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This re uide demonstrates how to dete inty associated with 
mean absorbed energy of specimens tested on a Charpy imp  assume that the 
Charpy  met the requirements for b direct verification as 
described in the ASTM E 23, Standard Test Methods for No Testing of Metallic 
Materi mendations and procedures in the “Guid ression of 

what 

es 
 

rrect a 

omputing the reported test result is straightforward; however, computing the uncertainty 
ssociated with the test result requires more consideration.  The purpose of this document is to 

clarify the concept of uncertainty and to provide Charpy laboratories with a procedure for 
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commended practice g rmine the uncerta
eact machine.  W

 machine has successfully oth direct and in
tched Bar Impact 

e to the Expals.  We follow the recom
Uncertainty in Measurement” for computing uncertainty.  We assume the reader is some
familiar with the Charpy machine verification program administered by the National Institute of 
Standards and Technology.   
 
Keywords:  absorbed energy; Charpy V-notch; impact test; pendulum impact test; uncertainty; 
verification testing 
 
 

1.  Introduction 
 
The absorbed energy of a test material, measured using a Charpy impact machine, is often 
reported as the mean absorbed energy of a set of specimens.  However, the sample mean do
not account for known sources of bias, including machine bias, which can be substantial.  We
address the estimation of a test result for the case in which the test result is corrected for known 
biases and the case in which it is not.  It is left to the user’s discretion whether or not to co
test result.   
 
C
a

computing the uncertainty of a test result.   
 

                                                 
1 Statistical Engineering D ision, Information Technology Laboratory 
2 Materials Reliability Divi on, Materials Science and Engineering Laboratory 
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Before valid Charpy measurements can be m ratory, the machine needs to pass 
both direct and indirect verification tests as specified in ASTM E 23 [1].  Even if a Charpy 
machine has passed the indirect verification test
specimens differ from the certified va fference can be used to quantify machine bias.  
Thus, the indirect verification rence value (along with their 
uncertainties) play key roles in the calcul  a test result. 
   
We express uncertainty according to

xpression of Uncertainty in Measurement,” or GUM [2], taking into consideration both random 

ng 

Friction loss Repeatability 

ated if they are 
ments 

 

e the users to consider th

We present an example ng the uncertainty of a 
test result.  Section 3 prov ng the Typ rs, Section 4 
addresses the computation of machine bias, Section 5 discusses direct verification sources of 
error, Section 6 addresses tempe  measurement errors, S vides some information 
about expanded uncertainty, and Section 8 gives some example uncertainty calculations.  
Complete details regarding the j ation of the uncertainty procedures are given in Appendix 
A. 

2.  Uncertaint est Result 
 
In this section, we provid ils for com tain sult within the context 
of an example ry will typ pute the sampl nd sample 

andard deviation of n  specimens of the test material using the following two equations: 

ade in the labo

, it is 
lue.  This di

likely that results for the verification 

results and the certified refe
ation of uncertainty of

 the accepted criteria described in the “Guide to the 
E
and systematic sources of error.  The procedure we recommend for computin  unce ty is 
very general and can accommodate any number of random or systematic error sources includi
the following: 

 
Anvils and supports 
Center of percussion 
Center of strike 

Material inhomogeneity 
Operator 
Potential energy 

g rtain

Height of pendulum fall 
Impact velocity 
 

Scale accuracy  
Test temperature 

 
ncertainty contributions from individual error sources can be estimThe u

identified as significant, but generally these errors are assumed to be minimized by adjust
made to the machine during direct verification and by following the standard test procedure.  As 
will become apparent, the calculation of uncertainty is greatly (and often) simplified by assuming
that direct verification contributions are zero, and only contributions from indirect verification 
are considered.  This is a widely accepted approach to the calculation of uncertainty for Charpy 
impact tests, and is used in standards such as ISO 148-1 [3].  We present more detail here, 
because understanding the ind ibutions to uncertainty, and how to quantify them, ividual contr

 the test.   We encouragleads to better control of
details.       

ese, and other relevant 

 
in Section 2 that provides instructions for calculati

ides details regardi e B evaluation of erro

rature ection 7 pro

ustific

 
 

y of a T

e deta puting the uncer ty of a test re
.  A Charpy laborato ically com e mean a

st
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n

y
n

i
i∑

=1y =  ,                                                                (1) 

 

1−
=

n

n

s  .                                                     (2) 

 standard test 
rocedure.  The individual components of the random error cannot be estimated separately in the 

case of destructive impact te e specimen are needed to 
do this).  In addition, random not re n co stant d ring t
measurement of n specime

ssess the uncertainty 
ssociated with the result for our example.  Table 1 lists test results and summary statistics for 

5=n  observations of a particular test
 

uppose we are also gi puting the 
b̂ , which 

ied 
eady 

) .   

Observed data, J Summary statistics 

)(
1

2−∑
=

yy
i

i

 
The degrees of freedom (df) associated with the sample standard deviation, s , are 1−n .  It is 
important to note that s  includes all sources of random error, including machine variability, 

 variability, and the typical variations expected when fo  thematerial llowing
p

sting (multiple measurements on the sam
 errors (unlike systematic errors) do 

ns, so these errors do not result in a bias. 
mai n u he 

 
The data given in Table 1 are used to illustrate the calculations needed to a
a

 material measured at 80 °C.   

ven the values in Table 2.  (We provide details for comS
quantities in Table 2 in subsequent sections.)  Our best estimate of the machine bias is 
is defined as the difference between the verification result for the test machine and the certif
value of the verification specimens.  Systematic errors due to all other factors that are not alr
included in the machine bias are denoted by systematicê .  The values )ˆ(bu  and )ˆ( systematiceu  are the 

uncertainties associated with systematicˆ and ˆ eb , while dfb and dfe, represent degrees of freedom for 

ˆ( and )ˆ( systematiceubu
 

Table 1.  Measurement results for a test m terial. a

58.0 5=n  
62.0 6.57=y  J 
54.0 6.3s =  J 

60.0  
54.0 df = 4 

 
Table 2.  Ex tainty of a test result. 

 
ample quantities required to compute uncer
 Machine bias Systematic error 

Estim 0.3ˆsystematicate 2.4ˆ −=b  J =e  J 
Uncerta 6.0)ˆ( systematic =eu  J 

Degrees of freedom df  = 84 df  = 2 
inty 8.2)ˆ( =bu  J 

b e
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To compute the uncertainty of the test result, we first compute a mean of the test material that is 

                                                  

corrected for machine bias and all other systematic effects: 
 

systematiccorrected ˆˆ ebyy −−=  .     

m Tables 1 and 2 into Eq. (3) gives 

                                              (3) 
 
Substituting the values fro
 

J 8.58)J 0.3()J 2.4( J 6.57corrected =−−−=y . 
 

ext, we calculate the uncertaintyN  of the corrected mean, correctedy .  Assuming all of the terms in 
ycorrected  are independent, the combined standard uncertainty of correctedy  is 
 

))( systematiccorrectedyu .        (4) ˆ()ˆ( 22
2

eubu
n
s

++=

 
Substituting the appropriate values from Tables 1 and 2 into Eq. (4) gives 
 

J 3.3)J 6.3(( 22
corrected =++=yu . 

 
Typically, the standard uncertainty is multiplied by a coverage f t expands the 
uncertainty to form an “uncertainty” interval about the measurement result.  The interval is 
expected to encompass a large fraction of possible values of the result.  Thus, the expanded 

he 

iate 

n uncertainty interval with )1(100

)J 6.0()J 8.2(
5

)
2

actor tha

uncertainty is defined as the combined standard uncertainty multiplied by a coverage factor.  T
coverage factor is often set equal to two for simplicity, but this approximation can be 
problematic, so it is recommended that the degrees of freedom be used to obtain the appropr
coverage factor.   
 
A α−  % coverage probability (α  is 0.05 for 95 % coverage) is 
given by  
 

)( correcteddf,1 corrected eff2
yuty ⋅−α  ,                                                  (5) ±

 
where 

eff2 df,1 α−t  is found in a t-table (see Appendix C).  The degrees of freedom associated with 

u )( correctedy ,  
 

e

systematic
4

b

422

corrected
4

eff

df
)ˆ(

df
)ˆ(

df
1

)(df
eubu

n
s

yu

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ,                                                (6)

 

 

are determined from the Welch-Satterthwaite approximation as described in the GUM. [2]   
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Substituting appropriate values from Tables 1 and 2 into Eq. (6) gives 
 

9.47

2
)6.0(

84
)8.2(

5
)6.3(

4
1

)3.3(df
4422

4

eff =

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= , 

 
which rounds down to 47.  Using a t-table we get a coverage factor of 47,975.0t  = 2.012.  Thus
95 % interval for our example is 
 

J 3.3012.2J 8.58
J 3.3J 8.58 47,975.0

⋅±

, a 

.

⋅± t
 

J 6.6J 8.58 ±
 
The expanded uncertainty U  possible measurement results lie 

ithin the uncertainty interval (52.2 J, 65.4 J).  If we compute the interval based on the 
 is 6.6 J, indicating that 95 % of

w
uncorrected value, we can express our uncertainty interval as  
 

J 2.1J) 2.64,J 0.51(
)J 0.3J 2.4()J 6. 6.57(

)ˆˆ()( systematic

+
+−−

+−± ebUy
 6J ±

 
he 

s 
 

 com

ring 
ature, and so on. An uncertainty evaluation that does 

ot involve actual
evaluations are bas  B uncertainty 

and just report the uncorrected interval (51.0 J, 64.2 J) along with the correction (1.2 J).  T
decision rt a corrected test result is left to the user.  However, if the corrected test result i
reported, we recommend that the report clearly state how the correction was computed and
include pertinent information such as the magnitude and sign of the correction, the test standard 
used, and the source of the indirect verification specimens tested.    
 
The remainder of this document is dedicated to providing additional details regarding the 
computation of individual compon to

to repo

ents needed pute the uncertainty of a Charpy test result. 
 
 

3.  Type B Uncertainty Evaluation 
 
Typically, direct estimates of systematic errors based on actual measurements are difficult to 
obtain and even harder to quantify because the required data are not generally available.  In such 
cases, uncertainties due to systematic errors are estimated based on past experience, enginee
nowledge, information from published literk

n  measurements 
ed on data obtained und

is called a Type B uncertainty evaluation. Type A uncertainty 
atability conditions.  Typeer repe

 5



 

evaluations can be associated with either random or systematic errors, but are most commonly 

ple, instrument manufacturer’s of as limits to a rectangular 
distribution. From this, the standa ith measurements by that instrument 
can be deduced.  These types of uncertainties can be highly subjective, but are sometimes useful.   
 

used with systematic errors. 
 

ype B uncertainty evaluations utilize assumptions regarding distributions of errors.  For T
exam  specifications can be thought 

rd uncertainty associated w

The following example (also shown in Section B.7) illustrates how to use a manufacturer’s 
specification for a Type B uncertainty evaluation.  Suppose r  is the random error in the Charpy 

rmachine scale mechanism and ± Δ  represents the ma  specified error bounds of the 
easurement instrument.  Assumi where within the ±

nufacturer’s
rm ng that the error can be any Δ  bounds, a 

rectangular distribution is used  possible biases, and in this case 
bounds are already expressed in the proper units (joules).  The standard uncertainty of 

to describe the distribution of
r  is 

 

3
)( rru Δ

= . 

 
 rectangular distribution is often used inA  the absence of specific information about the error 

.  (See 

 
thod for assigning a 

f value to Type B estimates of uncerta emonstrated shortly. 
 

 the previous scale-error example, the distribution of possible errors was defined by the 
 the distribution of a systematic error is 

entered on a value other than zero, resulting in a nonzero systematic error estimate.  For 
example, an operator mi that the distribution of 
errors is described by a rect , where a  and b  are both 

distribution; however, other distributions can be used if more is known he errors
Reference [2] for details regarding Type B uncertainty evaluations.)  It is also necessary to 
provide an estimate of degrees of freedom for each uncertainty component.  We will assume

∞=rdf , which implies that we know )(ru exactly.  The GUM provides a me

 about t

d inty, which will be d

In
interval ),( rr− , which is centered on zero.  esSometim
c

ght be consistently reading the scale too high, so 
angular distribution defined by ),( ba

greater than zero ( ba <<0 ).  In this case, the estimated systematic error is (a +

ssociated standard uncertainty is 
2)b  and the 

a 32)( ab − . 
 
There are also systematic errors associated with the test procedures that can be approximated 
using a Type B uncertainty evaluation.  Suppose an operator notices that the lengths of fractured 
specimen halves are uneven and determines that the specimens were all impacted off-center 

triker impact is not aligned with the notch).  In addition, the operator knows that the 1 mm to 2 
gy 

etween 2 J and 4 J based on extensive experience with this particular material.  To estimate the 
stematic error and its uncertainty, we assume that the 2 J and 4 J limits to error represent 

ounds of a rectangular distribution so that 

(s
mm offsets observed for the broken specimens result in an increase in the absorbed ener
b
sy
b
 

J 3
2

J 4J 2ˆsystematic =
+

=e   and   J 6.0
32

J 2J 4)ˆ( systematic =
−

=eu . 
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o determine the degrees of freedom associated with )ˆ( systematiceu , we employ a useful T

relationship from the GUM (Eq. (G.3)).  In general, 
 

2

2
1df

−

⎥⎦
⎤

⎢⎣
⎡Δ

=
u
u , 

 
ets represents the rewhere the quantity in s tive

ncertainty.  In our example, we judge the uncertainty of )ˆ( systematiceu  to be 50 % or 0.50, so that 
quare brack la  uncertainty, or the uncertainty of the 

u
 

[ ] 22 =− . 

 general, the degrees of freedom provide information regarding the quality of the uncertainty 

ombine several sources of systematic error to determine systematicê  and its 

 

50.0
2
1dfe =

 
In
estimate.  For Type A uncertainty evaluations, the degrees of freedom provide an tive 
measure of quality, while degrees of freedom associated with Type B uncertainty evaluations 
provide tive measure of quality. 
 
We can also c

 objec

a subjec

uncertainty.  For example, suppose we would like to combine three independent sources of 
systematic error:  friction loss, potential energy, and impact velocity, so that 
 

vEDe ˆˆˆˆsystematic ++= . 

Then the combined standard uncertainty of systematicê  is 
 

)ˆ()ˆ()ˆ()ˆ( 222
systematic vuEuDueu ++= , 

 
with effective degrees of freedom from the Welch-Satterthwaite approximation, 
 

vdf

44 )ˆ(ˆ v

his type of procedure can be applied to any number of independent systematic errors. 

ED

4e ()ˆ(
df

EuDu
= systematic

4 )ˆ(eu
. 

df
)

df
u

++

 
T
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4.  Machine Bia
 
To estimate the machine bias, we assume that the m aterial under test is the 
same as the machine bias based on the indirect verifica portant assumption that 
allows us to estimate machine bias for all test materials.  We use the results of an indirect 
verification test and the associated reference value for our best es  of machine bias, 
 

                  

s 

achine bias for the m
tion.  This is an im

timate

RVb −−= systematicδ̂ ,                       (7) 
 
where  

ˆ

   
V

n

iV
V

∑
i

n
V == 1              (8) 

cts associated with indirect 
erification test, and 

 
is the sample mean absorbed energy from the indirect verification test based on 5=Vn  test 

results, systematicδ̂ epresents errors due to all systematic effe r
R  represents the certified reference 

achine bias and its unce

v value for the batch of verification 
specimens.   
 
To illustrate the computation of m

om Section 2.  Table 3 lists quantities provided by the National Institute of Standards and 
ost 

h-energy indirect verification test results because the nominal value of the 
bsorbed energy of the test material is closest to the high-energy verification material.  The 

 

Table 3.  Information provided by NIST for high energy verification specimens.  

rtainty, we will return to the example 
fr
Technology (NIST) t e high-energy verification test specimens that were used for the m
recent high-energy indir t verification of the Charpy machine of interest. 

 
We use the hig

wi h th
ec

a
uncertainty associated w  certified verification specimens ( )(Ru ) is provided by NIST with
the results of the indirect verification test (or by request).  Table 4 displays the indirect 
verification data that were observed when the verification set was broken on the machine of 
interest. 
 

ith the

Reference value, R  109.9 J 
Reference value standard uncertainty, )(Ru  2.6 J 

Degrees of freedom, dfR 102 
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Table 4.  High energy indirect verification test results. 
Verification set data, J Summary statistics 

108.0 5=Vn  
104.0 2.106=V  J 
109.0 3.2=VS  J 
106.0 dfV = 4 
104.0  

 
Table 5.  Sy rification.  

Estimate, δ̂  0.5 J 
stematic error associated with the indirect ve

systematic

Standard uncertainty, )ˆ(δu  0.2 J 
10 Degrees of freedom, dfδ 

 
The “V” subscript is used to di rom the test material 
results.  The samp fication specimens ( VS ) 

 calculated as s  was calculated previously in Section 2, 

stinguish the indirect verification results f
le standard deviation associated with the indirect veri

is
 

1
1

−
= =

V

i
V n

S

 also includes all sources of random

)( 2−∑
n

i VV
V

 .                                                         (9) 

 
As was the case for s , VS  error related to both machine 
variability and material variability, and the individual contribution of errors cannot be 

 
n in 

erification of the machine.  So, neglecting contributions to the bias from systematicδ̂ , the estimated 
achine bias is calculated as the difference between the mean of the specimen tested in the 

indirect verification test and the certified value of the specimens tested.  For our example, in 
which systematicδ̂  is not assumed to be zero, the machine bias is   
 

J 2.4J 9.109J 5.0J 2.106ˆ −=−−=b . 
 
Assuming independent input quantities, the standard uncertainty of the machine bias is 

determined.   

Suppose we are given systematicδ̂ , its associated uncertainty, and degrees of freedom, as show
Table 5.  We will not elaborate on the origin of the systematic error in Table 5; however, the 
same general procedures used to estimate systematicê , discussed in detail in Section 3, can also be 

used to estimate systematicδ̂ .   
 
Although systematicδ̂ = 0.5 J in this illustrative example, typically systematicδ̂  is assumed to be zero 
because errors that are well understood and could be corrected for are minimized during direct 
v
m
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)()ˆ()ˆ 2
systematic

2
2

Ruu
n
Sb V ++= δ .                               (10) 

ing 

(u
V

 
Substituting the appropriate values from Tables 3 through 5 into Eq. (10) provides the follow
estimate of the standard uncertainty of the machine bias: 
 

J 8.2)J 6.2()J 2.0(
5

)J 3.2()ˆ( 22
2

=++=bu . 

 
The degrees of freedom associated with the uncertainty estimate, 
 

R

4

δ

systematic
422

V

4

b

df
)(

df
)ˆ(

df
1

)ˆ(df
Ruu

n
S

bu

V

V ++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

δ
,                                   (11

 

) 

re determined from the Welch-Satterthwaite approximation.  In our example, the degrees of a
freedom are 
 

4.84
)6.2()2.0()3.2(1

)8.2(df
4422

4

b =

+⎟⎟
⎞

⎜⎜
⎛

= , 

1021054
+

⎠⎝
 

which rounds down to 84. 
 

 the examples presented here, the “bias compared to what?” issues are clear.  Machines 
y, 

e 

at the various national measurement institutes 

In
verifying to ASTM E 23 requirements are all compared with a single target for impact energ
defined by ASTM E 23.  However, when considering the performance of an ASTM E 23 
machine to machines not tested under ASTM E 23 requirements, the comparison is less direct 
because bias can exist between the various verification systems used around the world (multipl
certified values for absorbed energy).  We encourage the users to understand this issue, and how 

might affect them.  Users should also know thit 
distributing impact verification specimens are working to minimize biases among them, and 
make the quantification of bias for impact testing more transparent to users around the world.    
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5.  Direct Ve
 
Direct-verification uncer achine 
including:  anvil and supports, pact velocity, center of 
percussion, friction loss, and s  friction loss, all 
direct verification sources of  provide information 
regarding calculation of the indi tion uncertainty in Appendix B.  
While it is relatively eas ty, it is difficult to 
quantify the uncertainty com urements in joules.  
 

zed during the direct 
verification of an im
practice to estimate the u  the results of indirect verifications and 
the variations being tested.  However, it is 
also of interest, and part of 
machine and process so that it m   It is left up to 
individual laboratories urces.   
 
Although it is common for laboratories to ignore the uncertainty due to direct-verification bias, it 
is im ormative 

ing direct verification 
sources of error.  If possible, 
examined each tim
 
 

6.  Temperatur
 
Although system
measurem r.  Thus, we 
typically assum ith the 
estimate.  This sec tainty due to 
systematic tem
  

 however, it is highly 
d
behavior from brittle to ductile with increasing temperatures.  Supplemental data can be collected 

ature.   

 the 

region of the curve. 

rification 

tainty sources are related to physical properties of the Charpy m
center of strike, potential energy, im

cale accuracy.  With the possible exception of
uncertainty are Type B evaluations.  We

vidual sources of direct verifica
y to compute each individual source of uncertain

ponents in terms of the effect on Charpy meas

The recognized sources of uncertainty for our problem are minimi
pact machine and by following the standard test procedure.  So, it is general 

ncertainty of impact tests from
 associated with repeat measurements on the material 

the exercise in calculating uncertainty, to better understand your 
ight be better controlled and quantified.

to ide ty sntify and include the appropriate uncertain o

portant to acknowledge the potential for error due to these sources.  Thus, it is inf
for laboratories to document their reasons for either including or exclud

the uncertainty associated with direct verification should be re-
e the machine is verified directly. 

e  

atic error due to temperature probably exists to some extent for all Charpy 
ents, it is difficult to quantify the sign (direction) and magnitude of the erro

e the estimated error is zero, but there is some uncertainty associated w
tion outlines a procedure that can be used to estimate the uncer

perature errors. 

The uncertainty due to temperature does not depend on machine properties;
ependent on the material being tested.  For example, steels undergo a transition in fracture 

for a particular steel of interest, and used to estimate the uncertainty associated with temper
If later measurements are taken in stable regions defined by the lower shelf or upper shelf 
(Figure 1), then the uncertainty associated with temperature is probably negligible.  However,
uncertainty due to temperature can be significant if measurements are being taken in the 
transition 
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perature transition curve. 

 
 

Figure 1.  A tem

 
Figure 2.  Mapping of temperature error into energy error in the temperature transition region

 
Assuming we have data for a particular m

. 

aterial that have been collected across a range of 
mperatures, we can fit a straight line to the data within the temperature transition region 

(ignoring the shelf data).  The inform  be us  to q ntify 
effect of the temp p  of th  same
material. 
 

or example, suppose we are interested in collecting some new data at 43 °C, but our 
temperature can be measured only to within ±2 °C.  The true temperature could be anywhere in 

te
ation from the regression fit

erature error on impact energy (Figure 2) for future sam
 can ed ua the 

les e  

F
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the range of 41 °C to 45 °C.  Using the regression equation, we can compute the value of impac
energy for both 41 °C  45 °C

t 
, thus providing a range of potential impact energy values and EΔ .  

a rectangular distribution within EAssuming the true impact energy has Δ , we can use the range 
f impact energy to com

 
o pute the uncertainty as follows: 

32
||)( Etu Δ

=  . 

 
The deg d are 2dft −= n , where n  is the number of observations used in the rees of free om 
regression fit.  
 
Optionally, multiple measurem ade at each temperature (which is how the original 

e maximum uncertainty observed in the region.  
his procedure can also be applied in cases where upper or lower shelf regions have more 

gradual slopes. 
 
 

or, so that 

ents could be m
tainty acurve is obtained) and define the uncer s th

T

7.  Expanded Uncertainty 
 
Sometimes we need to calculate an expanded uncertainty, U , which is just the combined 

andard uncertainty multiplied by a constant, or coverage factst
 

)( correctedyukU ⋅= . 
 
The coverage factor k  is determined by looking up the appropriate value in a t-table (Appendix 
C) based on the degrees of freedom associated with )( correctedyu .  The expanded uncertainty 
associated with a 95 % interval is 
 

)()( correcteddf;975.0corrected9595 eff
yutyukU ⋅=⋅= .        (

 
he expanded uncertainty is interpreted as an uncertainty interval encompassing a large fra

12) 

ction 
f possible measurement results.   

dom can be difficult to determine if there are many sources of uncertainty 

T
o
 
The degrees of free
within )(yu .  corrected Fortunately, we can compute the effective degrees of freedom from the 

     

Welch-Satterthwaite approximation [2] 
 

e

systematic
4

b

422

corrected
4

eff

df
)ˆ(

df
)ˆ(

df
1

)(df
eubu

n
s

yu

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ,          (13) 
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where df = d edf  a  the Type B uncertainty evaluation (see Section 3).  W1−n  an re from e will 
also need to calculate bdf  from 

     

 

RδV dfdfdf nV ⎠⎝
 
where df −= n

4
systematic

422 )ˆ(
)(

uuS

bu

V ⎟
⎞

⎜
⎛ δ

4

b
)(1

ˆ
df

R
++⎟⎜

= ,                               (14) 

1V V , Rdf  is provided by NIST with the indirect verification specimens, and 

δdf  is from Type B uncertainty evaluation (see Section 3). 
 
In general, an uncertainty interval for correctedy  is 
 

α−± 1 corrected Uy   
or  

)( correcteddf,1 corrected eff2
yuty ± ⋅−α .         (15) 

 
ypically T α  is 0.05, which corresponds to a 95 % inte

achine bias and systematic errors, they ma
rval.  If a Charpy lab does not report 

results corrected for m y want to indicate the 
agnitude of the estimated biases for informational purposes, m

 
)ˆˆ()y( or )ˆˆ( systematicebUUeby +−±±−− .       (16) 

 
Thus, the interval would be shifted by ratory wished to report the corrected 
mean absorbed energy; ho uld not be affected by the machine 
bias and systematic error correction
 
In practice, 2=k  is often used to com ate a 95 % 
interval, and the effectiv e never calculated.  However, if the effective 
degrees of freedom are sm  be less than 95 %. 

ples 
 
All exam
 

11systematic −− αα

systematicˆˆ eb +  if the labo
wever, the expanded uncertainty wo

s. 

pute the expanded uncertainty to approxim
e degrees of freedom ar

all, then the level of confidence is thought to
 
 

8.  Exam

ples utilize the data displayed in Tables 1, 3, and 4.   
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8.1 Both systematicê   and δ̂

In the general case,  

systematic  and Their Uncertainties Are Negligible  

systematiccorrected ˆˆ ebyy −−=  , 

atic error associated with the material variation systematicê
 
but if the system  is assumed to be 
negligible, then 

byy ˆ
corrected −= . 

 If the systematic error f d to be negligible,  
 

 
or the test machine variation systematicδ̂  is assume

J 7.3J 9.109J 2.106ˆˆ
systematic −=−=−=−−= RVRVb δ  

 
and 
 

J  3.61correctedy . 
 
The combined standard uncertainty of  
 

)J 7.3(J 6.57ˆ =−−=−= by

b̂  is 

,J 8.2

)J 6.2(
5

)J 3.2(

)(

ˆˆ

2
2

2
2

22
2

=

+=

+= RuS

S

V

V

 
ith effective degrees of freedom 

)()()( systematic ++= Ruu
n

bu
V

δ

nV
 

w
 

5.84
)6.2()3.2(1

)8.2(

)(1

)ˆ(df
422

4

422

4

b =
⎞⎛

=

+⎟⎟
⎞

⎜⎜
⎛

=
RuS

bu

V

, 

10254dfdf RV

+⎟⎟
⎠

⎜⎜
⎝⎠⎝ nV

hich rounds down to 84.  Thus, the uncertainty of the corrected mean value is 
 
w
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,J 2.3

)ˆ()ˆ( systematic
22

2

corrected

=

++ eubu
n
s

with effective degrees of freedom 

)( =yu

)J 8.2(
5

)J 6.3(

)ˆ(

2
2

2
2

+=

+= bu
n
s

 

 

 

5.43

84
)8.2(

5
)6.3(

4
1

)2.3(

df
)ˆ(

df
1

)(df
422

4

422

corrected
4

eff =

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

bu
n
s

yu , 

b

 
which rounds down to 43.  A 95 % interval for correctedy  is 
 

J 2.3017.2J 3.61
J 2.3J 3.61

)(

43,975.0

correcteddf,1 corrected eff2

⋅±

⋅±

± ⋅

.J 5.6J 3.61 ±

−

t

yuty α

 

 
The expand

 
If the value reported is n
 

ed uncertainty, associated with a 95 % level of confidence is 6.5 J.  The 95 % 
uncertainty interval is (54.8 J, 67.8 J). 

ot corrected for machine bias, we can express our interval as  

.J 3.7J) 1.64,J 1.51(
)J 7.3()J 5.6J 6.57(

ˆ)y(

+
−−±

−± bU
 

ay or may not wish to disclose the estimated machine bi
le if needed.  Notice that the interval for the uncorrected pa
ount of the correction and the expanded uncertainty is the sam

 
The Charpy laboratory m as, however the 
information is availab rameter is 
shifted just by the am e regardless 
of whether or not the reported value is corrected. 
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8.2  systematicê   Has One Component 
 
Suppose systematicê .  The temperature 
error is system er or always 
cooler than the targ ents.  However, we do not 

pically estimate the te systematicê  is zero.  The 

 
he procedure outlined in Section 5 will be used to determine the uncertainty due to temperature 

ression 
line fit to the data in the transition region (ignoring the data on the “shelves”). 
 
Suppose our test specimens from perature of 80 °C, which is 

ion region.  A regre it to the 21 data points in the 

 contains the error due to temperature so that te ˆˆsystematic =
atic because it is likely to be in the same direction (always warm

et temperature) for a single set of measurem
mperature error, so we will we assume the value of ty

uncertainty associated with systematicê  is 
 

) . ˆ()ˆ( systematic tueu =

T
)ˆ(tu .  Figure 3 displays te material of interest along w  regmperature data for the ith the

 Table 1 were broken using a tem
within the temperature transit

ansition region, resulting in the following equation: 
ssion line was f

tr
 

C)T(C)(J/74084.0(J)03973.0E(J) °⋅°+−=  . 
 
 

 
igure 3.  Temperature data for the test material. The straight line in the plot represents a 

regression fit to the data in the trans  ignore data on the “shelves” at -10 °C 
and 141 °C. 
 
 
 

F
ition region only.  We
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If our temperature can be measured to within ±1 °C, then the true temperature is between 79 °C 

.60
J0.60C)-  E(J)
J 58.5C)(79C)0.74084(J/  )-0.03973(J(J)

=Δ
==

and 81 °C, and the energy range is defined by the following:   
 

E + ° ⋅ ° =

.J5.1J 5.58J 0
81(C)0.74084(J/  0.03973(J)

=−
°⋅°+

=

E
 

 
Next, the energy range is converted to a standard ectangular distribution,  uncertainty based on a r
 

4.0
32
J 5.1)ˆ( ==tu  J , 

ith degrees of freedom 192212dft

 
w − ==−= n .  Thus the uncertainty of systematicê  is 

 
J 4.0)ˆ( systematic =eu , 

 
with 19 degrees of freedom. 
 
The mean absorbed energy corrected for machine bias and other systematic effects is 
 

J 3.61J 0)J 7.3(J 6.57ˆˆ
systematiccorrected =−−−=−−= ebyy , 

 
where b̂ , its uncertainty, and degrees of freedom have not changed from example 7.1.  The 
combined standard uncertainty is 
 

J 3.3)J 4.0()J 8.2(
5

)J 6.3()ˆ()ˆ()( 22
2

systematic
22

2

corrected =++=++= eubu
n
syu , 

 
with degrees of freedom 
 

2.49

19
)4.0(

84
)8.2(

5
)6.3(

4
1

)3.3(

df
)ˆ(

df
)ˆ(

df
1

)(df
4422

4

e

systematic
4

b

422

corrected
4

eff =

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

eubu
n
s

yu , 

hich rounds down to 49.  A 95 % uncertainty interval for 
 
w correctedy  is 
 

.J 6.6J 3.61
J 3.3010.2J 3.61
J 3.3J 3.61

)(

49,975.0

correcteddf,1 corrected eff2

±
⋅±

⋅±

± ⋅−

t

yuty α
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he expanded uncertaiT

m
nty is 6.6 J, and the uncertainty interval encompassing 95 % of possible 

easurement results is (54.7 J, 67.9 J).  If the value reported is not corrected for bias, we can 
express our interval as  
 

.J 3.7J) 2.64,J 0.51(

ˆ

+

e choice of correcting the reported 
plies to measurements completed in 

ccasionally, there is some confusion about the NIST reference value, the reference value 
uncertainty, and Charpy verification limits with respect to results obtained in a Charpy 
laboratory.  The reference value is the measured mean absorbed energy of a batch of reference 
specimens.  The reference value uncertainty describes the variability of the reference value and 
includes material, system, and machine variability.  The reference value uncertainty does not 
describe the variability of a single verification specimen or the variability in the verification 
specimens (specimen variation cannot be estimated separately from machine variation).  In the 
Charpy laboratory, the reference value and its uncertainty are used only to estimate the bias of a 
Charpy machine and the uncertainty of the bias; they provide no information regarding Charpy 
measurements for other materials.  It is also important to remember that the reference value 
uncertainty is associated with a specific measurement result, while the verification limits 
describe the acceptable variation among means for a test method.  These two items are not 
necessarily related.   
 
 
 
 
 
 
 
 
 
 
 
 
 

)J 0J 7.3()J 6.6J 6.57(
)ˆ()y( systematic

+−−±

+−± ebU
 

 
 

9.  Closing Remarks 
 
We have developed a procedure for estimating the uncertainty associated with a reported mean 
bsorbed energy from a Charpy test.  The procedure is flexible enough to account for several a

systematic error sources, if necessary, and allows the user th
mean or not.  The uncertainty procedure in this document ap
 Charpy laboratory. a

 
O
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Appendix A.  Uncertainty Details 
 

he following information is provided for completeness and to document the justification for the 

We define a single measurem easured in a Charpy laboratory as 
 

eeeeby

T
recommended uncertainty procedures. 
 
 

.1  Test Material A
 

ent for a test material m

systematicrandomother  i,ityrepeatabil,ityinhomogene, iiYYi ++= μ + + +  

r ni ,,2,1 K= measurem i” subscript 
denote random errors th
 

Y

 
fo ents.  Terms on the right side of the equation having the “

at change from measurement to measurement. 

μ  represents the true m e material could have been 
sted on the three NIST ref

Y l.  This term includes all machine 
ifferences that are constant for the easurements. 

 
 represents the material inhomogeneity. 

randomother ,i  repres

systematic  represents errors due to all other systematic effects that are not already included in the 
ror).  Systematic errors remain constant for the duration of 

ean breaking energy of the test material if th
erence machines. te

 
b  represents the true machine bias for the t eriaest mat

duration of the set of n  md

ityinhomogene,i

 
ityrepeatabil,ie  represents the machine repeatability. 

e

 
e ents all other sources of error due to random effects. 
 
e
machine bias (for example, operator er
he set of n  measurements. t

 
The mean of n  measurements of the test material is   
 

systematicrandomother ityrepeatabilityinhomogene eeeeYY by ++= μ + + +  , 
 
nd the true variance of y is a

nnn
y

2
randomother 

2
ityrepeatabilityi mogene)var( σσσ

++= , 
2
nho

 

which is estimated by 
n
s2

, with 1df −= n  degrees of freedom.  The three random errors cannot 

be estimated separately.  The corrected value is   

 21



 

 

systematiccorrected ˆˆ ebyy Y −−= . 
 
The indirect verification results will be used to estimate Yb̂  and its uncertainty, and we will 
ssume that ê  is zero.  There is uncertainty associated with each of the estimated 

ainty of corrected value is  
a systematic

 errors.  The combined standard uncertsystematic
 

)ˆ()ˆ()( 22
2

eubusyu ++= . systematiccorrected n Y

 
The effective degrees of freedom based on the Welch-Satterthwaite approximation are 
 

eb

systematic
4422

corrected
4

df
)ˆ(

df
)ˆ(

df
1

)(
eubu

n
s

yu

Y ++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
. 

ty associated with  

effdf =

 
The expanded uncertain correctedy  is  
 

)( correcteddf,1 eff2
yutU ⋅= −α . 

 
he corrected value reported by the Charpy laboratory has the form T Uy ±corrected .  If a Charpy 

laboratory does not report results corrected for machine bias, they may want to indicate the 
magnitude of the estimated bias for informational purposes as 
 

)ˆˆ()y( or )ˆˆ( systematicsystematic ebUUeby YY +−±±−− . 

.2  Indirect Verification Test 

ation test will be used to estimate machine bias in 
onjunction with the associated NIST reference value.  A single measurement in the indirect 

 
 
A
 
The Charpy laboratory’s indirect verific
c
verification test is defined as 
 

μ systematicrandomother  i,ityrepeatabil,ityinhomogene,δ + δ + δ + δ++= bV  , 

hat 

iiVZi

 
where Vni ,,2,1 K=  measurements  ( Vn  is usually five).  The “i” subscript denotes errors t
change from measurement to measurement. 
 

Zμ  represents the true mean breaking energy of the reference material if the material co
been tested on the NIST reference machines. 

uld have 
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Vb  represents the machine bias for the reference material.  This term includes all machin
differences that are constant for the duration of the set of Vn  measurement

e 
s. 

ityinhomogene,i

 
 represents the reference material inhomogeneity. δ

 
ityrepeatabil,iδ  represents the machine repeatability. 

 
randomother ,iδ  represents all other sources of error due to random effects. 

 
systematicδ  represents errors due to all other systematic effects that are not already included in the 
achine bias.  Systematic errors remain constant for the duration of the set of Vn  measurements. m

 
he mean of Vn  measurements is T

 
systematicrandomother ityrepeatabilityinhomogene δδδδμ +++++= VZ bV  , 

 
and the variance of V , 
 

VVV nnn
V )var( , 

 

222 σσ randomother ityrepeatabilityinhomogene σ
++=

is estimated by 
V

V

n
, with 1dfV −= Vn  degrees of freedom.  ThS 2

e three random errors cannot be 

ated separately. 

er’s associated verification tes

 E 23-06, the reference value of Charpy indirect verification specimens is 
stablished using three master machines maintained by NIST. 

 the NIST rpy verification program, the reference value and its associated uncertainty are 
o sets of m

verification specime  determine if the 
aterial meets the rigid specifications of the verification program.  If the material is acceptable, 

ot are machined and a second set of measurements 
re performed from the full “production” (25 on each master machine).  Assuming the 

production lot has not changed significantly from the original pilot lot, the material is sold to the 

estim
 
 
A.3  NIST Reference Value 
 
The NIS
custom

T reference value will be used to estimate machine bias in conjunction with the 
t. 

 
According to ASTM
e
 
In
based on tw

Cha
easurements.  The first set of measurements involves breaking 75 

ns (25 on each master machine) from a “pilot” lot to
m
the remaining verification specimens in the l
a
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Rpublic in sets of five specim ference value ens as a Standard Reference Material.  The re  is 
established using the 75 verificati
 

llowing assum .   

e be the “truth,” so there is no bias associated with the 

nd production lot specimens.  
F-test for variances.)  In the event 

that the verification lot and production lot rent means and/or 
variances, the reference value will b based solely on the production lot data. 

.3.1  Reference Machine 
 
We define a single measurem achine as  

systematicrandomother  ,ityrepeatabil ,y

on lot and 75 production lot specimens. 

We make the fo  when determining the reference value and its uncertainty
 
1. The reference valu

reference value. 

ptions

is defined to 

2. There is no difference between pilot lot specimens a
(Differences are evaluated using a t-test for means and an 

have significantly diffe
e 

 
 
A

ent taken on a NIST reference m
 

itinhomogene ,11 γγμ ++= kkZ γ γ+ +kk , 
    

where 1,,2,1 nk K=  measurem ” subscripts on the right hand side 
of the equation denote errors that cha asurement. 
 

1

  
ents ( 1n  is usually 50).  The “k

nge from measurement to me

μ  represents the true m terial as measured by the NIST 
ference machine. 

ean breaking energy of the reference ma
re
 

 represents the ref ogeneity.ityinhomogene,kγ erence material inhom  
 

ityrepeatabil,kγ  represents the machine repeatability. 
 

randomother ,kγ  represents all other sources of errors due to random effects. 
 

 represents the errors due to all systematic effects.  Systematic errors remain constant for 
ents.  Although we assume systematic

systematicγ
the duration of the set of 1n  measurem γ  is zero, it does have 

1

 

some uncertainty. 
 

he mean of n measurements taken on a NIST reference machine is T

systematicrandominhomogene11 γγμ ++=Z  , other ityrepeatability γγ ++
 
and the iated with the mean,  
 

 variance assoc
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111 nnn

2
randomother 

2
ityrepeatabily

1 )var(Z
σσ

++= , 

is estimated by 

2
itinhomogeneσ

1

2
1

n
S , with df1 =  errors cannot be 

 

11 −n  degrees of freedom.  The three random

estimated separately. 
 
The corrected value for the NIST reference machine is 

systematic1corrected 1,

he combined standard uncertainty of the corrected value is 
 

γ̂−= ZZ . 
 
T

)ˆ()( systematic
2

1

2
1

corrected 1, γu
n
SZu += , 

 
which has effective degrees of freedom  
 

γ

systematic

1

1

1

Z

df
)ˆ(

df
1

df
1 γu

n
S

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= , 

ased on the Welch-Satterthwaite approximation. 

422

corrected 1,
4 )(Zu

 
b
 
The pro computing cedure for corrected ,1Z , )( corrected ,1Zu , and 

1Zd  ff or one reference machine also 

pplies to the remaining two NIST ref at we obtain a erence machines so th corrected ,2Z , )( corrected ,2Zu , 

and 
2Zdf  for the second reference machine, and corrected ,3Z , )( corrected ,3Z , and 

3Zdf for the third 
ee reference machines are needed to compute the 
. 

 
A.3.2  NIST Reference Value 

fined as 

u
reference machine.  The results from all thr

IST reference value, as we discuss belowN
 

 
The NIST reference value based on data observed for the three reference machines is de
 

3
321 μμμ

μ
++

=Z , 

 
where 321  and,,μ μ μ  deno ing energies for each of the three 

ference machines.  The NIST reference value defines the true breaking energy of the material. 
te the respective true mean break

re
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We estimate the NIST reference value using 
 

3
corrected ,3corrected ,2corrected,1 ZZZ ++

, R =

 
which has combined standard uncertainty 
 

[ ])()()(1)( corrected,3
2

corrected ,2
2

corrected ,1
2 ZuZuZuRu ++= , 

9

and effective 
 

 
degrees of freedom 

32

441441441

4

R )()()()()()(
)(df

ZuZuZu
Ru

= , 

ased on the Welch-Satterthwaite approximation.  The reference value expanded uncertainty is 

1 Z

corrected,33

Z

corrected ,23

Z

corrected,13

dfdfdf
++

 
b
 

U )(
R2 df,1 RutR = ⋅−α . 

.4  Estimating Machine Bias   

 
 
A
 
Assume he machine bias is the same for the new material ( Yb ) and the reference material ( Vb
so th bbb VY == .  The best estimate of the machine bias b is 
 

 t
t 

), 
a

R−V − systematicδ , 
 
which has combined standard uncertainty 

b =ˆ ˆ

 

)()ˆ()ˆ( 2
systematic

2
2

Ruu
n
Sbu V ++= δ . 

 
The effective degrees of freedom  
 

V

 based on the Welch-Satterthwaite approximation are

Rδ

4
systematic

422

4

b

df
)(

df
)ˆ(

df
1

)ˆ(df
Ruu

n
S

bu

V ++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

δ
. 

 
 

V V
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Appendix B.  Direct Verification Components of Uncertainty 
 
B.1  Anvils and Supports, A 
 
A paper by Yamaguchi, Takagi, and Nakano [4] provides some information regarding the 
uncertainty associated with anvil con ng that other Charpy machines behave 
similarly to the machine tested in the paper, we rtainties listed in the paper 
(Table 9) as ballpark estima ty estimates for low, high, and 
super-high energies. 

Standard uncertainty Low energy High energy Super-high energy 

figurations.  Assumi
 can use the un

tes.  Table B.1 lists the uncertain
ce

 
Table B.1.  Estimated uncertainties due to the anvil and support bias. 

)(Au  0.05 J 0.29 J 0.77 J 
 
Since degrees of freedom are not provided in the paper, we will also assume that ∞=Adf , which 

)(A exactly.   
 

)cos1(

implies that we know u

 
B.2  Height of Pendulum Fall, h 

The height of the pendulum fall is 
 

 

β= ⋅ −Sh , 
 
where S  is the measured length of the pendulum, and β  is the measured fall angle.  Letting SΔ  
nd a βΔ  denote the manufacturer’s stated error bounds, respectively, and assuming a rectangular 

 and distribution bounded by SΔ± βΔ± , the uncertainties for S  and β  are 
 

3
)( SSu Δ

=   and  
3

)( ββ Δ
=u . 

 
hen the uncertainty of h  is T

 

,),(

2)(

β

β

β Suc

S

S2)()(

,),()()(

2222

2
2

2
2

2

β

β
ββ

β cucSuc

SuhhuhSu
S
hhu

S ++=

⎟⎟
⎠

⎞
⎜⎜
⎛

∂
∂

⎟
⎞

⎜
⎝
⎛

∂
∂

+⎟⎟
⎞

⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
 ⎝⎠⎠

 
where 
 

βcos1−
∂

=
S

cS   and  =
∂h .)

ββ ⋅=
∂

(sin β∂
= Sc

 

h  
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If ( β,S ) are independent, then only the  to determine the uncertainty.  
We can assume that ∞=Sdf  and 

first two terms are needed
∞=βdf , which implies that we know )(Su  and )(βu  exactly.  

(See the ISO-GUM, G.4.3 [2] for details. ees of freedom associated with 
)(h  are 

)  The effective degr
u
 

β

44

S

44

4

h

df
)(

df
)(

)(df
ββ ucSuc

hu

S +
= , 

thwaite approximation. 
 

FE

 
ased on the Welch-Satterb

 
B.3  Potential Energy, E 
 
The potential energy i
 

s 

h ⋅= , 

where 
 

F  is the measured supporting forc e pendulum in horizontal position, and 
h  is the height of the pendulum fa
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The uncertainty associated with h  ( Fh, ) are independent, then 
only the first two terms are needed fo  can assume ∞=Fdf , which implies 
that we know )(Fu  associated with )(Eu  are 
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B.4  Impact Velocity, v 
 
The impact velocity is 
 

hg ⋅⋅= 2ν  , 
 
where g  is the local acceleration of gravity, and  is the height of the pendulum fall defined in 
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The uncertainty associated with h  is defined in Section B.2.  We can assume ∞=gdf , which 
implies that we know )(gu exactly.  The effective degrees of freedom associated with )(vu  are 
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based on the Welch-Satterthwaite approximation. 
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B.5  Center of Percussion, L 
 
The center of percussion is 
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B.6  Friction Loss, D 
 
The friction loss is 
 

10 EED , = −
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here E  is the potential energy due to the w 0 1

potential energy due to the pendulum.  The uncertainty of D  is 
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B.7  Scale Accuracy,
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Appendix C.  t-Table 
 

oll g t-table values were taken from NIST/SEMA
Methods 

Ta .1  Upper critical values of Student's t distribution with d
df 0.900 0.950 0.975 0.990 
1 3.078 6.314 12.706 31.821 63.657 318.313 
2 1.886 2.920 4.303 6.
3 1.638 2.353 3.182 4.

965 9.925 22.327 
541 5.841 10.215 

73 
.015 2.571 3.365 4.032 5.893 

 3.707 5.208 
4.782 

5 4.499 
50 4.296 

.929 
3.852 
3.787 

 1.337 1.746 2.120 2.583 2.921 3.686 
1.740 2.110 2.567 2.898 3.646 

8 3.610 

3.527 
22 1.321 1.717 2.074 2.508 2.819 3.505 
23 1.319 1.714 2.069 2.500 2.807 3.485 
24 1.318 1.711 2.064 2.492 2.797 3.467 
25 1.316 1.708 2.060 2.485 2.787 3.450 
26 1.315 1.706 2.056 2.479 2.779 3.435 
27 1.314 1.703 2.052 2.473 2.771 3.421 
28 1.313 1.701 2.048 2.467 2.763 3.408 
29 1.311 1.699 2.045 2.462 2.756 3.396 
30 1.310 1.697 2.042 2.457 2.750 3.385 
40 1.303 1.684 2.021 2.423 2.704 3.307 
50 1.299 1.676 2.009 2.403 2.678 3.261 
60 1.296 1.671 2.000 2.390 2.660 3.232 
70 1.294 1.667 1.994 2.381 2.648 3.211 
80 1.292 1.664 1.990 2.374 2.639 3.195 
90 1.291 1.662 1.987 2.368 2.632 3.183 
100 1.290 1.660 1.984 2.364 2.626 3.174 
∞ 1.282 1.645 1.960 2.326 2.576 3.090 

4 1.533 2.132 2.776 3.747 4.604 7.1
5 1.476 2
6 1.440 1.943 2.447 3.143
7 1.415 1.895 2.365 2.998 3.499 
8 1.397 1.860 2.306 2.896 3.35
9 1.383 1.833 2.262 2.821 3.2
10 1.372 1.812 2.228 2.764 3.169 4.143 
11 1.363 1.796 2.201 2.718 3.106 4.024 
12 1.356 1.782 2.179 2.681 3.055 3
13 1.350 1.771 2.160 2.650 3.012 
14 1.345 1.761 2.145 2.624 2.977 
15 1.341 1.753 2.131 2.602 2.947 3.733 
16
17 1.333 
18 1.330 1.734 2.101 2.552 2.87
19 1.328 1.729 2.093 2.539 2.861 3.579 

8 2.845 3.552 20 1.325 1.725 2.086 2.52
21 1.323 1.721 2.080 2.518 2.831 
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Appendix D.  Glossary of Terms 
 

n  Number of test material samples measured 
y  Mean absorbed energy of test material samples 
s  Standard deviation of test material samples 
df Degrees of freedom for test material standard deviation 

Vn  Number of indirect verification samples measured 

V  Mean absorbed energy of verification samples 

VS  Standard deviation of verification samples 
dfV Degrees of freedom for verification material standard deviation 
R  NIST reference value 

)(Ru  Standard uncertainty of NIST reference value 
dfR Degrees of freedom for reference value standard uncertainty 

systematicê  Systematic error estimate associated with test material 

)ˆ( systematiceu  Standard uncertainty of test material systematic error 
dfe Degrees of freedom for standard uncertainty of test material systematic error 

systematicδ̂  Systematic error estimate associated with verification material 

)ˆ( systematicδu  Standard uncertainty of verification material systematic error 

dfδ Degrees of freedom for standard uncertainty of verification material systematic 
error 

correctedy  Corrected test result 
)( correctedyu  Combined standard uncertainty of corrected test result 

dfeff Degrees of freedom for combined standard uncertainty of corrected test result 
U  Expanded uncertainty of corrected test result 
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