode.

The coherent state |α〉 is the eigenstate of the annihi-
lation operator with eigenvalue α:

â|α〉 = α|α〉, (1)

where α may be any complex number. The light pro-
duced by ordinary lasers well approximates a coherent
state. (In fact it is more accurate to say that laser light
approximates the mixed state

∫

dφ|eiφα〉〈eiφα|, but if all
light modes are phase locked to a local oscillator, then
this distinction is irrelevant.) In the photon number basis
a coherent state has the decomposition

|α〉 = e−|α|2/2
∞
∑

n=0

αn

√
n!
|n〉. (2)

For ease of notation we usually assume α is a real, pos-
itive number. In a few cases we will multiply α by a
complex phase to characterize coherent states with com-
plex amplitudes.

We define a cat state to be a superposition of two co-
herent states with opposite phases:

|Ψ±(α)〉 =
1

√

N±(α)
(| − α〉 ± |α〉). (3)

The normalization factor N±(α) = 2±2e−2α2

is required
because the states |−α〉 and |α〉 are not orthogonal. How-

ever |〈−α|α〉|2 = e−4α2

, so that for a moderately sized

α = 2 this overlap is only 1.1× 10−7. When expressed in
the photon number basis |Ψ±(α)〉 becomes

|Ψ±(α)〉 =
e−α2/2

√

N±(α)

∞
∑

n=0

αn

√
n!

((−1)n ± 1) |n〉. (4)

|Ψ+(α)〉 contains only even numbers of photons, and
|Ψ−(α)〉 contains only odd numbers. For this reason they
are often called the “even cat” and “odd cat” states. The
even and odd cat states are orthogonal to one another,
and one may perform a measurement to distinguish the
two by counting the photons.

In addition to the photon number basis we may also
measure the cat state in the quadrature bases correspond-
ing to the position and momentum of the oscillator. The
position observable is defined by

x̂ =
1√
2

(

â† + â
)

, (5)

and the momentum observable is

p̂ =
i√
2

(

â† − â
)

. (6)

In the x̂ basis, the cat states |Ψ±(α)〉 have the wave func-
tions

Ψ
(α)
± (x) =

π−1/4

√

N±(α)

(

e−
1
2 (x+

√
2α)2

± e−
1
2 (x−

√
2α)2

)

.

(7)
It has two characteristic Gaussian shaped humps located
at x = ±

√
2α. In the p̂ basis the cat states have the wave

functions

Ψ
(α)
+ (p) =

2π−1/4

√

N±(α)
e−p2/2 cos(

√
2pα) (8)

Ψ
(α)
− (p) =

2π−1/4

√

N±(α)
e−p2/2i sin(

√
2pα). (9)

These are characterized by oscillations of frequency
√

2α
inside a Gaussian envelope centered at p = 0. Resolving
these oscillations is another possible method to distin-
guish between even and odd cats.

We will also consider slightly more general cats with
phase φ:

|Ψφ(α)〉 =
1

√

Nφ(α)

(

| − α〉 + eiφ|α〉
)

. (10)

|Ψ0(α)〉 = |Ψ+(α)〉 and |Ψπ(α)〉 = |Ψ−(α)〉. Changing φ
changes the number of photons contained in |Ψφ(α)〉 and
requires some type of nonlinear interaction.

B. Beam Splitters

Many of the following cat state production schemes
use beam splitters, so we will introduce them here. For
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a more thorough discussion of beam splitters see [19].
One may think of a beam splitter as a partly silvered
mirror. A mode of light enters the beam splitter on each
of the mirror’s two faces. Some fraction T of the light
energy in each mode is transmitted through the mirror
and R = 1 − T is reflected. While passing through the
beam splitter, the state of the two input modes will evolve
according to the transformation

|ψ〉1|φ〉2 → B̂(T )|ψ〉1|φ〉2, (11)

where B̂(T ) is the unitary operator given by

B̂(T ) = earccos(
√

T )(â1â†
2
−â†

1
â2). (12)

When two coherent states |α〉1 and |β〉2 enter a beam
splitter, their state will become

|α〉1|β〉2 →
∣

∣

∣
α
√
T − β

√
1 − T

〉

1

∣

∣

∣
β
√
T + α

√
1 − T

〉

2
.

(13)
It should be clear from this relation that using only co-
herent states and beam splitters one can never produce a
cat state, because a beam splitter simply transforms co-
herent states into coherent states of different amplitudes.

C. Photon Counters

To make cats we will imagine that we have devices that
can count the number of photons in an optical mode.
Such devices have been very difficult to engineer, but
significant progress has been made in this area during re-
cent years. Photon counters suffer from inefficiency and
dark counts. Inefficient detectors fail to register all pho-
tons arriving in the mode of interest. We model this
by imagining that the mode of interest passes through a
beam splitter whose transmissivity is equal to the detec-
tor’s efficiency η before entering an ideal detector [19]. If
the signal mode has a probability distribution to measure
n photons given by P(n), then the detector will have a
probability of Pη(m) to register m photons:

Pη(m) =

∞
∑

n=m

(

n

m

)

ηm(1 − η)n−mP(n), (14)

when m ≤ n, and Pη(m) = 0 when m > n.
In addition to inefficiencies, detectors also suffer from

dark counts. These are events in which the detector reg-
isters more photons than in fact arrive in the mode we
are measuring. To model the dark counts we imagine
that a second light mode (in addition to the mode we are
measuring) enters the detector. We assume the number
of photons in this second mode has a Poisson probabil-
ity distribution. If the mean number of dark counts is
d during a detection event of fixed duration, then the
probability that q dark count photons are registered is

pd(q) =
dqe−d

q!
. (15)

Given an initial photon distribution in the signal mode of
P(n), we combine the dark count and inefficiency influ-
ences to find that the probability to register m photons
is

Pd(m) =

m
∑

x=0

Pη(x)pd(m− x) (16)

=

m
∑

x=0

pd(m− x)

×
∞
∑

n=x

(

n

x

)

ηx(1 − η)n−xP(n). (17)

Here the sum adds the probabilities that x photons are
transmitted through the beam splitter and that m − x
additional dark counts occur for all x ≤ m.

Photon detectors are usually characterized by their
dark count rate D, the number of dark counts registered
per unit time. The size of d will depend on each detec-
tor’s dark count rate and the duration of the observation.
Shorter observing times will give a smaller d but require
faster detectors. Our model for photon counters does
not incorporate the effects of dead time. We assume that
such effects can be made to be negligible by increasing
the time between detection events.

Let us briefly describe two photon counters that may
be suitable to assist in a cat production experiment:
the visible light photon counter (VLPC) and the su-
perconducting transition edge sensitive photon counter
(TESPC). The VLPC is discussed in [20]. It is essentially
an array of avalanche photodiode detectors (APDs),
which operate by a version of the photoelectric effect in
which incident light frees an electron from the valence
band lifting it into the conducting band. A large voltage
then accelerates this electron, which collides with oth-
ers, creating an avalanche of electrons that is amplified
and manipulated with electronic devices. Most avalanche
photodiodes are unable to distinguish between 1, 2, 3,
... photons. Because a single photon depletes the avail-
able electrons, the arrival of a second photon is unable
to create a larger electronic signal. The VLPCs can dis-
tinguish between different numbers of photons because
the avalanche is confined to a small portion of the de-
tector’s area, leaving most of the VLPC’s area available
for the detection of the other photons. References [21–
24] discuss the use of the VLPC to distinguish between
m − 1 and m photons with m as large as 10 photons.
They also successfully demonstrate the use of the trans-
formation Eq. (14) to correct for detector inefficiencies.
In [20] Takeuchi and co-authors report achieving a maxi-
mum single photon quantum efficiency of η = 0.882±0.05
using 694 nm light, with a dark count rate of D = 2×104

counts/second. Lower dark count rates may be achieved
by reducing bias voltage applied to the photodiodes, but
this also reduces the efficiency. They also claim that their
photon counting system roughly obeys the relation

log10(D) = 3.226η + 1.206, (18)
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where D is measured in counts per second. In [22],
Waks and co-authors describe an experiment in which
the VLPC was used to observe the photon statistics of
a squeezed vacuum state. They produced squeezed light
of 532 nm pulsed at 20 ns. By limiting the detection in-
tegration window to 20 ns they were able to reduce the
average number of dark counts per detection event to
d ∼ 4 × 10−4.

The TESPC detects photons through calorimetry [25].
The light is absorbed by the superconducting electrons in
a small sample of tungsten. The tungsten sample is volt-
age biased on the edge of the superconducting-to-normal
transition, so a small increase in the electrons’ tempera-
ture creates a large change in the tungsten’s resistance.
Measuring this resistance change allows one to calculate
the energy deposited by the incoming photons. Rosen-
berg and co-authors [25] report an efficiency of η = 0.88
at a wavelength of 1550 nm. They observed a dark count
rate of only D = 400 counts/second. This is caused pri-
marily by blackbody radiation entering the optical fiber
delivering the photons to the detector and ambient light
scattering into the fiber. Therefore the dark count rate
should be significantly reduced for light at shorter wave-
lengths. Because these primary dark count sources are
not intrinsic to the TESPC, it is likely that the dark
count rate can be reduced to negligible levels with suffi-
cient technical care (for example, shielding and filtering)
of the light path. The recent advent of such high effi-
ciency, low dark count detectors such as the VLPC and
the TESPC makes several of the following cat production
methods just now feasible.

D. Cat State Decoherence.

In addition to the difficulty of creating cat states we
must also face the extreme fragility of these states to de-
coherence. We expect that the primary source of decoher-
ence in an optical experiment will be photon absorption.
This can be modeled by assuming some of the cat state is
lost via a beam splitter type of interaction. The cat state
enters one mode of the beam splitter, and the vacuum
enters the other mode. After passing through the beam
splitter some of the cat’s energy will be transferred to the
second mode and lost to the environment. Suppose the
cat state passes through some medium whose transmis-
sivity is η, the cat occupies mode 1, and mode 2 contains
the vacuum used to model the environment. The initial
state of the cat/environment system is |Ψ±(α)〉1|0〉2. Af-
ter the two modes pass through the beam splitter their
state becomes

| − α
√
η〉1| − α

√

1 − η〉2 + |α√η〉1|α
√

1 − η〉2, (19)

where we have omitted the normalization. The second
mode is lost to the environment, and the first mode is in

FIG. 1: Plot of F+(α, η), the fidelity of a cat state |Ψ+(α)〉
that has suffered from some decoherence by passing through
a medium of transmissivity η. The plot includes curves for
even cats with α = 1 (solid curve), α = 2 (small dashes),
α = 4 (medium dashes), α = 10 (large dashes).

a mixed state given by

ρ±(α, η) = (1 − P±)|Ψ±(α
√
η)〉〈Ψ±(α

√
η)|

+P±|Ψ∓[(α
√
η)〉〈Ψ∓(α

√
η)|, (20)

where

P± =
1

2

N∓(α
√
η)

N±(α)

(

1 − e−2α2(1−η)
)

, (21)

and N± is defined just following Eq. (3). Absorption
affects the cat states in two ways. The amplitude of
the coherent states is decreased from α to α

√
η. With

a probability P+ the even cat becomes an odd cat, and
with probability P− the odd cat becomes an even cat.
These probabilities increase quickly with increasing α.
This result is discussed in more detail in [26, 27].

To compare the decohered cat state with the original
cat state, we will use the fidelity, calculated according to

F±(α, η) = 〈Ψ±(α)|ρ±(α, η)|Ψ±(α)〉. (22)

We find that

F±(α, η) = (1−P±)
4e−α2(1+η)

N±(α)N±(α
√
η)

(

eα2√η ± e−α2√η
)2

.

(23)
In Fig. 1 we investigate the dependence of this fidelity
on α and η. This plot shows a very large loss of fidelity
for higher amplitude cat states even for η very close to
1. We also see the distinct behavior of the two types of
error. For large α the fidelity quickly drops to 1/2 as η
decreases from 1, because the initial pure cat becomes the
mixed state 1/2|Ψ+(α)〉〈Ψ+(α)| + 1/2|Ψ−(α)〉〈Ψ−(α)|.
As η continues to decrease, the coherent state amplitude
decreases, lowering the fidelity from 1/2 to 0.
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E. Cat State Verification.

Any cat generation experiment requires a verification
that the experiment makes cat states. This is likely to be
accomplished by performing a series of homodyne mea-
surements, which can be used to reconstruct the state
through quantum tomography [19, 28]. If the photode-
tectors used in the homodyne measurement have effi-
ciency η, then the homodyne measurement signal will be
equivalent to that of the generated state having passed
through a beam splitter with transmissivity η. If η
is known, the homodyne detection inefficiency effects
can be corrected in data analysis by using the inverse
Bernoulli transformation (based on Eq. (14)) and other
techniques described in [19, 28]. The correction is ap-
proximate and depends on the accuracy with which the
efficiency is known, what other error sources are present,
and the algorithm used to infer the quantum state from
the homodyne data. Fortunately, the photodetectors
used for homodyne measurements have much higher ef-
ficiencies than those used for counting small numbers
of photons. For example Polzik, Carri, and Kimble re-
port obtaining an overall homodyne detection efficiency
of η = 0.98 in [29].

Reconstructing a cat state through tomography re-
quires a large number of homodyne measurements. In
this procedure one measures the probability distribution
of the x̂ quadrature for each phase of the local oscillator
from 0 to π. In practice this is done by constructing a
histogram of x̂ with a finite bin size, with a finite number
of measurements, for a finite number of local oscillator
phases. We would like to estimate the required number
of phases, the bin size resolution, and the number of mea-
surements required for each histogram. Determining the
best method for assigning uncertainty to, for example,
the density matrix elements of the reconstructed state
and the relationship between error bars and the number
of measurements requires further research. For discussion
of these issues see [28, 30, 31]. A full treatment of this
difficult data analysis problem requires further research.
Instead, we quote a few rules of thumb from [19], which
contains a much more detailed discussion. To reconstruct
the state of a mode containing at most M photons, one
should collect histograms for M + 1 equally spaced local
oscillator phases, and the histogram bin size resolution
must be less than π/(2

√
2M + 1). Suppose the state we

are measuring has the photon number probability distri-
bution P(m). To accurately reconstruct the probability
to detect m photons each histogram should contain on
the order of 4 × (P(m))−2 counts. These rules can help
us to estimate the order of magnitude of the number of in-
dividual homodyne measurements required to verify the
production of a cat state. For example, the even α = 2
cat contains a mean number of approximately 4 photons.
The probability to detect 10 photons in this cat state is
P(10) ∼ 0.01. If we are willing to ignore higher photon
numbers, reconstructing the Wigner function of this state
will require on the order of 4×(0.01)−2×(10+1) ∼ 4×106

individual homodyne measurements. For the more mod-
est goal of verifying an α = 1 cat, we could ignore photon
numbers larger than 4. In this case P(4) = 0.03, so we
would need ∼ 2 × 105 measurements. These rough esti-
mates highlight the need for any proposed experiment to
be able to produce a large number of cat states in order
to perform a full reconstruction of the state generated by
that experiment.

It is possible to estimate the fidelity of the state pro-
duced in an experiment with a perfect cat state without
fully reconstructing the unknown state. See [32] for an
application of such a technique in an ion trap system.

II. KERR EFFECT

In 1986, Yurke and Stoler [7] considered the evolution
of a coherent state under the influence of the Kerr ef-
fect. They showed that, under suitable conditions, the
coherent state evolves into a cat state.

The Kerr effect causes a phenomenon known as “self-
phase modulation.” When light passes through a
medium exhibiting the Kerr effect, the rate at which
the light’s phase advances depends on the intensity of
the light. This is modeled with an anharmonic-oscillator
Hamiltonian of the form

HK = ωn̂+ χn̂2, (24)

where ω is the light frequency, and χ is the strength of the
nonlinear term. The first term causes only linear phase
evolution, so we neglect it in the following treatment.

If we apply this Hamiltonian to the coherent state |β〉
for a time π

2χ ,

|β〉 → |Ψ π
2
(β)〉 =

1√
2

(| − β〉 + i|β〉) . (25)

Due to the i factor, this cat is slightly different from
those discussed in other sections of this paper, but the
i cat exhibits the same interesting and useful features.
Achieving this transformation requires a large nonlinear
strength χ or a long interaction time.

The Hamiltonian in Eq. (24) is naive and cannot cap-
ture the full dynamics of the light’s interaction with the
nonlinear medium. We assigned a single frequency to the
light, and only continuous waves of infinite duration can
have a single frequency. If a pulse of light with a finite
duration, with say a Gaussian shape, interacts with the
nonlinear medium the dynamics will be far more com-
plicated. Because the pulse will have lower intensity (or
photon number density) at its leading and trailing edges,
the Kerr effect will have a greater effect on the center of
the pulse. Any linear or nonlinear dispersive properties
of the medium will distort the pulse shape. We are ignor-
ing all of these effects in the following treatment. Instead,
our goal is to provide the first analysis of the relationship
between cat state fidelity, χ, and absorption.
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To model loss we assume that the number of photons
decays in time according to

〈n̂ (t)〉 = 〈n̂ (0)〉e−γt, (26)

where γ describes each material’s photon loss rate. The
evolution of a (possibly mixed) state traveling through a
Kerr medium with loss obeys the master equation

dρ̂

dt
= −iχ

[

n̂2, ρ̂
]

+
γ

2

[

âρ̂, â†
]

+
γ

2

[

â, ρ̂â†
]

. (27)

This equation has been solved by Milburn and Holmes
in [33]. They used the antinormally ordered quasiprob-
ability distribution known as the “Q-function.” The Q-
function allows one to represent ρ̂ as a function over the
complex plane, and the value of Q(a) is proportional to
the probability that ρ̂ “contains” the coherent state |a〉.

Q (a) =
1

π
〈a|ρ̂|a〉. (28)

Note that a may be complex. By projecting both sides
of the master equation onto 〈a| from the left and onto
|a〉 from the right, one obtains a differential equation for
Q(a). Milburn and Holmes solved this using a power
series and obtained

Qloss(a) = e|a|
2

∞
∑

q,p=0

(aβ∗)q
(a∗β)

p

q!p!

(

ip
2−q2

)

×

exp

[−πγ(p+ q)

4χ

]

×

exp

[

−|a|2
(

γ
χ i

p−qe−
γ
2χ + 2i(p− q)

γ
χ + 2i(p− q)

)]

, (29)

after t = π
2χ . Qloss is a function of γ/χ, which is an

unitless quantity.
We calculate the fidelity of the state described by Qloss

with the cat in Eq. (25) using the relation

F = π

∫

d2aPcat(a)Qloss(a), (30)

where Pcat is the normally ordered quasiprobability de-
scribing the state in Eq. (25). The P function allows
us to represent any density matrix as a diagonal sum or
integral over coherent states:

ρ̂ =

∫

d2|a〉〈a|P (a). (31)

We calculate Pcat(a) for Eq. (25) using the methods ex-
plained in the third chapter of [34] and find

Pcat(a) =
1

2

∞
∑

m,n=0

βn (β∗)m

m!n!
×

(

1 + (−1)n+m + ie−2|β|2 [(−1)n − (−1)m]
)

×
∂n

∂an

∂m

∂(a∗)m
δ2(a), (32)

FIG. 2: (a) Fidelity of the state produced using the Kerr
effect in the presence of loss when our goal is to produce
a cat of amplitude β = 1 (solid curve), 2 (long dashes), 3
(medium dashes), and 4 (short dashes). The amplitude of the
input coherent state has been optimized to give the maximum
fidelity. (b) Same as (a), zoomed in on small γ/χ.

where δ2(a) is the Dirac delta function on the complex
plane.

We can now evaluate the integral in Eq. (30) and find
the fidelity with which one can make cat states using a
lossy Kerr effect medium. Plots of the fidelity as a func-
tion of γ/χ are in Fig. 2. Creating a cat of β = 1 with
F > 0.5 requires γ/χ < 1.5. Larger cats are much more
sensitive to loss. Making high fidelity cat states directly
using the Kerr effect requires some nonlinear optical ma-
terial/process for which γ/χ < 1.

Materials exhibiting the Kerr effect are often described
using a “nonlinear index of refraction” n2, which depends
on the light intensity I.

n(I) = n1 + n2I = n1 + n2

(

h̄ωn̂

AeffT

)

, (33)

where n1 is the usual linear index of refraction, Aeff is the
effective cross-sectional area of a pulse of light traveling
through the material, and T is the pulse’s duration. To
relate n2 to χ we use

χ =
h̄ω2n2

AeffT
, (34)
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from [35]. To obtain a large γ/χ for a given medium, we
should confine the mode’s Aeff to be as small as possible.
One way to achieve this would be to use short pulses
of T ∼ 1 fs traveling through single mode fibers, which
typically have Aeff ∼ 7µm2.

Fused silica fibers used for telecommunication have
exceptionally low loss of 0.2 dB/km at the wavelength
1550 nm. This corresponds to γ = 1.79× 105 s−1. Fused
silica has a small n2 = 2.6 × 10−20 m2/W [36]. This
corresponds to χ = 620 s−1 for these pulses. Therefore
single mode fused silica fibers can give γ/χ ∼ 260, which
is much too large for making cat states.

Chalcogenide (As2S3) glass fibers have larger n2 =
2 × 10−18 m2/W. However, their loss is 100 dB/km
at 1.55 µm. Single mode chalcogenide can have γ/χ ∼
1.3× 104. We have been unable to find any conventional
nonlinear optical fibers that can give a smaller γ/χ than
that of fused silica [37].

Mecozzi and Tombesi [38] and Yurke and Stoler [39]
published papers in 1987 that proposed making cat-like
states using a two mode cross-phase modulating or four
wave mixing Kerr effect [38, 39]. They described the
application of the Hamiltonian with the nonlinear inter-
action term

Hint = χ
(

â1â
†
2 + â†1â2

)2

(35)

to the input state |0〉1|β〉2. After time π/(4χ), the two
modes will evolve to

−e−iπ/4|0〉1|Ψ−(β)〉2 + |Ψ+(iβ)〉1|0〉2. (36)

Here the cat may be found in mode 1 or 2 with prob-
ability 0.5, while the other mode contains the vacuum.
Tombesi and Mecozzi presented further analysis in [40],
where they discuss both self-phase modulating and cross-
phase modulating Kerr effects.

A similar scheme was proposed in 1997 by Vitali,
Tombesi, and Grangier [41]. They described using the
interaction Hamiltonian

Hint = χn̂1n̂2, (37)

and the input state |α〉1|β〉2 to make

|Ψ+(α)〉1|β〉2 − |Ψ−(α)〉1| − β〉2. (38)

Then one should measure the x-quadrature of mode 2.
With probability approximately 0.5 the measurement re-
sult will be near ±

√
2β, and mode 1 will be the cat

|Ψ±(α)〉. Vitali, Tombesi, and Grangier also examined
this scheme’s performance in the presence of loss, con-
cluding that the loss should be very small in order to
observe the interference fringes in the q-quadrature of
the cat state.

We have not performed a full analysis of photon ab-
sorption in the cross-phase modulating Kerr effect. How-
ever, the cat states generated by this method are just as
fragile as those generated with the self-phase modulating

Kerr effect. Therefore we expect that the requirement
for a low ratio of loss to nonlinear coupling strength in
cross-phase modulation is similarly demanding as in the
self-phase modulation case.

Two technologies that enhance optical nonlinearities
are photonic crystals and electromagnetic induced trans-
parency (EIT). Photonic crystals may be able to reduce
the group velocity of light pulses by factors of 100 to
1000 [42, 43]. A 300-fold reduction of the group velocity
(compared to c) of 1550 nm light was observed in a silicon
photonic crystal [44]. Reducing the group velocity would
allow one to make an equal size cat with a smaller length
of fiber and a proportional reduction of γ. However pho-
tonic crystal waveguides such as that used in [44] have
an attenuation of ∼ 3.6×105 dB/km [45], which is much
too large to maintain cat state coherence.

EIT is a technique for coupling two (or more) light
fields through an atom [46]. By engineering the inter-
action between the light fields and the atom, one can
obtain many interesting linear and nonlinear optical ef-
fects, one of which is cross phase modulation between
the light fields [47]. During cross phase modulation,
the phase of each light mode advances at a rate pro-
portional to the number of photons in the other mode.
If two coherent states |α〉 and |β〉 are subjected to cross
phase modulation for the correct time, they will evolve
to |α, β〉 + | − α, β〉 + |α,−β〉 − | − α,−β〉 [48]. This is a
state of two cats entangled with one another. However,
cross-phase modulation at the level of only a few photons
has not yet been demonstrated [46].

III. DEGENERATE OPTICAL PARAMETRIC

OSCILLATOR

In 1988 Wolinsky and Carmichael presented an analy-
sis of degenerate optical parametric oscillators (DOPO)
[8]. In a DOPO a strong pump field of frequency 2ω is
used to pump a nonlinear crystal. The crystal exhibits a
χ(2) susceptibility and can oscillate at frequency ω when
driven by the pump field. Through this process pump
photons are converted into pairs of signal photons with
frequency ω. To increase the interaction strength the
crystal is placed in an optical cavity. Photons of both
frequencies may leak out of the cavity or be absorbed by
the crystal.

Wolinsky and Carmichael examined the behavior of a
DOPO using the Hamiltonian

H =
ig

2

(

â†s
2
âp − â2

s b̂
†
p

)

+ iE
(

â†p − âp

)

+Hloss, (39)

where âs is the annihilation operator of the signal mode,
and âp is the annihilation operator of the pump mode.
Hloss describes the linear losses from the cavity mirrors
and in the crystal. When the pump is treated as a classi-
cal field, and loss is neglected, this Hamiltonian produces
squeezed light. Wolinsky and Carmichael analyzed this
system, including loss, in the strong coupling regime with
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g ∼ 1, which is much larger than that achieved in current
squeezing experiments. Their analysis was based on the
positive-P representation, an approximation of the usual
normally ordered P representation. Their analysis sug-
gested that in the regime where the ratio of the pump
strength λ to g2 is very small, one may find the cat state
∣

∣

∣

√
λ/g

〉

s
+
∣

∣

∣
−
√
λ/g

〉

s
in this system.

However, Reid and Yurke [49] showed that for any fi-
nite number of photons in the signal mode, the steady
state of the degenerate parametric oscillator in the strong
coupling regime is instead an incoherent mixture of
∣

∣

∣

√
λ/g

〉

s
and

∣

∣

∣
−
√
λ/g

〉

s
. The system’s Wigner func-

tion is always positive, and no interference fringes would
be visible in homodyne detection. Further analysis by
Krippner, Munro, and Reid [50] investigated the short-
time evolution of this system starting with the signal
mode in the vacuum state. Their calculations indicate
that the signal mode may exhibit interference fringes in-
dicative of a cat-like state, but these fringes only survive
for times much shorter than the signal mode’s cavity de-
cay time. Unfortunately, the χ(2) coupling strength re-
quired to produce cats using this method is vastly larger
than the strength of currently available materials. Also,
we do not have a good method to confirm the cat’s pres-
ence, because it is trapped in the optical cavity and will
decohere when it exits the cavity mirrors.

IV. BACK-ACTION EVASION MEASUREMENT

Because of the great difficulty in creating cats directly
using the Kerr effect, researchers have proposed numer-
ous methods for making cats based on squeezing followed
by measurement and postselection. The first of these was
described by Song, Caves, and Yurke in [9]. Their scheme
is in Fig. 3. It is based on the back-action evasion mea-
surement described in [51], except that the input state
is the vacuum, and we measure the number of photons
rather than one of the quadratures.

We begin by making an entangled, squeezed state of
modes 1 and 2 through non-degenerate down-conversion.
This prepares the state

Ŝ12(r)|01, 02〉 = er(â1â2−â†
1
â†
2)|01, 02〉. (40)

The wavefunction describing the x-quadratures for the
two modes is

ψsq(x1, x2) = 〈x1, x2|Ŝ12(r)|01, 02〉 =

1√
π

exp

[

− 1
2e

−2r
(

x1√
2
− x2√

2

)2

− 1
2e

2r
(

x1√
2

+ x2√
2

)2
]

.

(41)

Modes 1 and 2 then meet in a beam splitter with trans-
missivity T , which performs the transformation x1 →√
Tx1 +

√
1 − Tx2 and x2 →

√
1 − Tx1 −

√
Tx2 on

ψsq(x1, x2). We next count the number of photons in

FIG. 3: Diagram of the scheme to make cats using the back-
action evasion measurement. Ŝ12(r) is a nondegenerate down
conversion crystal, which creates squeezed light in modes 1
and 2 at frequency ω. The dashed line is a beam splitter with
transmissivity T . The triangle is a photon counter, and Ŝ1(s)
is a degenerate down conversion crystal that squeezes mode
1. Not shown are a light beam or beams used to pump the
down conversion processes and mirrors to redirect the light.

mode 2, obtaining the result m. This projects the state
onto the m photon eigenstate of mode 2, which is

φm(x2) = e−x2/2 Hm(x2)
√

2mm!
√
π
, (42)

where Hm(x) is the Hermite polynomial with index
m. Last, mode 1 is squeezed in the degenerate down-
conversion

Ŝ1(s) = exp

[

s

2

(

â2
1 −

(

â†1

)2
)]

. (43)

The final state is

ψm(x1) =
es/2

√

P(m)

∫ ∞

−∞
dx2φm(x2)

× ψsq(
√
Tx1e

s +
√

1 − Tx2,
√

1 − Tx1e
s −

√
Tx2),

(44)

where P(m) is the probability to measure m photons.
We will use ψm and |ψm〉 to denote the output of several
schemes to make cats by post selecting on counting m
photons, but in each case ψm will represent a different
state.

We have performed the first calculations of the fi-
delity of the state produced from the back-action evasion

scheme with the perfect cat state wave function Ψ
(α)
± (x)

from Eq. (7)

F =

∣

∣

∣

∣

∫ ∞

−∞
dx1Ψ

(α)
± (x)ψm(x1)

∣

∣

∣

∣

2

. (45)

To maximize the fidelity with which we can make a par-
ticular cat, we optimize over the two squeezing parame-
ters r and s, the beam splitter transmissivity T , and the
number of photons detected m. [In the original scheme
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of Song, Caves, and Yurke, T = cos2(1/2 arcsin(tanh r)),
which is the value of T required for a back-action evasion
measurement, but here we treat T as a free parameter.]
For a particular m, wegenerally find a significant region
of the (r, s, T ) parameter space that gives the maximum
fidelity.

Table I shows the fidelities with which we can make
an even cat state with α = 2, along with the parameters
that give the maximum fidelity. Particularly we choose
to show the combination (r, s, T ) that gives the highest
P(m) with which one can make the highest fidelity cat
states. By increasing T and reducing r and |s|, one can
obtain cats with the same fidelity but lower probability.
The table shows fidelities only for even m, because for
odd m the fidelity is always 0.

TABLE I: Fidelities for Making Cats with Back-

Action Evasion

m F P(m) r s T

2 0.9709 0.110 1.14 -1.35 0.808

4 0.9978 0.056 1.44 -1.48 0.710

6 0.9995 0.038 1.61 -1.63 0.652

8 0.9998 0.029 1.76 -1.77 0.616

Fidelities with which one can make even cat states with α = 2

using the back-action evasion scheme. We optimize r, s, and T

first, to give highest fidelity, and second, to give highest

probability.

Let us discuss the case of m = 2 in more detail. The
values shown in the table show the highest probabil-
ity with which one can obtain the highest fidelity cat
states. We can reduce the demand for high squeezing
by accepting a lower success rate. For example, us-
ing (r = 0.00235, s = −0.588, T = 0.999999), we ob-
tain cats with the same F = 0.9709 with probability
P(2) = 4 × 10−11. A reasonable compromise could be
(r = 0.074, s = −0.593, T = 0.999) at P(2) = 4 × 10−5.
This gives flexibility to reduce the required level of
squeezing while suffering a lower success probability.

The original back-action evasion scheme of Song,
Caves, and Yurke was improved by Yurke, Schleich, and
Walls in [52]. They recommended squeezing mode 1 be-

fore the two mode squeezing Ŝ12(r). This removes the
need to squeeze mode 1 after the beam splitter used for
the back-action evasion measurement, and it reduces the
need for strong squeezing. Figure 4 shows the new pro-
cedure.

We analyzed this improved scheme using methods sim-
ilar to those just described for the original back-action
evasion scheme. We again show a table of fidelities for
making an even cat state with α = 2 in Table II. Moving
the squeezing of mode 1 to the beginning of the pro-
tocol allows us to produce cats with equal fidelity with
much lower levels of squeezing. For the m = 4, 6, and 8
we can remove the beam splitter and count the photons

FIG. 4: Diagram of the improved scheme to make cats using
the back-action evasion measurement. It is similar to that in
Fig. 3 except that Ŝ1(r) has been moved to the beginning of
the network. Not shown are a light beam or beams used to
pump the down conversion processes and mirrors to redirect
the light.

in mode 2 just after the entangling operation of Ŝ12(r).
One can make cats with fidelities equal to those shown in
the table requiring less squeezing, by accepting a lower
P (m). For example one may use the combination m = 2,
r = −0.0009, s = −0.589, and T = 0.547, to make an
α = 2 even cat state with probability P (m) = 1.01×10−6

and F = 0.9709.

TABLE II: Fidelities for Making Cats with the Im-

proved Back-Action Scheme

m F P(m) r s T

2 0.9709 0.110 -0.263 -1.36 0.972

4 0.9978 0.056 -0.271 -1.41 1

6 0.9995 0.0017 -0.162 -0.62 1

8 0.9998 0.000016 -0.116 -0.45 1

Fidelities with which one can make even cat states with α = 2

using the improved back-action evasion scheme shown in Fig. 4.

We optimize r, s, and T first, to give highest fidelity, and second,

to give highest probability.

We now introduce a new simplification of the “back-
action evasion” scheme, which is now quite divorced from
the original back-action evasion ideas of [51]. Because
the beam splitter used to interfere modes 1 and 2 before
the photon counting measurement shown in Fig. 4 is un-
necessary for m ≥ 4, we remove it altogether. One can
always turn a two mode squeezing operation into two
single mode squeezers followed by a beam splitter [53]:

Ŝ12(r) = B̂12(1/2)Ŝ2(−r)Ŝ1(r). Therefore the sequence

Ŝ12(r)Ŝ1(s) = B̂12(1/2)Ŝ2(−r)Ŝ1(s + r), which is just
independent squeezing of modes 1 and 2 followed by a
beam splitter. This leads us to consider a scheme that
begins with squeezed states in both modes 1 and 2, which
then interfere at a beam splitter with transmissivity T .
We count the number of photons in mode 2, obtaining
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FIG. 5: Diagram of our simplified “back-action evasion”
scheme to make cats. Modes 1 and 2 begin in the vacuum
state, and are transformed to squeezed states by Ŝ1(r) and

Ŝ2(s). The two squeezed states meet at the beam splitter
with transmissivity T . We then count the number of photons
in mode 2, obtaining result m. Mode 1 then contains |ψm〉,
which should be similar to a cat state. Not shown are a light
beam or beams used to pump the down conversion processes
and mirrors to redirect the light.

result m and preparing the output of mode 1 in the state
|ψm〉, which should be similar to a cat. Figure 5 contains
a diagram of this scheme.

After having been squeezed, modes 1 and 2 are in the
state

ψsq(x1)ψsq(x2) =
e

r
2
+ s

2√
π

exp

[

− (x1e
r)2

2
− (x2e

s)2

2

]

.

(46)
The beam splitter causes the the rotation of x1 and x2

described above. After measuring m photons in mode 2,
the output state is

ψm(x1) =

∫ ∞

−∞
dx2φm(x2)ψsq

(√
Tx1 +

√
1 − Tx2

)

×ψsq

(√
1 − Tx1 −

√
Tx2

)

, (47)

where φm(x2) is the photon number eigenstate wave func-
tion from Eq. (42). We show a table with the fidelity
with which this state approximates an even cat state of
α = 2 in Table III. Again in this scheme we can trade off
squeezing strength for lower P (m) while keeping the same
fidelity. We could make an even cat state of α = 2 whose
fidelity is 0.9709 using m = 2, r = −0.590, s = 0.0010,
and T = 0.9975 with P (2) = 1.3×10−6. Here the squeez-
ing of mode 2 is so small, that we are tempted to remove
it altogether. We discuss such a scheme in detail in the
next section.

Two difficulties for implementing these “back-action
evasion” schemes are their need for a high efficiency pho-
ton counter and strong squeezing. If the photon counter
misses one photon, the scheme makes a state orthogo-
nal to the desired cat, so the fidelity would be signifi-

TABLE III: Fidelities for Making Cats with Simpli-

fied Back-Action Scheme

m F P(m) r s T

2 0.9709 0.110 0.263 -1.62 0.665

4 0.9978 0.056 0.274 -1.76 0.497

6 0.9995 0.038 0.221 -1.85 0.398

8 0.9998 0.029 0.182 -1.93 0.332

Fidelities with which one can make even cat states with α = 2

using our simplified “back-action evasion” scheme shown in

Fig. 5. We optimize r, s, and T first, to give highest fidelity, and

second, to give highest probability.

cantly degraded. Experimentalists often report results
of squeezing experiments using the number of decibels of
the variance of the quadrature noise above or below the
variance of the vacuum’s noise. The number of decibels
is related to our squeezing parameter s by

# of dB = −10 log10 e
−2s ≈ 8.69s (48)

for the x−quadrature, and the negative of this for the
p−quadrature. A squeezing parameter of s = 1 corre-
sponds to ∼ −8.7 dB of quadrature noise power squeezing
below the shot noise limit. The most impressive squeez-
ing experiments for continuous wave light that the au-
thors are aware of have achieved −9 dB [54] and −10 dB
[55] of squeezing. In a typical pulsed squeezing experi-
ment one may obtain −3 dB (s = 0.35) of squeezing [56].
Fortunately these schemes allow a trade-off in which one
may use weaker squeezing to make equally high fidelity
cats with a decreased success probability.

Here we have made no effort to analyze any impurity
or loss in the squeezing, which is likely to have signifi-
cant effects. For discussion of loss we refer the reader to
a pair of papers by Tombesi and Vitali [57] and Vitali
and Tombesi [58]. In addition to loss, these papers de-
scribe a method for detecting the cat state by exploiting
the back-action evasion interaction. They imagine pro-
ducing a cat in a cavity that has much lower loss for the
signal (cat-containing) mode than for the meter mode.
The meter mode exits the cavity, and we count its pho-
tons. This prepares the signal mode in a cat state. We
could then use the back-action evading interaction be-
tween the signal and meter modes to measure the signal’s
state by performing homodyne detection of the meter’s
quadratures. Using this method requires that the back-
action evasion conditions be met, so one could not freely
optimize T for making high fidelity cats.

It is also well known that highly squeezed states are
very sensitive to phase noise [54]. It would be very chal-
lenging to incorporate the high efficiency photon counter,
two strong down conversion processes, and stable phase
control in a single experiment.
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FIG. 6: Diagram for the generation of cat states by means of a
conditional photon number measurement on a beam splitter.
The down conversion Ŝ1(r) creates the single mode squeezed
state in mode 1. It is input into one port of a variable trans-
missivity T beam splitter with mode 2 containing a vacuum
state. A definite measurement of m photons on one output
port of the beam splitter prepares the state |ψm〉, which is a
good approximation to a cat state.

V. PHOTON SUBTRACTION

A simplification of the back-action evasion scheme was
proposed by Dakna and co-authors [10]. It too uses
squeezing followed by photon counting but accomplishes
similar goals with only one stage of squeezing. Their
scheme is depicted in Fig. 6 and works as follows. First it
requires first the preparation of a squeezed state of light.
This can be accomplished by sending a laser beam at
twice the frequency of the desired squeezed state through
a down-converting crystal. This prepares mode 1 in the
state

|ψsq〉 = e
r

“

â1
2−(â1

†)
2

”

/2|0〉

=
(

1 − λ2
)

1
4

∞
∑

n=0

√

(2n)!

n!

(

λ

2

)n

|2n〉, (49)

where λ = − tanh r. |ψsq〉1 has only even numbers of
photons, so in this respect it is already like the even cat
state.

To make a cat, we combine the squeezed state and
a vacuum state on a beam splitter B̂12(T ) with variable
transitivity T . On the mode 2 output port from the beam
splitter we count the number of photons and obtain the
result m. The conditional state of output mode 1 is then

|ψm〉 =
1√
Nm

∞
∑

n=0

cn,m

(

λT

2

)
n+m

2

|n〉, (50)

where

cn,m =
(n+m)!

(

1 + (−1)
n+m

)

(√
n!Γ

(

n+m
2 + 1

)

) (51)

and Nm =
∑

n c
2
n,m

(

λT
2

)n+m
. If an odd number of pho-

tons m is registered in the detector, then cn,m = 0 for
all even n’s, and if m is even, then cn,m = 0 for all odd
n’s. This condition is required by photon conservation;
because |ψsq〉1 has only even numbers of photons, the to-
tal number of photons emerging from the output ports of
the beam splitter must also be even. The mean photon
number of |ψm〉 is

〈n̄〉 =
1

Nm

∞
∑

n=0

nc2n,m

(

λT

2

)n+m

. (52)

Eq. (50) can be broken into two cases: the state re-
sulting from an even m result (which should be similar
to an even cat state) and the state from an odd m (which
should be similar to an odd cat). For m even, Eq. (50)
has only even photon numbers and can be written in the
simplified form

|ψm〉 =
1√
Nm

∞
∑

n=0

(2n+m)!
(

λT
2

)n+ m
2

(

n+ m
2

)

!
√

(2n)!
|2n〉. (53)

For λT small, this expression can be further approxi-
mated as

|ψm〉 ≈ |0〉 + λT
1 +m√

2
|2〉 + . . . . (54)

As m increases, so does the population in the |2〉 (and
higher) states compared with the m = 0 situation. Thus
for small λT the mean photon number increases as m
increases.

To find how closely the states |Ψm〉 match true even
cats, we calculate the fidelity F = |〈Ψ+(α)|ψm〉|2 be-
tween the two states. Plots of the fidelity of |Ψ+(2)〉
versus λT for various m’s appear in Fig. 7. One can
clearly see that the fidelity is improved and the amount
of required squeezing is lower when more photons are
detected.

We now examine how the maximum fidelity (maxi-
mized over the values of λT ) increases with m. In Fig. 8
we plot the maximum fidelity for each m measurement
when attempting to make even cats with α = 1, 2, and 3.
Fig. 9 shows the λT that optimizes the fidelity for each
m measurement.

Making a high fidelity cat state of a given α is best
achieved by conditioning successful cat production on de-
tecting larger numbers of photons and using smaller λT .
Unfortunately, large m detection events occur less fre-
quently as the amount of squeezing is decreased. The
probability of detecting m photons is

P(m) =

√

1 − λ2

1 − (λT )2

[

λ2T (1 − T )

1 − (λT )2

]m

×
Int[m/2]
∑

l=0

m!

(m− 2l)!l!2(2λT )2l
. (55)
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FIG. 7: Plot of the fidelity of the state |ψm〉 with |Ψ+(2)〉
versus λT for m=0 (solid curve), m=2 (small dashes), m=4
(medium dashes), m=6 (large dashes). The upper horizontal
axis shows the number of decibels of squeezing required when
T = 1 is used.

FIG. 8: Plot of the fidelity of the state |Ψm〉 with |Ψ+(α)〉 for
α = 1 (diamonds), 2 (stars), and 3 (squares). Notice that only
even m are represented, because odd m events give a fidelity
of zero. For each point we have numerically optimized λT to
give the maximum fidelity.

FIG. 9: Plot of the product λT that maximizes the fidelity
shown in Fig. 8.

FIG. 10: Plots of the probability to detect m photons after
sending a squeezed vacuum state with squeezing parameter
λ through a beam splitter with transmissivity T . Each plot
shows the probability obtained using the product λT that
maximizes the fidelity shown in Fig. 9. Plot (a) shows the
case in which λ = 0.99 and the probability is high. Plot (b)
shows the case in which λ = T . Plot (c) shows the case in
which squeezing is decreased and T = 0.99.

Although the state |ψm〉 and its fidelity with an even
cat depend only on the product λT , its probability de-
pends on λ and T separately. P(m) can be increased by
increasing λ while decreasing T (while keeping λT fixed),
but producing highly squeezed light is difficult. Fig. 10
plots the probability to detect m photons for various λ
and T combinations.
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FIG. 11: Probability to detect m=2 (solid curve), 4 (small
dashes), and 6 (long dashes) photons as a function of squeez-
ing (shown with both λ and in decibels). In each case T is
adjusted so that λT gives the best fidelity to produce a cat
state with α = 2.

Let us examine a few illustrative cases. Suppose we
desire to create an even cat state with α = 2. The
squeezed state closest to the α = 2 cat has λ = 0.883
and a fidelity of only 0.588. If we detect m = 2 pho-
tons from the state prepared using λT = 0.613, we will
create a cat with a fidelity of 0.891. Detecting m = 4
using λT = 0.469 produces a fidelity of 0.950. Detecting
m = 6 using λT = 0.380 produces a fidelity of 0.971.
Notice that higher fidelity is achieved by detecting larger
numbers of photons and using smaller λT . We would like
to select λ and T to give the highest success probability.
In Figure 11 we plot P(m) versus λ for detecting m = 2,
4, and 6 photons. The beam splitter’s transmissivity is
adjusted to keep λT equal to the value giving the best
fidelity for each photon detection case.

A weakness of this method for creating cat states is
its need for high efficiency photon counters. If the de-
tector misses one photon then this scheme will create a
state that is orthogonal to the desired state. Suppose,
for example, we wish to make an even cat after detecting
m = 2, but three photons actually arrive at the detector.
If the detector registers only two photons, then we have
produced an odd cat, but we falsely believe we have an
even cat. Other researchers have analyzed photon de-
tector inefficiency in photon subtraction for the case of
subtracting only one photon or using photon detectors
that cannot discriminate 1, 2, ... photons [16, 59, 60].
Here we will consider true photon counting. Let the de-
tector’s efficiency be represented by η. The probability
to register m photons (meaning that the detector reports
seeing m photons, when more thanm may actually arrive
at the detector) is given by Eq. (14). The state produced
when the detector registers m photons is now given by
the density operator

FIG. 12: Fidelity to make a cat state with α = 2 as a function
of λ when using detectors with efficiency η = 0.9. The solid
curve shows the m = 2 case, the small dashed curve shows
the m = 4 case, and the large dashed curve shows the m = 6
case. For each combination of λ and m, the beam splitter
transitivity has been adjusted to give the maximum fidelity.
These maximum fidelities are equal to the maximum fidelities
achievable perfect detectors are used.

ρη(m) =
1

Pη(m)

∞
∑

n=m

P(n)

(

n

m

)

ηm(1 − η)n−m|Ψn〉〈Ψn|.

(56)
The fidelity of ρη(m) depends on the probability dis-

tribution given by P(n). In fact given that m pho-
tons are registered, the fidelity will be greatest when
P(m+1) ≪ P(m). When this condition holds, we can be
confident that the detector’s registering m photons is not
caused by the arrival of more than m photons and the
detector’s inefficiency. This condition can be achieved by
using less squeezing and a beam splitter with larger T .
Of course, this will result in a decrease in the probability
to register m photons. By choosing the best combina-
tion of λ and T we can obtain a fidelity that is equal
to that achievable with perfect detectors. Unfortunately,
with the optimal combination of λ and T , P(m) is very
small. Let us continue our examination of the α = 2
case, but now the total efficiency of the photon coun-
ters and other optical elements in the photon counting
mode is η = 0.9. We would like to understand the trade-
offs between fidelity and probability for various photon
detection goals. In figures 12, 13, and 14 we plot the
fidelity, Pη(m), and the beam splitter transitivity T as
functions of λ for m = 2, 4, and 6. In each case T has
been optimized to give the highest fidelity. In each case,
the maximum fidelity is achieved in the a region of low
Pη(m). The maximum fidelity in the presence of loss is
equal to the maximum fidelity achievable when perfect
photon counters are used.

We now expand our analysis to include two additional
error sources: impurity in the squeezed state and “dark
counts” in the photon counter. Ideally, the squeezed state
would be a pure state of a mode matched to the local



14

FIG. 13: Probability to detect m = 2 (solid curve), m = 4
(small dashes), and m = 6 (long dashes) as a function of λ
when detectors with efficiency η = 0.9 are used. For each com-
bination of λ and m, the beam splitter transitivity has been
adjusted to give the maximum fidelity, as shown in Fig. 12.

FIG. 14: Beam splitter transitivity T that gives the largest
maximum fidelity in Fig. 12 as a function of λ. The solid
curve shows the m = 2 case, the small dashed curve shows
the m = 4 case, and the large dashed curve shows the m = 6
case.

oscillator. However achieving this goal is extremely diffi-
cult, especially for pulsed squeezing experiments [61–64].
Instead, the squeezed state in the mode matched to the
local oscillator is mixed, and other unwanted photons are
traveling down the same beam path in other modes (for
example, the wave packet carrying the extra photons has
a different temporal profile). These unwanted photons
may be registered by the photon counter, falsely signal-
ing the creation of a cat state. For these reasons we
expect that these unwanted photons will behave much
like “dark counts.” The homodyne detection system will
be immune to contamination by photons in non-matched
modes, because homodyne detection is sensitive only to
the mode exactly matched to the local oscillator.

We use the model in Fig. 15 to incorporate squeezed
state impurity, photon counter inefficiency, and “dark
counts.” The squeezing Ŝ1(r) creates a pure squeezed
state in mode 1. Mode 1 then passes through a beam
splitter with transmissivity ν, and 1 − ν of the light is

FIG. 15: Model of photon subtraction scheme including im-
purity in the initial squeezed state, inefficiency of the photon
counter, and “dark counts.” The beam splitters with trans-
missivities ν and η model loss from the squeezed state and
inefficiency in the photon counter. Modes 2 and 4 are lost
to the environment, mode 5 contains “dark counts”, and the
output of mode 1 contains ρd(m), which should be similar to
a cat state.

lost to the environment. In any real squeezing experi-
ment, the ideal squeezing and decoherence takes place
simultaneously inside the down-conversion crystal. This
model of ideal squeezing followed by a beam splitter can
create any state whose x− and p−quadratures are Gaus-
sian and centered at the origin, provided that the vari-
ance of one of the quadratures is equal to or less than the
vacuum’s variance. The observed quadratures’ variances
are related to the squeezing r and ν by

vx =
1 − ν

2
+ ν

e−2r

2
, (57)

and

vp =
1 − ν

2
+ ν

e2r

2
. (58)

We use the conventions that the vacuum’s variance is 1/2
and h̄ = 1.

The impure squeezed state in mode 1 then encounters
the beam splitter with transmissivity T , which diverts
light into mode 3. To model the photon counter, mode 3
passes through the beam splitter, whose transmissivity η
is equal to the real photon counter’s efficiency. Mode 4
is lost to the environment. In addition to mode 3, mode
5 also enters the photon counter. The probability that
mode 5 contains q photons is given by the Poisson distri-
bution with mean d, given in Eq. (15). The actual “dark
count” probability distribution may be different from the
Poisson distribution, especially when many of the “dark
counts” are actually caused by unwanted photons gener-
ated in the squeezing.
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We calculate exactly the full state (that is, the x-
quadrature wave functions) of the five modes symboli-
cally with the Mathematica computer algebra software.
The output of mode 1, conditioned on m photons be-
ing registered by the photon counter, is the mixed state
ρd(m). We calculate the fidelity between ρd(m) for typi-
cal values of ν, η, and d. We would like to optimize the
fidelity by adjusting r, T , and m. It is somewhat unre-
alistic to treat r, ν, and d as independently adjustable
parameters, because they are all governed by dynamics
occurring inside the down-conversion crystal. However,
this model should still be useful for making some general
recommendations and predictions for experiments.

We consider two representative imagined experiments.
For the first, whose goal is to make an odd cat with
α = 1.25 by measuring m = 1, we have ν = 0.85,
η = 0.8, d = 0.0005. The maximum achievable fidelity
with these parameters is F = 0.727 using T = 0.922
and r = −0.514. After the pure squeezed state passes
through the beam splitter ν, this corresponds to squeezed
quadrature variances of 4.2 dB above the vacuum and -
3.5 dB below. The detector will register one photon (or
one “dark count”) with probability 0.0143.

For the second experiment, the goal is to make an even
cat with α = 2 by measuring m = 2. For this more
ambitious effort, ν = 0.95, η = 0.9, and d = 0.0002.
The best fidelity is now F = 0.737 using T = 0.982 and
r = −0.722. This corresponds to the observable squeezed
quadrature variances of 6.11 dB above the vacuum and -
5.62 dB below. The detector will register two photons (or
one photon and one “dark count” or two “dark counts”)
with probability 0.00021.

In the presence of significant levels of “dark counts,”
the strategy of reducing |r| and increasing T to compen-
sate for detector inefficiency is no longer effective. There
is now a maximum m such that conditioning cat produc-
tion on larger numbers of photons creates a lower fidelity
cat state. High purity of the initial squeezed state and
matching of the squeezed state’s spatial and temporal
mode shape to the local oscillator is critical for making
high fidelity cat states. Any photons produced in the
squeezing process that occupy modes other than that
matched to the local oscillator will pollute the photon
counter, degrading the cat fidelity. It may be necessary
to engineer the pump mode shape and the squeezing crys-
tal to reduce the squeezing of other modes using methods
similar to those described in [65–67].

In recent years some experiments have used photon
subtraction to make small cat states, which are some-
times called “Schrödinger kittens”. All of these exper-
iments used standard APDs to subtract the photons.
These detectors are unable to discriminate 1, 2, 3, . . . pho-
tons, but the squeezing level is low, so the probability of
more than one photon being present is very small.

The first of these experiments was performed by
Wenger, Tualle-Brouri, and Grangier [14]. They used
squeezed light of r = −0.430, from which they extracted
a single photon using a beam splitter with T = 0.885

to create an odd cat state. They used a laser pulsed
at 790 kHz and made 30,000 cat states in a three hour
experiment. This corresponds to a Pd(1) ∼ 3.5 × 10−6

or making ∼ 2.77 cats/second. They used tomography
to reconstruct the Wigner function of this state, which
clearly shows non-Gaussian characteristics. However, the
reconstructed Wigner function did not contain any neg-
ative values (a feature common to all cat states). This is
primarily because their experiment suffered from a high
“dark count” rate, low photon detector efficiency, and
impurity in the squeezed state. A second pulsed experi-
ment was performed by Orjoumtsev, Tualle-Brouri, Lau-
rat, and Grangier [16]. This improved on the previous
experiment by having more careful filtering of the mode
measured by the APD and higher purity in the initial
squeezed state. They produced cat states with α = 0.89,
0.84, and 0.78 having fidelities of 0.70, 0.64, and 0.63.

A continuous wave experiment was performed by
Neergaard-Nielsen and co-authors [15]. Because light
flows through their system continuously, but the photon
counter gives discrete clicks, they recorded 1000 homo-
dyne measurements lasting 2 µs before and after each
APD click. The series of homodyne measurements was
then turned into a single quadrature value by weighting
each data point according to a temporal mode function
optimized to give the most negative Wigner function of
the reconstructed state. In this way they were able to
effectively extract a single pulsed mode from the con-
tinuous wave. They produced cat states with α = 1.05
and 1.3 with fidelities of 0.53. A similar continuous wave
photon subtraction experiment was performed by Wakui,
Takahashi, Furusawa, and Sasaki [17]. They showed
clear evidence of nonclassical states with negative Wigner
functions, but they did not report cat state fidelities.

Progress in making higher fidelity and larger amplitude
cats by photon subtraction can be achieved by carefully
tuning the beam splitter transmissivity and the level of
squeezing. Until now, all experiments have subtracted
only one photon from the squeezed state. Using pho-
ton counters that can discriminate 0, 1, 2, ... photons
would allow one to reject multi-photon events that de-
grade the fidelity of the cats produced in previous ex-
periments. Higher fidelities and amplitudes can also be
achieved by subtracting more than one photon. Sub-
tracting two or more photons allows one to use a less
squeezed state, which can be produced with higher pu-
rity. However, the multimode nature of pulsed squeezed
states may have a greater deleterious effect when more
photons are subtracted.

VI. MAKING KITTENS

A small odd cat state is well approximated by a
squeezed single photon [11]. When the squeezing op-

erator Ŝ(r) = e
r
2
(â2−â†2) is applied to a single photon,

the resulting state can be expanded in terms of photon
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FIG. 16: Fidelity between an odd cat state of amplitude α
and a squeezed single photon as a function of α.

FIG. 17: Squeezing r required to maximize the fidelity be-
tween a squeezed single photon and an odd cat of amplitude
α.

number states as

Ŝ(r)|1〉 =

∞
∑

n=0

(tanh r)n
√

(2n+ 1)!

(cosh r)
3
2 2nn!

|2n+ 1〉, (59)

where r is the squeezing parameter. The fidelity of this
state with an odd cat state is given by

F (r, α) = |〈Ψ−(α)|Ŝ(r)|1〉|2

=
2α2exp[α2(tanh r − 1)]

(cosh r)3(1 − exp[−2α2])
. (60)

The maximized fidelity as a function of α is shown in
Fig. 16[11], and the r that provides the maximum fidelity
is shown in Fig. 17[68]. The odd cat is well approximated
by a squeezed single photon for small amplitudes α and
small amounts of squeezing r. A single photon squeezed
by r = 0.31 would have a fidelity of 0.997 with an odd
cat of amplitude α = 1.

There are numerous technologies for producing single
photons. Some of the most promising include heralded
photons from nondegenerate down-conversion, optically
and electrically excited quantum dots, and atoms and

FIG. 18: Fidelity of the odd cat state with α = 1/2 with
squeezed single photon state made from a photon source
whose inefficiency is p.

ions in optical cavities. We refer the reader to [69] for pa-
pers on single photon sources. Unfortunately, pure single
photon states are not produced using current technology.
The single photon is always in a mixture with the vacuum
as

p|0〉〈0| + (1 − p)|1〉〈1|, (61)

where p is the inefficiency of the photon production. For
most schemes, the probability to produce two or more
photons is usually much smaller than p, so we ignore that
possibility here. Therefore, the squeezed single photon
state is also mixed with a squeezed vacuum

pŜ(r)|0〉〈0|Ŝ†(r) + (1 − p)Ŝ(r)|1〉〈1|Ŝ†(r). (62)

The squeezed vacuum is orthogonal to an odd cat state,
so the fidelity of the state given by (62) and an odd cat
state is (1−p)F (r, α). We plot the fidelity of the state in
Eq. (62) in Fig. 18 as a function of the photon production
inefficiency p for α = 1/2.

The success of this scheme to make kittens requires
improvements in single photon production technologies.
It also requires a practical method to coordinate the sin-
gle photon production with squeezing. One could at-
tempt such an experiment by continuously pumping the
down-conversion crystal, but homodyne measurements
are recorded only when a single photon is (or is supposed
to be) present.

VII. GROWING KITTENS INTO CATS

Lund, Jeong, Ralph, and Kim described a method for
producing larger amplitude cat states given a source of
kittens [11]. This process uses only linear optical devices
and photon detectors, and it is resilient to detector inef-
ficiency. The scheme is depicted in Fig. 19.

We begin with two small amplitude cat states |Ψφ(α)〉1
and |Ψϕ(β)〉2 in modes 1 and 2. The kittens meet in the
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FIG. 19: Schematic of the nondeterministic amplification pro-
cess to grow cat state amplitude. Two small cat states at
modes 1 and 2 and a coherent state in mode 3 are manipu-
lated with linear optics. A larger amplitude cat is produced
in the output of mode 2 when photons are detected in both
modes 1 and 3.

first beam splitter, whose transmissivity is set to

T =
α2

α2 + β2
. (63)

One output of that beam splitter is sent to a second beam
splitter, which has transmissivity 1/2. Mode 3 contains
the coherent state

|γ〉3 =

∣

∣

∣

∣

∣

2αβ
√

α2 + β2

〉

3

. (64)

The two beam splitters transform the two small cats and
the coherent state as

B̂13

(

1
2

)

B̂12 (T ) |Ψφ(α)〉1|Ψϕ(β)〉2|γ〉3 ∝
[∣

∣

∣

γ√
2

〉

1

(

| −A〉2 + ei(ϕ+φ)|A〉2
)

∣

∣

∣

γ√
2

〉

3

+eiφ
∣

∣

√
2γ
〉

1

∣

∣

∣

α2−β2

A

〉

2
|0〉3

+eiφ|0〉1
∣

∣

∣
−α2−β2

A

〉

2

∣

∣

√
2γ
〉

3

]

, (65)

where A =
√

α2 + β2. When modes 1 and 3 exit from the
second beam splitter, they are sent to photon detectors.
It is clear from Eq. (65) that the resulting state for mode
2 when both detectors register photons is a large cat ∝
(| −A〉2 + ei(ϕ+φ)|A〉2), whose amplitude A =

√

α2 + β2

is larger than both α and β, and the relative phase is the
sum of the relative phases of the input small cats.

The success probability (that both detectors detect at
least one photon) for a single attempt of the process
above is

Pϕ,φ(α, β) =
(1 − e

− 2α2β2

α2+β2 )2[1 + cos(ϕ + φ)e−2(α2+β2)]

2(1 + cos(ϕ)e−2α2)(1 + cos(φ)e−2β2)
,

(66)

FIG. 20: Success probabilities for a single attempt at the
process to make a cat from two kittens, depicted in Fig. 19.
We show probabilities for the input fields of two identical
small odd cat states (solid curve), two identical small even
cats (dashed curve), and even and odd small cats (dotted
curve).

which we plot for different input combinations in
Fig. 20[11]. The probabilities depend on the type of small
cats (odd or even) used. The probability Pπ,π(α, α) for
two identical odd cats is always larger than 0.214, regard-
less of the value of α.

One could make the small cats necessary to produce a
larger cat by this scheme, using any of the methods in
this paper.

The photodetector’s inefficiency will not affect the fi-
delity of the produced state. It reduces only the success
probability. However, the detectors’ dark counts may
cause errors. Events in which the detector registers more
photons than actually arrive at the detector can cause us
to accept a state that we should discard. If the real num-
ber of photons coming to either of the detectors is zero,
we should discard the resulting state, but dark counts can
make the detector register a number of photons different
from zero and the resulting state would be accepted, de-
creasing the fidelity of the produced state. On the other
hand, the inefficiency of the detector decreases the prob-
ability of generating the correct state. Here we provide
new analysis of this scheme incorporating detector inef-
ficiency and dark counts.

Although inefficiency alone would not affect the fi-
delity, to correctly model the effect of dark counts we
must also include the photon detectors’ inefficiency. We
imagine a beam splitter in front of each detector with
transmissivity η. We suppose that l1 and l3 photons pass
through the beam splitters before the detectors in modes
1 and 3. This gives the state

ρη(l1, l3) =
1

Pη(l1, l3)

∞
∑

n1=l1

∞
∑

n3=l3

P(n1, n3)

(

n1

l1

)(

n3

l3

)

×ηl1(1 − η)n1−l1 × ηl3(1 − η)n3−l3

×|ψ(n1, n3)〉〈ψ(n1, n3)|, (67)

where |ψ(n1, n3)〉 is the normalized state given by the



18

FIG. 21: Fidelity of a cat with α = 2 produced from kittens
with αi =

√
2 as a function of the average number of dark

counts in the detectors. The detectors have efficiencies η =
0.88 on the solid line and η = 0.8 on the dashed line.

projection of Eq. (65) into 〈n1, n3|, and P(n1, n3) is the
probability of measuring n1 and n3 photons in modes
1 and 3, respectively. To construct the density matrix
of the output mode after the dark counts we must add
the ρη(l1, l3) with their correct probability weights. This
gives us

ρd(m1,m3) =
1

Pd(m1,m3)

m1
∑

l1=0

m3
∑

l3=0

Pη(l1, l3) ×

pd(m1 − l1)pd(m3 − l3)ρη(l1, l3),(68)

where Pη(l1, l3), pd(m1 − l1), and Pd(m1,m3) are given
by Eqs. (14), (15), and (17), respectively. ρd(m1,m3) is
the state produced when the detectors register m1 and
m3 photons and dark counts. The scheme is believed to
have succeeded when both detectors register one or more
photons, so the full state produced by this scheme is

ρaccept =

∑∞
m1=1

∑∞
m3=1 Pd(m1,m3)ρd(m1,m3)

∑∞
m1=1

∑∞
m3=1 Pd(m1,m3)

. (69)

The fidelity is F = 〈Ψ±(α)|ρaccept|Ψ±(α)〉. Let us con-
sider the generation of a larger cat by this amplification
scheme, given that we have two small odd cats as input.
If we use a photon counter whose efficiency is η = 0.8 and
an average number of dark counts per detection event of
d = 4× 10−4, we can generate an α = 2 cat with fidelity
F = 0.9994. If we use a TESPC, described in section I,
whose efficiency is η = 0.88 and the average number of
dark counts per detection event is d = 10−8, we can ob-
tain an α = 2 cat with a fidelity of F = 0.999999986. To
obtain such an average number of dark counts we need to
carefully filter out blackbody radiation, shield the exper-
iment from ambient light, and restrict detection events
to short time windows.

Figs. 21 and 22 show the fidelity as a function of the
average number of dark counts and the efficiency, for gen-
erating an α = 2 cat state.

FIG. 22: Fidelity of a generated cat with α = 2 produced
from kittens with αi =

√
2 as a function of the detectors’

efficiency η. The detectors have mean dark counts d = 10−4

on the solid curve and d = 10−2 on the dashed curve.

This scheme has been analyzed in more detail by
Jeong, Lund, and Ralph in [70]. An important property
they discussed is that, when using impure input kittens,
this process can result in a purer output cat state. That
is, the output state can have a higher fidelity with a true
cat than the fidelity of the input states. Of course this is
not generally true for any input state, but it is very effec-
tive when the input states are squeezed single photon kit-
tens produced from inefficient single photon sources, as
we discussed in the previous section. This is because the
cases in which a squeezed vacuum rather than a squeezed
photon is input are more likely to be rejected because one
of the photon detectors does not click.

According to the calculations in [70], if the probability
that a single photon is not present is p = 0.4 and the in-
put squeezed single photons approximate cat states with
amplitude α = 1/2, the fidelity of the initial small cat is
F = 0.60, but the fidelity of the output state after one
iteration is F = 0.89. If p = 0.25 (p = 0.05), the fidelity
of the initial cat state is F = 0.750 (F = 0.950) but be-
comes F = 0.941 (F = 0.990) after one iteration of the
cat growth procedure.

Jeong and co-authors also report that when one gen-
erates a large cat out of perfect squeezed single photon
states, the fidelity maximizes for a particular number of
iterations. Starting with smaller αi states and perform-
ing more iterations to achieve α = 2 would produce a
lower fidelity. For example, four iterations starting from
the initial amplitude αi = 1/2 are required to gain the
maximum fidelity F = 0.995 for α = 2. High fidelity,
F > 0.99, can be obtained up to α = 2.5.

A slight adaptation of the scheme in Fig. 19 was pro-
posed by Rhode and Lund in [71]. They suggested using
one even cat and one odd cat as input states. The even
and odd cats interfere at a beam splitter. One of the out-
put ports of the beam splitter is measured by a photon
detector. A larger amplitude odd cat state will appear
in the other output port when the detector detects zero
photons. Their paper also contains some analysis of the
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FIG. 23: Schematic diagram of the process to generate a cat
state using small Kerr nonlinearity, a beam splitter, and a
homodyne detection of the x̂-quadrature.

performance of this scheme in the presence of mode mis-
match and loss.

Given a source of kittens, this appears to be an ex-
cellent scheme for producing larger amplitude cat states.
It can be implemented with current technology. Its re-
silience to photon detector inefficiency and dark counts
and its ability to purify its input are particularly attrac-
tive characteristics.

VIII. SMALL KERR EFFECT

In 2004, Jeong and co-authors [12] proposed a proba-
bilistic scheme to generate cat states using a small Kerr
effect, a beam splitter, and a homodyne measurement.
This scheme uses a self-phase modulating Kerr medium
like that discussed in Section II, but the Kerr Hamilto-
nian is applied for a much shorter time, so photon loss
should be a less significant factor. A diagram of the
scheme appears in Fig. 23.

We begin the process by subjecting an initial coherent
state |αi〉1 in mode 1 to the Kerr Hamiltonian given by
Eq. (24). Under the influence of this Hamiltonian, an
initial coherent state |αi〉 will evolve to the following state
after time t:

|ψ〉1 = e−
|αi|

2

2

∞
∑

n=0

αn
i

e−iφn

√
n!

|n〉1, (70)

where φn = χtn2. The resulting state in Eq. (70) is an
example of a generalized coherent state introduced by
Titulaer and Glauber [72] and discussed by Bialynicka-
Birula [73]. Generalized coherent states can always be
represented as superpositions of coherent states, with the

same modulus but different phases. In the specific case of
generalized coherent states for which φn is periodic in n,
they can be represented as a discrete superposition of N
coherent states. For example, when the interaction time
χt is π/N with a positive integer N , the initial coherent
state |α〉1 evolves to [74]

|ψN 〉1 ∝
N
∑

n=1

Cn,N

∣

∣

∣
−αie

2inπ/N
〉

1
, (71)

where we neglected the normalization. Cn,N obeys

N
∑

n=1

Cn,N (−e2inπ/N )k = e−iπk2/N . (72)

Using the method of Gantsog and Tanaś [75], this can be
solved to determine that

Cn,N =
1

N

N−1
∑

k=0

(−1)k exp[− iπk
N

(2n− k)]. (73)

The state in (71) is now combined with the vacuum
state |0〉2 in mode 2 on a 50-50 beam splitter. After
passing through the beam splitter the system is in the
state

N
∑

n=1

Cn,N

∣

∣

∣
−αie

2inπ/N/
√

2
〉

1

∣

∣

∣
−αie

2inπ/N/
√

2
〉

2
. (74)

We next perform a homodyne measurement of the x-
quadrature of mode 2. The measurement reduces the
state of Eq. (74) to

|ψN (x)〉1 =

N
∑

n=1

Cn,N (x)
∣

∣

∣
−αie

2inπ/N/
√

2
〉

1
, (75)

where

Cn,N (x) = NxCn,N 2

〈

x

∣

∣

∣

∣

− αie
2inπ/N/

√
2

〉

2

, (76)

Nx is a normalization factor, and |x〉 is the observed x-
quadrature eigenstate. To obtain the desired cat state,
the measurement result is selected in such a way that
the coefficients |CN/2,N(x)| and |CN,N(x)| have the same
nonzero value and all the other coefficients are zero. For
example, if x = 0 is measured and N = 4k, where k is an
integer, the coefficients will be the largest for n = N/4
and n = 3N/4. The coefficients will become smaller as n
gets far from those two points.

The fidelity between the state |ψN (x)〉 and a perfect
cat with appropriate amplitude is given by

F (αi, N, x) = max
φ

[

∣

∣

∣
〈Ψφ(αi/

√
2)|ψN (x)〉

∣

∣

∣

2
]

. (77)
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FIG. 24: Fidelity F of the cat state produced by a weak Kerr
effect when an x = 0 measurement is obtained versus the
generated cat amplitude iα. The solid curve shows the case
when N = 20 (one tenth of the interaction required by using
the Kerr effect directly), the small dashes show N = 12, and
the long dashes show N = 8.

Since the scalar product of two coherent states is

〈α|β〉 = e−|β−α|2/2e(α
∗β−αβ∗)/2, (78)

we can write the fidelity as [12]

F = max
φ

[

Nφ(αi)
2N2

x

∣

∣

∣

∣

∣

N
∑

n=1
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2
i

2

(

1 + e2inπ/N
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eiφ exp

[

−α
2
i

2

(

1 − e2inπ/N
)

]}∣

∣

∣

∣

2
]

. (79)

For an initial coherent state αi and an interaction time
χt = π/20 (N = 10, one tenth of the interaction required
to make a cat state using only the Kerr medium), the
fidelity between the state that leaves the Kerr medium
and an ideal cat is F ≈ 0.1 (for αi = 20). After the
homodyne measurement, the reduced state is similar to
a cat state with amplitude α = iαi/

√
2. The maximum

fidelity is achieved when x = 0 is observed. The output
state is most similar to an even cat (φ = 0) state. Figure
24 shows the fidelity of a generated cat when x = 0 is
measured as a function of the final amplitude α. A good
fidelity is obtained only for a final amplitude α larger
than ≈ 5 when N = 20.

The highest fidelity is achieved for the measurement
result x = 0. We show a plot of the fidelity as a function
of x in Fig. 25. The fidelity shown in the plot is the
maximum fidelity for all possible values of φ. The phase
of the cat state produced oscillates as a function of x, as
shown in Fig. 26 [76]. Each cat’s phase is random but
can be inferred from the measurement of x. Although
the random phase is inconvenient, because it is known,
one may correct or account for it.

To ensure high fidelity cats, one would choose some
δ such that only measurement cases with |x| < δ are

FIG. 25: Fidelity of the generated cat state against the mea-
surement outcome x for N = 20. The solid curve shows gen-
erated cat amplitude α = 20i, and the dashed curve shows
α = 10i. The fidelity has been maximized over the phase φ
of the generated cat state.

FIG. 26: Cat state phase φ that maximizes the fidelity shown
in Fig. 25. The solid curve shows generated cat amplitude
α = 20i, and the dashed curve shows α = 10i.

accepted. The success probability to get an acceptably
small x is [12]

P(αi, N, δ) =

∫

δ

dxTr12 [|ψn〉1212〈ψn| ⊗ |x〉11〈x|]

=
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dx
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2
〉

× exp
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2
i

2
(1 − e2i(m−n)π/N )

]

, (80)

where |δ| is the range of accepted x-quadrature measure-
ments. This “success probability” is the probability to
obtain a cat of any phase φ. The probability to make a
cat with a particular phase is much smaller.

One can make cat states with α = 20i using N = 20
and accepting all measurement results with |x| < 3.75.
All of these states would have fidelities greater than
0.99997 with perfect cats with correctly chosen phases.
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FIG. 27: Diagram of a scheme to produce cat states using a
cross-phase modulating Kerr medium. The dashed lines are
beam splitters with transmissivity equal to 1/2, and the solid
bold lines are mirrors. The triangles are photon detectors.

The probability to obtain |x| < 3.75 is 0.052. To make
cats with α = 10i and that have fidelities greater than
0.9991, one should accept |x| < 1.06, which will happen
with probability 0.045. When making cat states with an
even shorter interaction time (larger N), the fidelities are
smaller and the success probability is lower.

A related scheme for using the Kerr effect was proposed
by Gerry [13]. This scheme uses a cross-phase modulat-
ing type of Kerr medium, a single photon source, and
photon detectors. We picture the scheme in Fig. 27.

A single photon is inserted into a Mach-Zehnder inter-
ferometer, occupying modes 2 and 3. The coherent state
|α〉 is in mode 1. After the photon enters the interferom-
eter, the three modes are in the state

1√
2

(|α, 1, 0〉123 + |α, 0, 1〉123) . (81)

One arm of the interferometer (mode 2) and the coherent
state in mode 1 pass through a Kerr medium, governed
by the Hamiltonian χn̂1n̂2. After time t, this interaction
evolves the system into the state

1√
2

(

|αe−iφ, 1, 0〉123 + |α, 0, 1〉123
)

, (82)

where φ = χt. The phase of the coherent state is
shifted when the photon accompanies it through the Kerr
medium. After modes 2 and 3 pass through the second
beam splitter and exit the interferometer, the system is
in the state

1

2

(

|αe−iφ, 1, 0〉123 + |αe−iφ, 0, 1〉123
−|α, 1, 0〉123 + |α, 0, 1〉123

)

. (83)

When detector A sees 0 (1) photons and detector B sees
1 (0) photon, the resulting state of mode 1 is

1√
2

(

|αe−iφ〉1 ± |α〉1
)

. (84)

When φ = χt = π this produces an even or odd cat
with equal probability, depending on which of the two
detectors registers the photon.

Like the method discussed in Section II, this requires
a Kerr medium with a large ratio of nonlinear strength
to loss (χ/γ) to make high fidelity cats. However, in [77]
Jeong proposed an adaptation of this scheme designed
to overcome the problem of loss in the Kerr medium.
Suppose one desires to make the cat state of amplitude
α. Rather than inserting the coherent state |α〉 into the
network in Fig. 27, one should insert a coherent state
|β〉 with a much larger amplitude β ≫ α. One then
applies the Kerr effect for a much shorter time, so that
|βeiχt − β| = 2α. The displacement operator can shift
the state |βe−iχt〉±|β〉, so that it is symmetric about the
origin of phase space. This results in the desired state
|α〉 ± | − α〉.

Jeong also analyzed the behavior when the Kerr
medium absorbs photons. If we increase β, the coherence
of the desired output state, of fixed amplitude α, also in-
creases. This is possible because one can subject the light
to the lossy Kerr medium for a shorter time. According
to Jeong’s estimates one could make a high fidelity cat
with α = 3 using β ∼ 30, 000 through an optical fiber of
190 m. While Jeong’s calculations show that this scheme
is robust against loss in the Kerr medium, it requires dis-
placing a superposition of two coherent states of many
photons to the origin of phase space. Small displace-
ments can be achieved with high fidelity by passing the
state through a beam splitter with transmissivity T → 1,
while a high amplitude coherent state passes through the
other input of the beam splitter. It is not clear how well
this displacement scheme will work for states contain-
ing ∼ 30, 0002 photons. Any phase instability or mode
mismatching in the displacement operation may lead to
significant errors.

IX. CONCLUSIONS

We have reviewed and analyzed several methods to
make cat states. Aside from making the cats directly
using a strong, low loss Kerr effect, all of these methods
involve preparation of the light using a lesser nonlinearity
and postselecting on some measurement. We attempt to
compare some of the characteristics of the schemes in
Table IV.

We cannot make a definitive recommendation for the
“best” cat making scheme for all circumstances. This is
because the schemes were formulated with different ob-
jectives, such as desired cat state amplitude, fidelity, and
success probability; also the schemes each require signifi-
cantly different resources and technologies to implement.
Nevertheless we can make a few comments on the relative
utility of the schemes.

The photon subtraction scheme seems to be the sim-
plest to implement for a laboratory demonstration of cre-
ating small amplitude (α <∼ 2) cats. In fact a few exper-
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TABLE IV: Comparison of the Features of Cat Making Schemes

Detectors Nonlinearity Cat Produced

Direct Kerr effect None Strong, low loss Kerr effect F = 1 for zero loss

Back-action evasion Efficient photon counting Squeezing twice High fidelity, low probabil-
ity, low amplitude

Photon subtraction Efficient photon counting Degenerate squeezing High fidelity, low probabil-
ity, low amplitude

Squeezed single photon None Single photon input, squeez-
ing

Very low amplitude

Kittens into cats Photon detection low effi-
ciency is OK

None F = 1 for perfect input kit-
tens

Small Kerr effect Homodyne Brief or weak Kerr effect High amplitude, fidelity con-
ditional on homodyne mea-
surement

iments have already succeeded in this task [16, 17]. Im-
proving on these experiments is likely to require making
squeezed states with greater purity (especially in pulsed
experiments) and subtraction of more than one photon.
Given the simplicity and fidelities achievable with the
photon subtraction scheme, there seems to be little use
in implementing any of the back-action evasion schemes.
The back action evasion schemes provide only slightly
higher fidelities but require two stages of squeezing and
are significantly more complex to implement.

If a large number of high fidelity small amplitude cats
is required for use in a quantum computer, it may be
advantageous to make the cats by squeezing single pho-
tons. In this application it will be helpful to have the
cats available on demand, which will require a high fi-
delity triggered single photon source, such as those based
on quantum dots. Quantum computation with cat states
is likely to require fidelities significantly larger than 0.99,
perhaps even 0.999 - 0.9999. The iterative scheme for
growing kittens to cats may serve to both increase cat
amplitude and fidelity. The combination of making kit-
tens by squeezing single photons and then growing the
kittens has the advantage that the resulting cat fidelity
does not depend on the efficiency of photon detectors.

High amplitude cats may be most useful for interferom-
etry applications. In the future, making high amplitude
cats might best be accomplished using the Kerr effect,
either directly or after postselecting after homodyne de-
tection as described in the “Small Kerr Effect” section.
Making high fidelity cats directly through the Kerr ef-
fect requires a loss to nonlinear strength ratio γ/χ <∼ 1.
Single mode fused silica fibers have γ/χ ∼ 260, and we
have been unable to find any material with a smaller
ratio. Producing cats in this manner will likely require
significant advances in technologies, such as EIT or pho-
tonic crystals. Proposals for using a weaker Kerr effect

followed by postselection may have less strict require-
ments for γ/χ, but they are effective only when used
with large numbers of photons, so large that the cats will
be extremely susceptible to decoherence due to photon
absorption and other errors.

Much previous research in Kerr materials has been de-
voted to increasing the interaction strength while suffer-
ing from much larger photon loss. We strongly encour-
age research devoted to making low loss Kerr materials
or interactions. Low loss Kerr media will have many uses
in addition to making cat states such as non-demolition
photon counting and a controlled-phase quantum logic
gate for single photon qubits.

Mode mismatch is an error source that can affect any
of the methods to make cat states. While mode mismatch
sometimes behaves similar to photon loss, its effects can
be more subtle. This is an issue that deserves more anal-
ysis than we have provided here.

Acknowledgments

We thank Manny Knill for all of his helpful advice,
and we thank Thomas Gerrits for help in preparing this
manuscript. H. Vasconcelos thanks the Center for Ap-
plied Mathematics at University of Notre Dame for their
financial support. This paper is a contribution by the
National Institute of Standards and Technology and not
subject to US copyright. Certain trade names are iden-
tified in this report only in order to specify the methods
used in obtaining the reported data. Mention of these
products in no way constitutes endorsement of them.
Other manufacturers may have products of equal or su-
perior specifications.



23

[1] Hans-A. Bachor and Timothy C. Ralph. A Guide to Ex-

periments in Quantum Optics. WILEY-VCH, Weinheim,
2004.

[2] H. Jeong, M. S. Kim, and J. Lee. Quantum infor-
mation processing for a coherent superposition state
via a mixed entangled coherent channel. Physical

Review A, 64:052308/1–052308/7, 2001. arXiv:quant-
ph/0104090v3.

[3] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro,
and S. Glancy. Quantum computation with optical coher-
ent states. Physical Review A, 68:042319/1–042319/11,
2003. arXiv:quant-ph/0306004v1.

[4] T. C. Ralph. Coherent superposition states as quantum
rulers. Physical Review A, 65:042313/1–042313/5, 2002.
arXiv:quant-ph/0109106v2.

[5] M. Brune, E. Hagley, J. Dreyer, X. Mâıtre, A. Maali,
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