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Abstract. The APEX method is a non-iterative, single frame, direct blind deconvolution tech-
nique that can sharpen certain kinds of high resolution images in quasi real-time. The method is
predicated on a restricted class of blurs, in the form of 2D heavy-tailed bell-shaped surfaces. Not
all images can be usefully enhanced with the APEX method. Nevertheless, the method is found
effective on a broad class of galaxy images, including color Hubble Space Telescope ACS imagery.
APEX-detected optical transfer functions that successfully sharpen these images are far from Gaus-
sian, and of a type not commonly found in the astronomical imaging literature. Visually striking
enhancements are obtained, with significant sharpening confirmed by better than threefold increases
in image gradient norms.

1. Introduction. The APEX method is a non-iterative, single frame, direct
blind deconvolution technique that can sharpen certain kinds of high resolution im-
ages in quasi real-time. The method operates in Fourier transform space via FFT
algorithms. Typically, 1024 × 1024 pixel images can be processed in seconds on cur-
rent desktop computers. The method has been applied successfully in diverse imaging
contexts, including airborne reconnaissance, MRI and PET brain scans, and scanning
electron microscopy [4, 5, 6]. However, not all images can be usefully enhanced with
the APEX method. The present paper explores the possible application of this tech-
nique to astronomical data, including Hubble Space Telescope (HST) imagery. In
Figure 1, a familiar earthbound setting illustrates the type of improvement that is
sometimes possible with the APEX method. In that example, zooming on selected
parts of the APEX-enhanced image 1(B) reveals buildings in the distance, Holstein
cows grazing in the meadow, and numerous other fine-scale details not readily appar-
ent in the original image 1(A). See [5].

In recent years, much excellent work has been done in the area of blind deconvo-
lution of astronomical data. See e.g., [1], [10], [13], [19], [23], [24], [29], and [30]. Many
of these methods aim primarily at undoing the distorting effects of atmospheric turbu-
lence in short-exposure, ground-based observations. Multiframe algorithms, typically
involving several hundred short-exposure images of the same object, appear to be
particularly effective. An interesting example of multiframe blind deconvolution, in
the context of ground-based surveillance of space objects, is given in [24].

APEX processing is typically not useful in such short-exposure applications, and
the method would probably be incapable of reproducing the results in [24]. In a similar
vein, consider the severely blurred early Hubble Space Telescope imagery caused by
manufacturing flaws in the primary mirror. The much improved imagery following
the 1993 implementation of corrective optics is best illustrated with the M100 galaxy
images in Figure 2. Here, if APEX processing were to be applied to the single frame
blurred image in Figure 2(A), the method would be unable to identify the flawed
optics point spread function from the data in 2(A), and it would fail to produce a
useful approximation to the sharp image in Figure 2(B).

The APEX method is predicated on an important but circumscribed class of ra-
dially symmetric shift-invariant blurs, one that generalizes Gaussian and Lorentzian
distributions. This is the class G defined in Eq. (4) below. That class does not include
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A B

Fig. 1. APEX blind deconvolution of English village image. (A) Original 512×512 8-bit image.
(B) APEX processed image. Zooming on selected parts of sharpened image (B) reveals buildings in
the distance, and other significant information not easily detectable in image (A). See [5].

A B

Fig. 2. Hubble Space Telescope image of M100 galaxy, before and after implementation of
corrective optics package. APEX method applied to image (A) would be unable to detect flawed
optics psf, and would fail to produce useful approximation to image (B).

the more complex point spread functions that characterize the examples mentioned in
the preceding paragraph. Rather, the APEX method aims primarily at reconstructing
fine scale information that may have been smoothed out by the combined effects of
radially symmetric lens aberrations, long-exposure turbulence if present, and addi-
tional radially symmetric blurring, originating from diverse electron optical devices
used in the acquisition and recording of the final digitized image. Presumably, the
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APEX method will be successful on a given image, only to the extent that a significant
portion of the unknown image blur can be well-approximated by some member of the
class G.

It develops that APEX processing is surprisingly effective on a broad class of
galaxy images, including color Hubble Space Telescope imagery. The APEX-detected
optical transfer functions that successfully sharpen these images are very far from
Gaussian, and of a type not commonly found in the astronomical imaging literature.
Some visually striking enhancements are exhibited in sections 8 and 9. Sharpening in
these images can be quantitatively assessed by evaluating image gradient norms, and
threefold increases in gradient norms are commonly realized. Remarkably, for Hubble
imagery, the APEX method can enhance Advanced Camera for Surveys (ACS) images,
in addition to Wide Field Planetary Camera 2 (WFPC2) images. An interesting new
method of assessing image sharpness, based on measuring image Lipschitz exponents

[7], can be fruitfully applied to the present class of images. However, due to space
limitations, a full discussion of this technique must be postponed to a future report.

2. Heavy-tailed Lévy point spread functions. Important empirical work
[14], [15], has identified the general functional form of the optical transfer functions
(otf) in a very wide variety of electron optical imaging devices, including phosphor
screens, and some types of photographic film. Define the 2D Fourier transform of any
function h(x, y) by

ĥ(ξ, η) ≡

∫

R2

h(x, y)exp{−2πi(ξx + ηy)}dxdy.(1)

When h(x, y) is a point spread function (psf), it is non-negative and integrates to unity.
Such a function corresponds to a probability density function. The optical transfer
function ĥ(ξ, η) corresponds to the characteristic function of that density. According
to [14], [15], most electronic imaging devices have otfs that can be expressed by

ĥ(ξ, η) = exp{−α(ξ2 + η2)β}, α > 0, 0 < β ≤ 1.(2)

where the constants α and β depend on the particular device. The corresponding
densities h(x, y) are bell-shaped surfaces in physical x, y space, and belong to the
class of radially symmetric Lévy stable laws, [9], [20]. The constant α > 0 in Eq. (2)
controls the width of the density h(x, y), and h(x, y) approaches the Dirac δ-function
as α → 0. The constant β is called the Lévy exponent. The case β = 1 in Eq. (2)
corresponds to the Gaussian distribution, while the case β = 1/2 corresponds to the
2D Lorentzian density

h(x, y) =
α

2π(x2 + y2 + α2)3/2
, (x, y) ∈ R2.(3)

For other values of β, 0 < β ≤ 1, in Eq. (2), the corresponding density h(x, y)
is not known in closed form in the physical variables x, y. In the Gaussian case
β = 1, h(x, y) has exponentially decaying slim tails and finite variance. However, for
0 < β < 1, h(x, y) has infinite variance, with heavy tails that decay like a power of
1/r, where r = (x2 + y2)1/2. See [2], [9], [20], [22], [32].

The expression in Eq. (2) can be used to describe other important types of blurs.
As shown in [12], the otf for long-exposure turbulence blurring is given by Eq. (2) with
β = 5/6 and α determined by atmospheric conditions. In [16], it is shown that the
analytically known diffraction-limited otf for a perfect lens can be approximated over
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a wide frequency range by Eq. (2), with β = 3/4 and α a properly chosen function
of the cutoff frequency. In [17], otf data for 56 different kinds of photographic film
are analyzed. Good agreement is found when these data are fitted with Eq. (2), and
the pairs (α, β) characterizing each of these 56 otfs are identified. It is found that 36
types of film have otfs where 1/2 ≤ β ≤ 1. The remaining 20 types have values of β
in the range 0.265 ≤ β ≤ 0.475. Corresponding psfs are very far from Gaussian.

3. Generalized Central Limit Theorem and the APEX method. The
classical Central Limit Theorem considers the limiting probability distribution of nor-
malized sums of large numbers of independent random variables with finite variance,
and it asserts that that limit is always a Gaussian distribution [9]. In fact, Gaussians
are often used to fit empirically obtained bell-shaped data, and this choice is usu-
ally justified on the basis of that theorem. For an example of just such an approach
applied to electron optics point spread functions, see [31].

In recent years, with the advent of more sophisticated measurement methods, nu-
merous physical situations have been uncovered where Gaussians provide inadequate
descriptions of observed bell-shaped data, because legitimate heavy-tailed behavior
cannot be accomodated, [2], [25], [32]. A recent example from high energy particle
physics, leading to an instructive discussion of the need to consider non-Gaussian dis-
tributions, is given in [8]. It is now generally recognized that such heavy-tailed data
reflect underlying random processes with infinite variance, and that such processes
are pervasive in nature [28]. The empirical work reported in [14], [15], [17], is simply
one instance of a recurring pattern.

The Generalized Central Limit Theorem considers normalized sums of indepen-
dent, identically distributed random variables, with variances that need not be finite.
According to that theorem, the limit of any such sum, if it exists, must be a Lévy
stable law, [9], [22]. Note that while the class of stable laws includes more complex
asymmetric specimens, this paper restricts attention to the radially symmetric case
through Eq. (2)

In some applications, several electron-optical devices may be cascaded together
and used to image objects through a distorting medium such as the atmosphere. The
overall psf is then the convolution product of the individual component psfs,

ĥ(ξ, η) = exp{−
J

∑

i=1

αi(ξ
2 + η2)βi}, αi ≥ 0, 0 < βi ≤ 1.(4)

The general functional form given in Eq. (4) may also be used to best-fit a large
class of empirically determined optical transfer functions, by suitable choices of the
parameters αi, βi, and J .

We define the class G of blurring kernels to be the class of all psfs h(x, y) whose
Fourier transforms satisfy Eq. (4). We shall be interested in image deblurring prob-
lems

Hf ≡

∫

R2

h(x − u, y − v)f(u, v)dudv ≡ h(x, y) ⊗ f(x, y) = g(x, y),(5)

where g(x, y) is the recorded blurred image, f(x, y) is the desired unblurred image,
and h(x, y) is a known point spread function in class G. The blurred image g(x, y)
includes noise, which is viewed as a separate additional degradation,

g(x, y) = ge(x, y) + n(x, y).(6)
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Here, ge(x, y) is the blurred image that would have been recorded in the absence of
noise, and n(x, y) represents the cumulative effects of all errors affecting final acqui-
sition of the digitized array g(x, y). The unique solution of Eq. (5) when the right
hand side is ge(x, y), is the exact sharp image denoted by fe(x, y). Thus

h(x, y) ⊗ fe(x, y) = ge(x, y).(7)

With class G psfs we may define fractional powers H t, 0 ≤ t ≤ 1, of the convo-
lution integral operator H in Eq. (5) as follows

Htf ≡ F−1
{

ĥt(ξ, η)f̂ (ξ, η)
}

, 0 ≤ t ≤ 1.(8)

Class G psf’s are intimately related to diffusion processes, in that u(x, y, t) = H tf is
the solution at time t of a generalized diffusion equation, (see Eq. (13) below).

These considerations underlie the APEX blind deconvolution approach, which
stipulates at the outset that the blurring is isoplanatic, and that the lumped total
system optical transfer function can be well approximated by Eq. (4). The APEX
method is based on detecting such Lévy stable psfs by appropriate Fourier analysis
of the blurred image data. As discussed more fully below, detected representative
values for the constants αi and βi in Eq. (4) are used to construct a candidate otf.
This is then used in the SECB deconvolution method, implemented as a time-reversed

diffusion equation. By marching backwards in time, one can visually monitor the de-
convolution process as it unfolds, examine accompanying diagnostic information, and,
if necessary, choose to terminate that process prior to completion. Early termination
is equivalent to interactive readjustment of the initial candidate otf.

4. Images and their Fourier transforms. The Fourier transform is the pri-
mary computational tool used in this paper. We deal exclusively with square images
g(x, y) of size 2N × 2N pixels. In order to render mathematical formulae more trans-
parent, we use the same notation, ĝ(ξ, η), for both discrete and continuous Fourier
transforms. In the discrete FFT case, the frequencies ξ and η are understood to be
integer-valued and to range from −N to N . Likewise, g(x, y) denotes both discrete
and continuous images. In the discrete case, the variables x, y are measured in pixels
and range from 1 to 2N .

Given the Lévy pairs (αi, βi), i = 1, J , where αi > 0, 0 < βi ≤ 1, the correspond-

ing discrete class G otf is the 2N × 2N array ĥ(ξ, η) where, with integer ξ, η

ĥ(ξ, η) = exp{−

J
∑

i=1

αi(ξ
2 + η2)βi}, −N < ξ, η ≤ N.(9)

In this paper, typical parameter values might be N = 512, J = 1, α = 0.2, β = 0.2.
Such otf arrays are used to construct the SECB deblurred image, as in Eq. (14) below.

Given an image g(x, y), the natural logarithm of the absolute value of its Fourier
transform, ln |ĝ(ξ, η)|, will play a crucial role. This logarithm is well-defined except
where ĝ(ξ, η) = 0. At any such zero, we simply redefine ĝ to be the machine epsilon.
In practice, exact zeroes of ĝ(ξ, η) are seldom encountered due to system noise.

The qualitative behavior in Fourier space of a large class of astronomical images
is of interest. Let fe(x, y) be an exact sharp image as in (7). Since fe(x, y) ≥ 0

|f̂e(ξ, η)| ≤

∫

R2

fe(x, y)dxdy = f̂e(0, 0) = γ > 0.(10)
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A B

Fig. 3. Fourier behavior in 1024×1024 image of spiral galaxy M101 is typical of a large class of
astronomical images. Above image was taken by Jacoby, Bohannan and Hanna, Kitt Peak National
Observatory, (NOAO/AURA/NSF). (A) ln |ĝ∗(ξ, 0)| on |ξ| ≤ 500 for M101 image. While local
behavior is highly oscillatory, global behavior is generally monotone decreasing and convex. (B)
Least squares fit of ln |ĝ∗(ξ, 0)| with u(ξ) = −α|ξ|2β − A, with A = 3.85. Fit develops cusp at ξ = 0
and returns α = 0.385, β = 0.206. Such trial least squares fits, using different values of A > 0, are
basic to the APEX method.

Also, since ge(x, y) = h(x, y) ⊗ fe(x, y) and h(x, y) is a probability density,

ĝe(0, 0) =

∫

R2

ge(x, y)dxdy =

∫

R2

fe(x, y)dxdy

= f̂e(0, 0) = γ > 0.(11)

Using γ as a normalizing constant, we may normalize any Fourier transform quantity
q̂(ξ, η) by dividing by γ. Let

q̂∗(ξ, η) = q̂(ξ, η)/γ,(12)

denote the normalized quantity. The function |f̂e
∗
(ξ, η)| is highly oscillatory, and

0 ≤ |f̂e
∗
| ≤ 1. Since fe(x, y) is real, its Fourier transform is conjugate symmetric.

Therefore, the function |f̂e
∗
(ξ, η)| is symmetric about the origin on any line through

the origin in the (ξ, η) plane. The same is true for the blurred image data |ĝ∗(ξ, η)|.
For any 2N × 2N image g(x, y), the discrete FFT ĝ(ξ, η) is a 2N × 2N array

of complex numbers. The frequencies ξ, η are integers lying between −N and N , and
the zero frequency is at the center of the transform array. This ordering is achieved
by pre-multiplying g(x, y) by (−1)x+y. We shall be interested in the values of such
transforms along single lines through the origin in the discrete (ξ, η) plane. The
discrete transforms |ĝ∗(ξ, 0)|, and |ĝ∗(0, η)| are immediately available. Image rotation
may be used to obtain transforms along other directions. All 1-D Fourier plots shown
in this paper are taken along the axis η = 0 in the (ξ, η) plane, as is the case in Figure
3. In these plots, the zero frequency is at the center of the horizontal axis, and the
graphs are necessarily symmetric about the vertical line ξ = 0.

The class of astronomical images g(x, y) considered in the present paper can be
described in terms of the behavior of ln |ĝ∗(ξ, η)| along single lines through the
origin in the (ξ, η) plane. While local behavior is highly oscillatory, global behavior is
generally monotone decreasing and convex on ξ ≥ 0. This is shown in Figure 3(A) for
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a typical galaxy image along the line η = 0, and similar behavior is found along other
lines through the origin in the (ξ, η) plane. A least squares fit to the oscillatory trace
in Figure 3(A) with a smooth curve, provides a good representation of this global
monotone convexity property on ξ ≥ 0. (A convex function is such that given any
two distinct points A and B on its graph, the straight line segment joining A and B
lies above the graph.) Many astronomical images exhibit similar globally monotone
convex Fourier behavior. An example of an image where this is not the case, lies in
the defective optics, blurred M100 image in Figure 2(A). In RGB color space, the red
component of that image deviates strongly from convex monotone behavior. Use of
the APEX method in the manner to be described below is intended only for images
where Fourier behavior is similar to that shown in Figure 3(A).

5. SECB deblurring and diffusion equations. The SECB method is a direct
(non-iterative) FFT-based image deblurring technique designed for equations in the
form of Eq. (5), where h(x, y) is assumed known and belongs to G. A complete discus-
sion of that method, together with error bounds and comparisons with other methods,
may be found in [3]. Significantly, the SECB method does not impose smoothness
requirements, such as prescribed bounds on the Laplacian or other derivatives of the
unknown image f(x, y). This is an important consideration since many images have
sharp edges and other localized non-differentiable features. In addition, knowledge of
the actual statistical character of the data noise n(x, y) in Eq. (6) is not required,
and the noise may be multiplicative. However, an estimate of the L2 norm of n(x, y)
is required.

Considerable experience has been accumulated with the SECB method. That
experience indicates that the SECB method can often recover fine-scale features in
cases where this is not feasible with iterative methods such as the Lucy-Richardson,
Maximum Entropy, or Marquina-Osher methods. Documented numerical experiments
supporting these claims may be found in [3], [5], and [7].

Class G psfs are the Green’s functions for certain linear fractional diffusion equa-
tions. As a consequence, the blurred noisy image g(x, y) on the right of Eq. (5) can
be interpreted as the noise corrupted solution, at time t = 1, of the diffusion initial
value problem

∂u

∂t
= −

J
∑

i=1

λi(−∆)βiu, 0 < t ≤ 1.

u(x, y, 0) = fe(x, y),(13)

where λi = αi(4π2)−βi , and ∆ denotes the Laplacian. When the exact initial value
fe(x, y) is given, u(x, y, t) = H tfe is the solution of Eq. (13) at time t , and u(x, y, 1) =
ge(x, y), in agreement with Eq. (7).

Solving the deconvolution problem in Eq. (5) is equivalent to solving the ill-posed
backwards in time problem in Eq. (13), namely, given the noisy data g(x, y) at time
t = 1, find an approximation f(x, y) to the initial data fe(x, y). The SECB method
is a regularization method for solving that ill-posed diffusion problem, one that takes
into account the presence of noise in the blurred image data g(x, y) at t = 1. The
SECB deblurred image f †(x, y) is an approximation to fe(x, y) that is obtained in
closed form in Fourier space. With z denoting the complex conjugate of z,

f̂ †(ξ, η) =
ĥ(ξ, η)ĝ(ξ, η)

|ĥ(ξ, η)|2 + K−2|1 − ĥs(ξ, η)|2
,(14)
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leading to f †(x, y) upon inverse transforming. Here, the positive constants s � 1,
and K, are regularization parameters, chosen on the basis of prior information as
discussed in [5]. Typical values used in this paper might be s = 0.01, K = 1000. As
in Eq. (8), we also form and display

u†(x, y, t) = Htf †(x, y),(15)

for selected decreasing values of t lying between 1 and 0. This simulates marching

backwards in time in (13), and allows monitoring the gradual deblurring of the im-
age. As t → 0 the partial restorations u†(x, y, t) become sharper. Such slow motion

deconvolution allows detection of features in the image before they become obscured
by noise or ringing artifacts. As will be seen below, such marching backwards in time
is a vital element in the APEX method. Diagnostic statistical information about
u†(x, y, t) can also be calculated for selected values of t as t → 0. Of particular
interest are the discrete L1 norm, defined as follows for 2N × 2N images

‖ u†(t) ‖L1= (2N)−2
2N
∑

x,y=1

|u†(x, y, t)|,(16)

and the discrete total variation or TV norm, which measures image gradients

‖ u†(t) ‖TV = (2N)−2
2N−1
∑

x,y=1

(

{u†
x(x, y, t)}2 + {u†

y(x, y, t)}2
)1/2

,(17)

where

u†
x(x, y, t) = (2N)−1(u†(x + 1, y, t)− u†(x, y, t))

u†
y(x, y, t) = (2N)−1

(

u†(x, y + 1, t) − u†(x, y, t)
)

(18)

In blind deconvolution applications of the SECB method, APEX-detected values
for αi, βi, are used to form the 2N × 2N array in Eq. (9). This is input into Eq.
(14), and inverse FFT algorithms are then used to obtain u†(x, y, t) in Eq. (15).
This may result in individual pixel values that are negative. Accordingly, all negative
values are reset to the value zero. For such non-negative image data, the discrete
L1 norm ‖ u†(t) ‖L1 in Eq. (16) is proportional to the total flux. In a well-behaved
deconvolution process, this total flux should be conserved, and ‖ u†(t) ‖L1 should
remain constant, as t → 0. At the same time, the discrete image gradient norm
‖ u†(t) ‖TV in Eq. (17) should increase monotonically as t → 0, reflecting the gradual
sharpening of edges and other localized singularities in the restored image.

6. A priori non-uniqueness in blind deconvolution. Blind deconvolution
seeks to deblur an image without knowing the cause of the blur. This is a diffi-
cult mathematical problem in which severe ill-conditioning is compounded with non-
uniqueness of solutions. A-priori constraints can reduce, but not entirely eliminate,
the multiplicity of solutions. While many of these solutions are physically meaningless
and can be rejected on physical grounds, there often remain infinitely many visually
distinct, physically meaningful solutions. Consider the experiment in Figure 4.

The sharp 512 × 512 Sydney image fe(x, y) in Figure 4(A) was synthetically
blurred by convolution with a Lorentzian density h(x, y) with α0 = 0.075, β0 =
0.5. This produced the blurred image ge(x, y) in Figure 4(B). To avoid distractions
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A B

C D

Fig. 4. Non-uniqueness in blind deconvolution. Distinct point spread functions exist that
produce distinct high quality reconstructions from the same blurred image. (A) Original sharp 512×
512 Sydney image. (B) Synthetically blurred Sydney image created by convolution with Lorentzian
density obtained by choosing α = 0.075, β = 0.5 in Eq. (2). (C) Deblurring of image (B) using
correct otf parameters α = 0.075, β = 0.5. (D) Deblurring of image (B) using ”incorrect” otf
parameters α = 0.195, β = 0.4. Deblurred images obtained using SECB procedure in Section 5,
with s = 0.001 and K = 10000.

caused by noise, the blurred image ge(x, y) in this experiment was computed and
stored in 64-bit precision. Deblurring Figure 4(B) with the correct psf values α =
0.075, β = 0.5, produces Figure 4(C). This is in excellent visual agreement with
fe(x, y) in Figure 4(A), as expected. However, Figure 4(D), obtained from Figure 4(B)
using the ”incorrect” psf values α = 0.195, β = 0.4, appears even sharper! It is not
evident how, or why, one would eliminate the reconstruction in 4(D). Both deblurred
images were obtained using the SECB method with s = 0.001 and K = 10000. One
dimensional cross sections of the two distinct psfs used in Figure 4 are displayed in
Figure 5. These psfs exhibit distinct heavy tail behavior not shown in Figure 5. The
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Fig. 5. Two distinct point spread functions that deblur image (B) in Figure 4. Curves C and D
are 1-D cross sections of the 512× 512 psfs that respectively produced images (C) and (D) in Figure
4. These psfs also exhibit distinct heavy tail behavior.

TABLE 1

Behavior in deblurred images in Figure 4.

Restoration α, β L1 norm TV norm

Image (C) α = 0.075, β = 0.500 173 6419
Image (D) α = 0.195, β = 0.400 171 7500

two restorations also have distinct L1 and TV norms, as shown in Table 1.

Note that Figure 4(D) was obtained using a specific pair (α, β) where α > α0,
and β < β0. In fact, there are infinitely many other specific pairs (α, β), capa-
ble of producing distinct, high quality reconstructions from the same blurred image
ge(x, y) in Figure 4(B). These reconstructions may differ markedly from one another
at individual pixels, while being correct visual representations of the object that was
imaged. This is an inherent, a-priori, non-uniqueness property of the blind deconvo-
lution problem, independently of any particular algorithm that might be used to solve
that problem.

This situation is reminiscent of the multitude of distinct images that often exist for
some unique astronomical objects, such as the Whirlpool Galaxy (M51), for example.
In that case, these noticeably different photographic representations of the identical
object are all physically meaningful and visually correct.
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The non-uniqueness of good solutions to the blind deconvolution problem has
not been fully explored in the literature. When a blind algorithm produces a unique
solution, this may only indicate that that solution is the only one accessible to that
particular algorithm. Conceivably, there may be numerous additional good solutions
that remain inaccessible to the algorithm. And some of these reconstructions may
exhibit features of great interest.

A basic property of the APEX method is that it generally provides several psfs
that can be used to obtain useful reconstructions of a given blurred image. As in
the example above, these reconstructions will differ from one another at individual
pixels while being visually correct. As is well-known, a-priori knowledge about the
desired solution is a necessary ingredient for solving ill-posed inverse problems. Such
knowledge is expected to guide the user in his selection of the best solution, out of
the multiplicity of good solutions.

7. Slow motion blind deconvolution and the APEX method. The fol-
lowing observations underlie the APEX method. In the basic relation

g(x, y) = h(x, y) ⊗ fe(x, y) + n(x, y),(19)

we may safely assume that the noise n(x, y) satisfies

∫

R2

|n(x, y)|dxdy �

∫

R2

fe(x, y)dxdy = γ > 0,(20)

so that,

|n̂∗(ξ, η)| � 1.(21)

Consider the case where the otf is a pure Lévy density ĥ(ξ, η) = e−α(ξ2+η2)β

. Since
g = ge + n

ln |ĝ∗(ξ, η)| = ln |e−α(ξ2+η2)β

f̂e
∗
(ξ, η) + n̂∗(ξ, η)|.(22)

Let Ω = {(ξ, η) | ξ2 + η2 ≤ ω2} be a neighborhood of the origin where

e−α(ξ2+η2)β

|f̂e
∗
(ξ, η)| � |n̂∗(ξ, η)|.(23)

Such an Ω exists since Eq. (23) is true for ξ = η = 0 in view of Eq. (21). The radius
ω > 0 of Ω decreases as α, β, and n increase. However, in many applications, α, β,
and n(x, y) are sufficiently small that Ω extends into the high-frequency range. For
(ξ, η) ∈ Ω we have

ln |ĝ∗(ξ, η)| ≈ −α(ξ2 + η2)β + ln |f̂e
∗
(ξ, η)|.(24)

Because of the radial symmetry in the psf, it is sufficient to consider Eq. (24) along
a single line through the origin in the (ξ, η) plane. Choosing the line η = 0, we have

ln |ĝ∗(ξ, 0)| ≈ −α|ξ|2β + ln |f̂e
∗
(ξ, 0)|, |ξ| ≤ ω.(25)

Some type of a-priori information about fe(x, y) is necessary for blind deconvo-

lution. In Eq. (25), knowledge of ln |f̂e
∗
(ξ, 0)| on |ξ| ≤ ω would immediately yield

α|ξ|2β on that interval. Moreover, any other line through the origin could have been
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used in Eq. (24). However, ln |f̂e
∗
(ξ, 0)| is highly oscillatory, and such detailed knowl-

edge is unlikely in practice. Nor is it actually necessary. Much cruder knowledge,

in the form of the smooth curve Γ that best approximates ln |f̂e
∗
(ξ, 0)| in the least

squares sense, turns out to be sufficient. Indeed, knowledge of the smooth curve Γ
is the basis for the BEAK method of determining α and β from Eq. (25). See [4].
However, when Γ is not available, the APEX method must identify a useful psf from

Eq. (25), using more elusive information about ln |f̂e
∗
(ξ, 0)|. To compensate for this

handicap, the SECB marching backwards in time option in Eq. (15) is used, together
with visual monitoring of the unfolding deconvolution. Accompanying diagnostic sta-
tistical information as t → 0, such as the discrete norms ‖ u†(t) ‖L1 , and ‖ u†(t) ‖TV ,
in Eqs. (16) and (17), provide the means for readjusting initially detected psf param-
eters, α and β, and enforcing conservation of total flux. The method assumes that
fe(x, y) is a recognizable object, and typically requires several interactive trials prior
to locating a suitable psf. As previously noted, such trial SECB restorations are easily
obtained.

7.1. Conservation of total flux. In the absence of the smooth least squares

fit Γ, we replace ln |f̂e
∗
(ξ, 0)| by a negative constant −A in Eq. (25). For any A > 0,

the approximation

ln |ĝ∗(ξ, 0)| ≈ −α|ξ|2β − A,(26)

is not valid near ξ = 0, since the curve u(ξ) = −α|ξ|2β − A, has −A as its apex.
Choosing a value of A > 0, we best fit ln |ĝ∗(ξ, 0)| with u(ξ) = −α|ξ|2β −A on the
interval |ξ| ≤ ω, using nonlinear least squares algorithms. The resulting fit is close
only for ξ away from the origin. The returned values for α and β are then used in
the SECB deblurring algorithm. Different values of A return different pairs (α, β).
Experience indicates that useful values of A generally lie in the interval 3 ≤ A ≤ 6.
Increasing the value of A decreases the curvature of u(ξ) at ξ = 0, resulting in a
larger value of β together with a smaller value of α. A value of A > 0 that returns
β > 1 is clearly too large, as β > 1 is impossible for probability density functions
[9]. Decreasing A has the opposite effect, producing lower values of β and higher
values of α. As a rule, deconvolution is better behaved at lower values of β than it is
when β ≈ 1. A significant discovery is that an image blurred with a pair (α0, β0) can

often be successfully deblurred with an appropriate pair (α, β), where α > α0 and

β < β0 . An example of this phenomenon was shown in Figure 4(D) in connection
with the blurred Sydney image. An effective interactive framework for performing the
above least squares fitting is the fit command in DATAPLOT [11]. This is a high-
level English-syntax graphics and analysis software package developed at the National
Institute of Standards and Technology. This software tool was used throughout this
paper.

The following version of the APEX method has been found useful in a variety
of image enhancement problems where the image g(x, y) is such that ln |ĝ∗(ξ, 0)| is
generally globally monotone decreasing and convex, as shown in Figure 3(A). Choose
a value of A > 3 in Eq. (26), so that the least squares fit develops a well-formed
cusp at ξ = 0, as shown in Figure 3(B). Using the returned pair (α, β) in the SECB
method, obtain a sequence u†(x, y, t) of partial restorations as in Eq. (15), as t
decreases from t = 1. With a good choice of A, the total flux norm, ‖ u†(t) ‖L1 , should
remain constant or increase very slowly as t decreases, while the image gradient norm,
‖ u†(t) ‖TV , should increase monotonically as t decreases from t = 1.
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Most often, the initially detected value of α turns out to be too large. The
corresponding psf is then too wide in physical (x, y) space, or, equivalently, the otf is
too narrow in Fourier (ξ, η) space. Theoretically, use of too wide a psf all the way to
t = 0, implies sharpening features that may have already become infinitely sharp at
some tσ > 0. In practice, this leads to severe ringing and other undesirable artifacts
at t = 0, indicating that continuation backwards in time has proceeded too far. An
accompanying symptom of this ill-behaved deconvolution, is that the total flux norm
‖ u†(t) ‖L1 does not remain constant, but increases appreciably as t → 0. Choosing
a new and larger value of A in Eq. (26), returns a smaller α, but with a larger β. A
useful strategy is to locate a pair (α, β) such that ‖ u†(t) ‖L1 increases slowly enough
as t decreases, that its value at t = tσ = 0.5, say, is only a very few percent more than
its initial value at t = 1. In that case, the deconvolution is terminated at t = tσ . To
enforce total flux conservation, the resulting image at tσ is rescaled by multiplying it
by the constant Cσ =‖ u†(1) ‖L1 / ‖ u†(tσ) ‖L1 . Ideally, Cσ should be very close to
unity.1

Marching backwards in time allows for simultaneous sampling of numerous values
of α while keeping β fixed. Terminating the deconvolution at t = tσ > 0, is equivalent
to readjusting the original α while keeping the same value of β. If the pair (α, β)
produces a high quality restoration at t = tσ > 0, the pair (α∗, β), where α∗ =
(1 − tσ)α, will produce the same quality results at t = 0. We therefore distinguish
between the originally detected α, and the effective α, α∗. In general, there will be
many values of A in (26) returning pairs (α, β) that produce good reconstructions at
some tαβ > 0. A large number of distinct pairs (α∗, β) can thus be found that produce
useful, but distinct, results at t = 0. Ideally, successful APEX blind deconvolution
should incorporate three elements: clear visual evidence of sharpening, accompanied
by a substantial increase in TV norm, and conservation of L1 norm.

We have been assuming ĥ(ξ, η) to be a pure Lévy otf in Eq. (19). The procedure
is very similar for the more general class G otfs in Eq. (4). Here, given prior starting

values for the αi, βi, i = 1, J , we best-fit ln |ĝ∗(ξ, 0)| with −
∑J

i=1 αi|ξ|
2βi−A, , with

suitably preselected A > 3. This returns J initially detected pairs (αi, βi). As before,
by monitoring the deconvolution process and terminating it at the appropriate time
tσ > 0, we arrive at effective values α∗

i = (1 − tσ)αi, such that the J pairs (α∗
i , βi)

produce useful sharpening at t = 0. It should be noted that in most applications of the
APEX method considered to date, including those in the present paper, high quality
reconstructions were obtained using the simplest version of that method, where J = 1.
This indicates that in many applications, a single pure Lévy stable otf can often be
found that sufficiently well-approximates the system’s more complex composite otf.

All point spread and optical transfer functions depicted in this paper, including
those in Figure 5, are based on effective Lévy parameter values (α∗, β), producing
optimal reconstructions at t = 0.

8. Applications to gray scale galaxy images. Our first example, in Figure
6(A), is a 1024× 1024 8-bit gray scale image g(x, y) of the spiral galaxy M101. This
is adapted from a similar size color JPEG image obtained by Jacoby, Bohannan, and
Hanna, Kitt Peak National Optical Astronomy Observatory, (NOAO/AURA/NSF).
A plot of ln |ĝ∗(ξ, 0)| was shown earlier in Figure 3(A). Using A = 3.85, we best-fit
ln |ĝ∗(ξ, 0)| with −α|ξ|2β − A, , on |ξ| ≤ 500. The fit develops a well-formed cusp

1It is occasionally beneficial to allow more aggressive deblurring, with the L1 norm increasing by
as much as 10% prior to rescaling, in order to bring out important fine scale structural details.
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A B

Fig. 6. APEX blind deconvolution of M101 image. (A) Original 1024 × 1024 M101 image,
obtained by Jacoby, Bohannan, and Hanna, Kitt Peak National Observatory, (NOAO/AURA/NSF).
(B) APEX processed image is noticeably sharper. Both images have identical L1 ‘total flux’ norms,
but TV ‘gradient’ norm in image (B) is three times larger than in image (A).

at ξ = 0, as shown in Figure 3(B), and returns α = 0.385, β = 0.206. The patterns
illustrated in Figure 3 are typical of all the images discussed in this paper. Using
these Lévy parameters in the SECB method with s = 0.01, K = 1300, we find that
at first, ‖ u†(t) ‖L1 increases slowly as t decreases, from an initial value of 12.84 at
t = 1, to a value of 12.96 at t = 0.65. Thereafter, ‖ u†(t) ‖L1 increases more rapidly.
At the same time, ‖ u†(t) ‖TV increases monotonically from 2134 at t = 1, to 6747 at
t = 0.65, i.e., a threefold increase in gradient norm. Deconvolution was terminated at
tσ = 0.65, and the effective value of α is α∗ = 0.135. The APEX-processed image,
shown in Figure 6(B), was rescaled so as to have the same L1 norm as Figure 6(A).

Our second example, in Figure 7(A), is a 1024x1024 8-bit gray scale image of
the spiral galaxy M51. This is adapted from a similar size color JPEG image ob-
tained by Rector and Ramirez, Kitt Peak National Optical Astronomy Observatory,
(NOAO/AURA/NSF). Here, there is very substantial documented APEX sharpening,
and the deconvolved image in Figure 7(B) very visibly improves on the original. With
A=5.0, least squares fitting on |ξ| ≤ 500, returned α = 0.364, β = 0.218. This was
input into the SECB method with s=0.01, K=1300. Deconvolution was terminated
at tσ = 0.48, leading to an effective α∗ = 0.189. Total flux ‖ u†(t) ‖L1 increased very
slightly, from 30.58 at t = 1, to 30.82 at tσ = 0.48. However, there was a correspond-
ing eightfold increase in ‖ u†(t) ‖TV , from 1948 at t = 1, to 16516 at tσ = 0.48. Both
images in Figure 7 have identical L1 norms.

Our next example, in Figure 8(A), is a 1024 × 1024 8-bit gray scale image of
the spiral galaxy M74. This is adapted from a JPEG color image taken in August
2001 by the GMOS Team at the Gemini Observatory, Mauna Kea, Hawaii. With
A = 4.25, least squares fitting of ln |ĝ∗(ξ, 0)| with −α|ξ|2β − A, on |ξ| ≤ 500,
returned α = 0.857, β = 0.157. Here, more aggressive deblurring was permitted prior
to termination. With s = 0.01 and K = 500 in the SECB method, ‖ u†(t) ‖L1
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A B

Fig. 7. Blind deconvolution of M51 image. (A) Original 1024 × 1024 M51 image obtained by
Rector and Ramirez, Kitt Peak National Observatory, (NOAO/AURA/NSF). (B) APEX processing
very significantly improves original. ‘Total flux’ L1 norms of images (A) and (B) are equal, but
‘gradient’ TV norm in (B) is more than eight times larger than in (A).

increased by 7%, from 61.22 to 65.68, prior to termination at tσ = 0.65. The effective
value of α is α∗ = 0.3, and there was a corresponding fourfold increase in ‖ u†(t) ‖TV ,
from 4670 to 20173. The APEX-processed image in Figure 8(B) was rescaled so as to
have the same L1 norm as Figure 8(A).

In Figure 9, ln |ĝ∗(ξ, 0)| is plotted on |ξ| ≤ 500, for the M51 and M74 images,
before and after APEX processing. Evidently, APEX processing amplifies high fre-
quency components quite significantly. This amplification is carefully orchestrated,
takes place in a stable, coherent fashion, and enables recovery of the delicate fine
structures and other features that are evident in Figures 7(B) and 8(B). These before
and after Fourier patterns are typical of all the images shown in this paper.

9. APEX processing of color imagery. Blind deconvolution of color imagery
is a subject that is still very much in its infancy. Major difficulties arise from the need
to identify the distinct point spread functions associated with each color component.
More serious difficulties arise from the possibility of unbalanced blind sharpening of
individual color components. Conceivably, after a long and uncertain iterative process,
the reconstituted color image may turn out to exhibit physically false colors, such as
a green sky, or a purple sea. A fruitful mathematical framework wherein the blind
color problem can be effectively tackled, has not yet been formulated.

One approach to color image processing traces its origin to high energy physics
and string theory [18], [26], [27]. Here, a color image is viewed as a 2D manifold in
5D space, namely, {x, y, R(x, y), G(x, y), B(x, y)}, where R, G, B are the red, green,
and blue components of the color image g(x, y). The so-called Polyakov functional is
then defined on this manifold, and gradient descent minimization of this functional
is implemented. This leads to the Beltrami flow equations, a coupled system of evo-
lutionary nonlinear partial differential equations for the three time-dependent images
R(x, y, t), G(x, y, t), B(x, y, t). That system is then solved forward in time numeri-
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A B

Fig. 8. Blind deconvolution of M74 image. (A) Original 1024 × 1024 M74 image obtained
by GMOS Team at Gemini Observatory, Mauna Kea, Hawaii. (B) APEX processing significantly
improves original. ‘Total flux’ L1 norms in images (A) and (B) are equal, but ‘gradient’ TV norm
in (B) is four times larger than in (A).

A B

Fig. 9. APEX processing leads to significant change in high frequency Fourier behavior. (A)
Before and after for M51 image. (B) For M74 image.

cally, until a steady-state is reached. This formalism has been applied successfully to
color image denoising. With considerable skill, such an approach might possibly be
elaborated into a blind deconvolution procedure. However, the computational effort
required to process large size imagery would be challenging.

A remarkable property of the APEX method is the ease with which it can be
applied to color imagery, and the plausibility of the ensuing results. Clearly, the
ability to try numerous parameter values in quasi real-time is of vital significance.
Indeed, efficient exploration in parameter space is often the key to the successful
solution of ill-posed inverse problems.

The most natural way to use the APEX method is to first decompose the blurred
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color image into its three RGB components, apply the method to each component in
turn, and then reconstitute the deblurred image. For each RGB component, visual
monitoring of the partial deconvolution u†(x, y, t) in Eq. (15) as t → 0, is accompa-
nied by the calculated diagnostic quantities ‖ u†(t) ‖L1 and ‖ u†(t) ‖TV . As in the
case of gray scale imagery discussed above, total flux conservation in each RGB com-
ponent is enforced by terminating deconvolution at some appropriate time tσ > 0, and
rescaling the image by multiplication by the constant Cσ =‖ u†(1) ‖L1 / ‖ u†(tσ) ‖L1 .
In this way, individual Lévy pairs (α∗, β) are detected for each RGB component, often
leading to distinct otfs for each color. This methodology has also been found to main-
tain the balance of colors in all of the many examples to which it has been applied.
We shall now demonstrate this on several color images, including some spectacular
Hubble Space Telescope images.

Our first color image, in Figure 10(A), is an Ektachrome 1024 × 727 tiff im-
age of the Southern Pinwheel galaxy M83. This was downsized from an original
3500× 2485 tiff image taken by Bill Schoening at Kitt Peak National Optical Astron-
omy Observatory, (NOAO/AURA/NSF). After decomposition into RGB components,
APEX least squares fitting on |ξ| ≤ 500, with A = 3.85, was applied to each compo-
nent. The returned values for α and β were then input into the SECB method with
s = 0.01, K = 1300. For the red component, α = 0.356, β = 0.195, and ‖ u†(t) ‖L1

increased by about 2%, from 15.02 to 15.36, prior to termination at tσ = 0.65. The
effective α in this case is α∗ = 0.124. There was a corresponding threefold increase in
‖ u†(t) ‖TV , from 2541 to 7698. For the green component, α = 0.506, β = 0.171, and
the L1 norm increased by 5%, from 23.76 to 24.99, prior to termination at tσ = 0.65.
Here, α∗ = 0.177. There was again a threefold increase in TV norm, from 4393 to
14613. For the blue image, α = 0.571, β = 0.161, and ‖ u†(t) ‖L1 increased by 6.5%,
from 30.60 to 32.59, prior to termination at tσ = 0.65. This gives α∗ = 0.2. Once
again, there was a threefold increase in ‖ u†(t) ‖TV , from 3606 to 11778.

In this example, the green image otf almost coincides with the blue image otf,
and both lie below the red image otf. Thus, the APEX method perceived the red
component to be less blurred than the other two components, and it processed the
image accordingly. All three components were rescaled to preserve L1 norms, prior
to reconstitution into Figure 10(B).

The next example is a Hubble Space Telescope image of NGC2207, involving
two merging galaxies. That image forms part of the Hubble Heritage Gallery. The
original full resolution 2907× 1486 tiff image was obtained by NASA, ESA, and the
Hubble Heritage Team (STSci/AURA), using the Wide Field and Planetary Camera
2, (WFPC2). This was stepped down to the 1024× 523 shown in Figure 11(A). We
used A = 4.75 with s = 0.01, K = 1300 in the SECB method, and terminated the
process at tσ = 0.65 in each of the three components. Here, APEX perceived the red
component to be more blurred than the other two components. For the red image,
α∗ = 0.111, β = 0.203, and ‖ u†(t) ‖L1 increased by 10.25%, from 19.11 to 21.06,
while ‖ u†(t) ‖TV increased from 3862 to 11182, a factor of 2.9. For the green image,
α∗ = 0.088, β = 0.217, ‖ u†(t) ‖L1 increased from 17.71 to 18.82, (6.8%), while
‖ u†(t) ‖TV increased by a factor of 2.8, from 3937 to 11019. The blue image was
perceived to be the least blurred. Here, α∗ = 0.052, β = 0.247, ‖ u†(t) ‖L1 increased
by 8.9%, from 14.67 to 15.97, while ‖ u†(t) ‖TV increased by a factor of 2.4, from 7783
to 17726. All three RGB components were rescaled to prserve L1 ‘total flux’ norms,
prior to reconstitution into Figure 11(B).

Our third example is again a Hubble Heritage Gallery image, featuring the re-
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Fig. 10. APEX processing significantly sharpens Southern Pinwheel M83 Ektachrome
image. Original (A) was obtained by Bill Schoening, Kitt Peak National Observatory,
(NOAO/AURA/NSF). Both images have equal L1 ‘total flux’ norms in each RGB component, while
component TV ‘gradient’ norms in enhanced image (B) are three times larger than in (A).
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Fig. 11. APEX processing enhances Hubble Space Telescope image of NGC2207 involving
two merging galaxies. Original (A) was obtained by NASA, ESA, and the Hubble Heritage Team
(STSci/AURA). Both images have equal L1 ‘total flux’ norms in each RGB component, while com-
ponent TV ‘gradient’ norms in enhanced image (B) are almost three times larger than in (A).

flection nebula in Orion, NGC 1999. The original 750 × 750 tiff image was obtained
by NASA and the Hubble Heritage Team (STSci/AURA), using the WFPC2 camera.
Here, this was stepped down to the 512 × 512 image shown in Figure 12(A). With
A = 5.5 and s = 0.01, K = 1300 in SECB, deconvolution was unusually well-behaved
and uniform. For each RGB component, ‖ u†(t) ‖L1 was very nearly conserved prior
to termination at tσ = 0.6. This norm was near 97 for the blue image, and near 67 for
the red and green images. Moreover, detected Lévy pairs for each component were
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BA

Fig. 12. APEX blind deconvolution enhances Hubble Space Telescope image of Orion Re-
flection Nebula, NGC 1999. Original (A) was obtained by NASA and the Hubble Heritage Team
(STSci/AURA). Both images have equal L1 ‘total flux’ norms in each RGB component, while com-
ponent TV ‘gradient’ norms in enhanced image (B) are 5.6 times larger than in (A).

all very nearly equal to α∗ = 0.3, β = 0.17, and all three otfs coincided in this case.
Again, for each RGB component, ‖ u†(t) ‖TV increased by the same factor of 5.6,
from 1498 to 8539 for red, from 1450 to 8166 for green, and from 2291 to 12890 for
blue.

As was the case with gray scale galaxy images, striking improvements in visual
quality in Figures 10(B), 11(B), and 12(B), appear to correlate well with substantial
increases in TV norms.

9.1. Advanced Camera for Surveys (ACS) imagery. The WFPC2 is Hub-
ble’s main camera and workhorse instrument. Our final two examples feature images
taken with the Advanced Camera for Surveys (ACS). That instrument outperforms
all previous cameras aboard the Hubble Space Telescope. To celebrate Hubble’s fif-
teenth birthday on April 25 2005, NASA released the sharpest-ever color image of
the Whirlpool Galaxy M51. That image was recorded with the ACS Camera by
NASA, ESA, S. Beckwith (STScI), and the Hubble Heritage Team (STScI/AURA).
The original full resolution 7965×11477 tiff image was stepped down to the 710×1024
tiff image shown in Figure 13(A). After decomposing that image into RGB compo-
nents, APEX processing using A = 5.25 was applied to each component in turn,
with s = 0.01, K = 1300 in the SECB method. All three components behaved very
similarly, and deconvolution was terminated at tσ = 0.65 in all three cases. For the
red component, α∗ = 0.175, β = 0.173, and ‖ u†(t) ‖L1 increased by 5.3% prior to
termination, from 42.46 to 42.72. However, ‖ u†(t) ‖TV increased by a factor of 3.7,
from 5170 to 19247. For the green component α∗ = 0.177, β = 0.171, and the L1

norm increased from 41.63 to 44.05, a 5.8% increase. The TV norm increased from
4361 to 17801, a fourfold increase. For the blue component, α∗ = 0.160, β = 0.186,
and the L1 norm increased from 41.11 to 43.28, a 5.3% increase. There was again
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Fig. 13. APEX processing significantly sharpens 15th anniversary Hubble Space Telescope
Whirlpool galaxy image, released on April 25 2005. Original image recorded with ACS Camera
by NASA, ESA, S. Beckwith (STScI), and Hubble Heritage Team (STScI/AURA). Both images
have equal L1 ‘total flux’ norms in each RGB component, while component TV ‘gradient’ norms in
enhanced image (B) are four times larger than in (A).

a fourfold increase in the TV norm, from 4805 to 19839. All three component otfs
coincided in this case. Individual RGB components were rescaled so as to preserve
L1 norms, prior to reconstitution as the APEX image shown in Figure 13(B).

Our last example involves an image of the Tadpole galaxy UGC10214, said to
contain a ”Whitman’s Sampler” of galaxies that stretch back to the beginning of
time. The full resolution 3806 × 4160 tiff image was taken with the ACS Camera
by NASA, STScI, ESA, and the ACS Science Team. This was stepped down to the
937×1024 tiff image shown in Figure 14(A). After decomposing that image into RGB
components, APEX processing using A = 5.25 was applied to each component in
turn, with s = 0.01, K = 1300 in the SECB method. Deconvolution was uniformly
well-behaved, and was terminated at tσ = 0.675 in all three components. For the
red component, α∗ = 0.066, β = 0.242, and ‖ u†(t) ‖L1 increased by 2.2% prior to
termination, from 23.54 to 24.05. At the same time, there was a threefold increase in
‖ u†(t) ‖TV , from 6085 to 18606. For the green component α∗ = 0.068, β = 0.234,
and ‖ u†(t) ‖L1 increased by 3%, from 23.025 to 23.72. Again, there was a near
threefold increase in ‖ u†(t) ‖TV , from 6970 to 19645. For the blue component,
α∗ = 0.103, β = 0.201, the L1 norm increased by 3.2%, from 25.25 to 26.07, while
the TV norm increased threefold, from 7731 to 22756. Again, all three component
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Fig. 14. APEX processing enhances Hubble Space Telescope Tadpole galaxy image. Original
ACS image taken by NASA, STScI, ESA, and the ACS Science Team. Both images have equal
L1 ‘total flux’ norms in each RGB component, while component TV ‘gradient’ norms in enhanced
image (B) are three times larger than in (A).
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Fig. 15. Extent of sharpening in APEX processed image becomes more evident when zooming
on selected parts of images in Figure 14. Foreground objects as well as background galaxies are
brought into sharper focus in Figure 15(B).
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Fig. 16. 1D cross sections of optical transfer functions that deblurred images discussed in
sections 8 and 9. (A) Non-Hubble otfs. (B) Hubble otfs.

TABLE 2

Summary of APEX experiments in sections 8 and 9.

Image Size A tσ α∗ β × TV
M101 1024× 1024 3.85 0.65 0.135 0.206 × 3

M51 (KP) 1024× 1024 5.00 0.48 0.189 0.218 × 8
M74 1024× 1024 4.25 0.65 0.300 0.157 × 4
M83 1024× 727 3.85 0.65 0.200 0.161 × 3

Merging 1024× 523 4.75 0.65 0.111 0.203 × 3
Orion 512× 512 5.50 0.60 0.300 0.168 × 6

M51 (HST) 710× 1024 5.25 0.65 0.177 0.171 × 4
Tadpole 937× 1024 5.25 0.65 0.068 0.234 × 3

otfs coincided. Individual RGB components were rescaled so as to preserve L1 norms,
prior to reconstitution as the APEX image shown in Figure 14(B).

Zooming on selected parts of the images in Figure 14 provides a useful comparison,
as shown in Figure 15. The extent of sharpening in the APEX processed image 15(B)
becomes clearly evident as foreground objects, as well as background galaxies, are
brought into sharper focus.

The ability of the APEX method to enhance ACS images is remarkable and unan-
ticipated. Figure 16 shows 1D cross-sectional plots of the optical transfer functions
that were detected and used to process all of the images discussed in sections 8 and 9.
Non-Hubble otfs are shown in Figure 16(A) and Hubble otfs in Figure 16(B). For color
images, the narrowest otf is shown, corresponding to the blurriest RGB component.
These otfs plots are based on effective values (α∗, β), that produce high quality SECB
reconstructions at t = 0. These are the values shown in Table 2, which summarizes
the results of the APEX experiments described in sections 8 and 9. The last column
in Table 2 indicates the multiplying factors for the resulting TV norm increases.
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Applications, O. Barndorff-Nielsen, T. Mikosch and S. Resnick Eds., Birkhauser, Boston
2001.


