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Abstract
The International Organization for Standardization (ISO) Guide to the
Expression of Uncertainty in Measurement (GUM) describes a generic
procedure for determining an estimate for the value of the measurand and its
associated combined standard uncertainty from the estimates and their
associated standard uncertainties for various input quantities. A user of the
ISO-GUM who is interested in understanding, managing or improving the
measurement procedure needs the details, usually expressed as an
uncertainty budget, on how the estimate for the value of the measurand and
its associated combined standard uncertainty were calculated. In particular,
a user may be interested in quantifying the degrees of contribution to the
combined standard uncertainty from its components. When the
measurement equation is a linear function of uncorrelated input variables,
the contribution from a component is usually quantified by the product of
the component of uncertainty and its sensitivity coefficient. This paper
introduces a coefficient of contribution that is suitable for both uncorrelated
and correlated input variables. The proposed coefficient of contribution is
useful for a variety of measurement equations. Correlations between input
variables can significantly alter the relative importance of the contributions
to the combined standard uncertainty from its components.

1. Introduction

The Guide to the Expression of Uncertainty in Measurement
(GUM) [1] published by the International Organization for
Standardization (ISO), referred to as the ISO-GUM here,
recommends a generic procedure for determining an estimate
y for the value Y of the measurand and its associated
combined standard uncertainty u(y) from the estimates
x1, . . . , xn for the input quantities X1, . . . , Xn and their
associated standard uncertainties u(x1), . . . , u(xn) when the
measurement equation Y = f (X1, . . . , Xn) is specified. In
the measurement equation Y = f (X1, . . . , Xn), the symbols
X1, . . . , Xn and Y are used for variables having state-of-
knowledge probability distributions about the input quantities
X1, . . . , Xn and the value Y of the measurand [1, section
4.1.6, 2]. The estimate y is determined by substituting the

4 Author to whom any correspondence should be addressed.

estimates x1, . . . , xn for X1, . . . , Xn in Y = f (X1, . . . , Xn).
Thus

y = f (x1, ..., xn). (1)

The measurement equation Y = f (X1, . . . , Xn) is
approximated by a first-order (linear) Taylor series about the
input estimates x1, . . . , xn to obtain the approximation

Y ≈ Ylinear = y +
∑

i

ci(Xi − xi), (2)

where c1, . . . , cn are, respectively, partial derivatives of Y

with respect to X1, . . . , Xn evaluated at x1, . . . , xn. The
partial derivatives c1, . . . , cn are interpreted as the sensitivity
coefficients associated with the input quantities X1, . . . , Xn,
respectively. If we regard xi and u(xi) as the expected value
and standard deviation of a state-of-knowledge distribution for
Xi , the variance of Ylinear gives the following expression for
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propagating the uncertainties u(x1), . . . , u(xn):

u2(y) =
∑

i

∑
j

cicju(xi)u(xj )r(xi, xj ), (3)

where r(xi, xj ) is the coefficient of correlation (also called the
correlation coefficient) between Xi and Xj for i, j = 1, . . . , n.
The double sum in (3) consists of n2 terms. Equation (3) is
often expressed as

u2(y) =
∑

i

c2
i u

2(xi) + 2
∑
i<j

cicju(xi)u(xj )r(xi, xj ). (4)

When X1, . . . , Xn are mutually uncorrelated, i.e.
r(xi, xj ) = 0 for i �= j , equation (4) reduces to

u2(y) =
∑

i

c2
i u

2(xi). (5)

A user of the ISO-GUM who is interested in
understanding, managing or improving the measurement
procedure needs the details, usually expressed as an uncertainty
budget, on how y and u(y) were calculated. In particular, a user
may be interested in quantifying the degrees of contribution
to the combined standard uncertainty u(y) from each of the
components u(x1), . . . , u(xn). We use the term coefficient of
contribution for a measure of the contribution to u(y) from a
component u(xi), for i = 1, . . . , n.

Using the ISO-GUM as the basis, the European co-
operation for Accreditation has published the document
Expression of the Uncertainty of Measurement in Calibration,
referred to as EA-4/02. When the input variables X1, . . . , Xn

are mutually uncorrelated, EA-4/02 [3, equation (4.2), p 10]
uses the product ui(y) = ci · u(xi) as the contribution to the
standard uncertainty u(y) from u(xi), where ci is the sensitivity
coefficient associated with Xi . The EA-4/02 tabulates ui(y)

in the uncertainty budget.
A joint Eurachem/CITAC Working Group has published

a guide based on the ISO-GUM for Quantifying Uncertainty
in Analytical Measurement [4], referred to as the Eurachem-
Guide. When the input variables X1, . . . , Xn are mutually
uncorrelated, the Eurachem-Guide also uses the expression5

ui(y) as the contribution to u(y) from u(xi). The Eurachem-
Guide displays the bar-charts of ui(y) for i = 1, . . . , n. This
paper describes a coefficient of contribution that is suitable for
both uncorrelated and correlated input variables X1, . . . , Xn

originally proposed in Kessel [5].
In section 2, the coefficient of contribution for

uncorrelated input variables is discussed. In section 3,
we introduce a more general expression for the coefficient
of contribution which is useful for both uncorrelated and
correlated input variables. In section 4, the coefficients of
contribution for measurement equations involving sums and
products of input variables are discussed. Subsequently, in
section 5 there is an example of correlated input quantities.
The coefficients of contribution to the molar mass of lead (Pb)
are calculated from the molar masses of its isotopes 204Pb,
206Pb, 207Pb and 208Pb, and their amount fractions, which are
correlated. A summary appears in section 6. The symbols
used in this paper agree with the ISO-GUM [1] and the NIST
Technical Note 1297 [6]. A list is provided in appendix A.
5 The Eurachem-Guide uses the symbol u(y, xi ) for ui(y) and defines it as√

c2
i · u2(xi ). Following the ISO-GUM, we use the symbol u(y, xi ) for the

covariance between state-of-knowledge distributions for Y and Xi .

2. Coefficient of contribution for uncorrelated input
variables

When the input variables X1, . . . , Xn are mutually uncorre-
lated, EA-4/02 uses the following expression as the contribu-
tion to uncertainty u(y) from u(xi):

ui(y) = ci · u(xi), (6)

for i = 1, . . . , n. The uncertainty contribution, ui(y), has the
same units of measurement as the value Y of the measurand.
A particular input quantity Xj may be used for evaluating a
number of measurands and its uncertainty contribution may be
different for different measurands. For intercomparison of the
contributions of Xj with different measurands, it is desirable
to express the coefficient of contribution on a scale relative
to the combined standard uncertainty. Therefore, we propose
the following expression as the coefficient of contribution for
uncorrelated input variables:

h(y, xi) =
[
ui(y)

u(y)

]2

=
[
ci · u(xi)

u(y)

]2

. (7)

We may abbreviate h(y, xi) as hi(y). The coefficient
of contribution, h(y, xi), expresses u2

i (y) on a dimensionless
scale. It follows, from equation (5), that the values of h(y, xi)

are fractions of one and they add up to one. Thus h(y, xi) may
be expressed as a percentage. Expression (7) is a special case
of a more general expression for the coefficient of contribution
discussed in section 3.

When the input variables X1, . . . , Xn are mutually
uncorrelated, the coefficient of correlation, R(Y, Xi), between
the state-of-knowledge probability distributions6 for Y and Xi

is

r(y, xi) = ui(y)

u(y)
= ci · u(xi)

u(y)
(8)

(appendix B). So h(y, xi) = r2(y, xi). In words, the
coefficient of contribution, h(y, xi), for uncorrelated input
variables is equal to the square of the coefficient of correlation,
r2(y, xi), between Y and Xi . Thus, the coefficient of
contribution, h(y, xi), proposed in equation (7) has a well-
understood statistical interpretation.

The coefficients of contribution are a useful part of an
uncertainty budget. For example, they are useful in the
Procedure for Uncertainty Management (PUMA) described
in the ISO Technical Specification ISO/TS 14253-2 [7].
PUMA is used to iteratively determine a more accurate
uncertainty budget for the combined standard uncertainty.
At each stage, the contribution of each component to the
combined uncertainty is computed. Thus, the uncertainty
budget identifies the dominant components of the combined
uncertainty.

2.1. Illustrative example

Consider the following example from EA-4/02 [3, section S2]
on calibration of a mass of nominal value 10 kg. This example

6 In the ISO-GUM, the state-of-knowledge probability distribution for Y is
the distribution of Ylinear in equation (2).
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Table 1. Uncertainty budget including the coefficients of contribution is given.

Standard uncertainty Sensitivity coefficient Uncertainty contribution Coefficient of contribution
Quantity Value xi u(xi) ci ui(y) h(y, xi)

mS 10 000.0050 g 22.5 × 10−3 g 1.0 22.5 × 10−3 g 59.6%
δmD 0.0 g 8.66 × 10−3 g 1.0 8.66 × 10−3 g 8.8%
δm 0.0200 g 14.2 × 10−3 g 1.0 14.2 ×10−3 g 23.7%
δmC 0.0 g 5.77 × 10−3 g 1.0 5.77 × 10−3 g 3.9%
δB 0.0 g 5.77 × 10−3 g 1.0 5.77 × 10−3 g 3.9%

mX 10 000.0250 g 29.1 × 10−3 g — — —

illustrates the calculation of the coefficients of contribution for
uncorrelated input variables. The measurement equation is

mX = mS + δmD + δm + δmC + δB, (9)

where mX is the mass of the unknown artefact, mS is the
conventional mass of the reference standard, δmD is the change
in value of the standard since last calibration, δm is the observed
difference in mass between artefact and standard, δmC is the
correction for eccentricity and magnetic effects and δB is the
correction for air buoyancy.

Table 1 concatenates the coefficients of contribution
h(y, xi) to the uncertainty budget given in EA-4/02.

The coefficients of contribution h(y, xi) indicate the
degrees of contribution to the combined standard uncertainty
from its components. For example, the uncertainty associated
with the reference standard contributes 59.6% to the combined
uncertainty. The coefficients of contribution can be directly
added. Thus the coefficient of contribution from the two
components, conventional mass and its change in value, related
to the reference standard is 68.4%. Thus, more than two-thirds
of the combined uncertainty comes from the reference standard
itself.

3. A more general expression for the coefficient of
contribution

When the input variables X1, . . . , Xn are correlated, the
coefficient of correlation, R(Y, Xi), between Y and Xi denoted
by r(y, xi) is

r(y, xi) =
∑

j

[
cju(xj )

u(y)

]
[r(xi, xj )], (10)

where r(xi, xj ) is the coefficient of correlation between Xi

and Xj for i, j = 1, . . . , n (appendix B). For such cases,
Kessel [5] proposed the following coefficient of contribution:

h(y, xi) =
[
ciu(xi)

u(y)

]
[r(y, xi)]. (11)

The coefficients of contribution h(y, xi) are dimensionless
numbers, some of which may be negative. However, the values
of h(y, xi) add up to one (appendix C). So the coefficients of
contributionh(y, xi)defined in equation (11) may be expressed
as a percentage.

In the special case where X1, . . . , Xn are uncorrelated, i.e.
r(xi, xj ) = 0 for i �= j , the coefficient of correlation r(y, xi)

of equation (10) reduces to equation (8) and the coefficient of
contribution h(y, xi) of equation (11) reduces to equation (7)

(appendix B). Thus, the coefficient of contribution for
uncorrelated input variables (equation (7)) is a special case of
the more general coefficient of contribution h(y, xi) defined in
equation (11).

4. Measurement equations involving sums and
products of variables

Many measurement equations in chemical and physical
metrology can be expressed in one of the following four forms:
additive equation,

Y =
∑

i

aiXi, (12)

multiplicative equation,

Y =
∏

i

X
ai

i , (13)

additive equation of products,

Y =
∑

i

ai


∏

ij

W
bij

ij


 , (14)

and multiplicative equation of sums,

Y =
∏

i


∑

ij

bijWij




ai

. (15)

Here ai and bij are specified constants for i = 1, 2, . . . , n

and j = 1, 2, . . . , mi . In the special case where n = 2, and
m1 = m2 = 2, and ai and bij are all equal to one, these
equations reduce to Y = X1 + X2, Y = X1 × X2, Y =
(W11×W12)+(W21×W22) and Y = (W11+W12)×(W21+W22),
respectively. The last two equations may be expressed,
respectively, as Y = X1 + X2, where X1 = (W11 × W12)

and X2 = (W21 × W22) and Y = X1 × X2, where X1 =
(W11 + W12) and X2 = (W21 + W22). The estimates and
standard uncertainties for Wij are denoted by wij and u(wij ),
respectively. They are identified with the expected value and
(approximate) standard deviation of Wij . The coefficients of
contribution for the measurement equations from (12) to (15)
are discussed below.

4.1. Additive equation

The measurement equation (12) is linear and of the form of
equation (2), where

y =
∑

i

aixi (16)
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and ci = ai for i = 1, 2, . . . , n. The standard uncertainty u(y)

associated with the estimate y of equation (16) is the positive
square root of u2(y), where

u2(y) =
∑

i

∑
j

aiaju(xi)u(xj )r(xi, xj ). (17)

So the coefficients of contribution h(y, xi) determined from
equations (10) and (11) are

h(y, xi) =
[
aiu(xi)

u(y)

]
[r(y, xi)], (18)

where

r(y, xi) =
∑

j

[
aju(xj )

u(y)

]
[r(xi, xj )], (19)

for i = 1, 2, . . . , n. When X1, . . . , Xn are uncorrelated, the
coefficient of correlation r(y, xi) in equation (19) reduces to

r(y, xi) =
[
aiu(xi)

u(y)

]
(20)

and the coefficient of contribution h(y, xi) in equation (18)
reduces to

h(y, xi) =
[
aiu(xi)

u(y)

]2

. (21)

4.2. Multiplicative equation

The measurement equation (13) can be approximated by a
linear equation of the form (2), where

y =
∏

i

x
ai

i (22)

and ci = (ai × y)/xi for i = 1, 2, . . . , n. The standard
uncertainty u(y) associated with y of equation (22) is obtained
from the expression (3) by substituting ci = (ai ×y)/xi . Thus,

u2
r (y) =

∑
i

∑
j

aiajur(xi)ur(xj )r(xi, xj ), (23)

where ur(xi) = u(xi)/|xi | and ur(y) = u(y)/|y| are
the relative standard uncertainties associated with xi and y,
respectively, and u(y) = |y| × ur(y). The coefficients of
contribution h(y, xi) determined from equations (10) and (11)
are

h(y, xi) =
[
aiu(xi)/xi

u(y)/y

]
[r(y, xi)] =

[
aiur(xi)

ur(y)

]
[r(y, xi)],

(24)
where

r(y, xi) =
∑

j

[
aju(xj )/xj

u(y)/y

]
[r(xi, xj )]

=
∑

j

[
ajur(xj )

ur(y)

]
[r(xi, xj )], (25)

for i = 1, 2, . . . , n. When X1, . . . , Xn are uncorrelated,
h(y, xi) in equation (24) reduces to

h(y, xi) =
[
aiur(xi)

ur(y)

]2

. (26)

4.3. Additive equation of products

The measurement equation (14) can be expressed as two sets of
hierarchical equations: equation (12) and the set of n equations
represented by

Xi =
∏
ij

W
bij

ij , (27)

for i = 1, 2, . . . , n and j = 1, 2, . . . , mi . The coefficients of
contribution h(y, xi) for equation (12) are defined in equation
(18). The coefficients of contributionh(xi, wij ) forn equations
represented by (27) can be determined from equations such as
(24) and (25) by replacing xi with wij , ai with bij and y with
xi . Then

∑
j h(xi, wij ) = 1, where j = 1, 2, . . . , mi for each

i = 1, 2, . . . , n. The coefficients of contribution h(y, wij ) for
the measurement equation (14) can be defined as

h(y, wij ) = h(y, xi) × h(xi, wij ) (28)

for i = 1, 2, . . . , n and j = 1, 2, . . . , mi . Since∑
j h(xi, wij ) = 1, we have

∑
i

∑
j h(y, wij ) =∑

i h(y, xi)
∑

j h(xi, wij ) = ∑
i h(y, xi) = 1.

4.4. Multiplicative equation of sums

The measurement equation (15) can be expressed as two sets of
hierarchical equations: equation (13) and the set of n equations
represented by

Xi =
∑
ij

bijWij , (29)

for i = 1, 2, . . . , n and j = 1, 2, . . . , mi . The coefficients of
contribution h(y, xi) for equation (13) are defined in equation
(24). The coefficients of contribution h(xi, wij ) for the n

equation represented by (29) can be determined from equations
such as (18) and (19) by replacing xi with wij , ai with bij

and y with xi . Then equation (28) can be used to determine
the coefficients of contribution h(y, wij ) for the measurement
equation (15).

5. Coefficients of contribution in determining the
molar mass of lead

The following example illustrates the calculation of the
coefficients of contribution for correlated input variables from
a measurement equation that is the sum of the products of input
variables. The isotopic composition of lead varies in nature and
this fact is used in many scientific applications such as source
allocation and isotope fingerprinting. Suppose the measurand
is the molar mass of lead (MPb) consisting of the following
four isotopes: 204Pb, 206Pb, 207Pb and 208Pb. The molar mass
MPb is defined by the following equation:

MPb = M204Pb × f204Pb + M206Pb × f206Pb

+ M207Pb × f207Pb + M208Pb × f208Pb, (30)

where M204Pb, M206Pb, M207Pb and M208Pb are the molar masses
and f204Pb, f206Pb, f207Pb and f208Pb are the corresponding
amount fractions (also called abundance) of the four isotopes
in the sample. The molar masses M204Pb, M206Pb, M207Pb

and M208Pb are obtained from reference tables. The amount
fractions f204Pb, f206Pb, f207Pb and f208Pb are determined
from mass spectrometry. The amount fractions add up
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Table 2. The values, standard uncertainties and relative standard
uncertainties for the molar masses from reference [8] are given.

Standard
uncertainty Relative standard

Quantity Value Mi u(Mi) uncertainty ur(Mi)

M204Pb 203.973 0436 1.3 × 10−6 6.4 × 10−9

M206Pb 205.974 4653 1.3 × 10−6 6.3 × 10−9

M207Pb 206.975 8969 1.3 × 10−6 6.3 × 10−9

M208Pb 207.976 6521 1.3 × 10−6 6.3 × 10−9

Table 3. The values, standard uncertainties and relative standard
uncertainties for the amount fractions (appendix D) are given.

Standard
uncertainty Relative standard

Quantity Value fi u(fi) uncertainty ur(fi)

f204Pb 0.013 389 034 60.355 × 10−6 4.5 × 10−3

f206Pb 0.249 848 56 309.84 × 10−6 1.2 × 10−3

f207Pb 0.214 569 19 458.56 × 10−6 2.1 × 10−3

f208Pb 0.522 193 21 369.10 × 10−6 7.1 × 10−4

Table 4. Correlation coefficients between the amount fractions
(appendix D) are given.

r(fi, fj ) f204Pb f206Pb f207Pb f208Pb

f204Pb 1 0.309 9065 −0.204 0958 −0.170 1139
f206Pb 0.309 9065 1 −0.612 2649 −0.1294786
f207Pb −0.204 0958 −0.612 2649 1 −0.695 0289
f208Pb −0.170 1139 −0.129 4786 −0.695 0289 1

to one. For illustration, we will use equation (30)
as the measurement equation consisting of eight input
variables M204Pb, M206Pb, M207Pb, M208Pb, f204Pb,f206Pb, f207Pb

and f208Pb. This measurement equation is in the form of
equation (14). For brevity we condense the subscripts and
write the measurement equation (30) as

Y = M1 × f1 + M2 × f2 + M3 × f3 + M4 × f4, (31)

where Y ≡ MPb, M1 ≡ M204Pb, f1 ≡ f204Pb, M2 ≡
M206Pb, f2 ≡ f206Pb, M3 ≡ M207Pb, f3 ≡ f207Pb, M4 ≡
M208Pb, f4 ≡ f208Pb. The values, standard uncertainties
and relative standard uncertainties for the molar masses, M1,
M2, M3 and M4, and the amount fractions, f1, f2, f3 and f4,
are given in tables 2 and 3, respectively. Since the sum of the
amounts of fraction f1 + f2 + f3 + f4 is one, they are mutually
correlated. The correlation coefficients between the amount
fractions are given in table 4.

The molar masses and the amount fractions are not
correlated. Therefore, it follows from equation (23) that the
square of the relative standard uncertainty associated with the
product Mi × fi is equal to the sum of the squares of the
relative standard uncertainties associated with Mi and fi for
i = 1, 2, 3, 4. The relative standard uncertainties associated
with the isotope molar masses, Mi , are of the order of ten to
the power minus nine and the relative standard uncertainties
associated with the amount fractions, fi , are of the order of
ten to the power minus three or four. Therefore, the relative
standard uncertainties associated with the products Mi × fi

are practically equal to the relative standard uncertainties
associated with the amount fractions fi for i = 1, 2, 3, 4.

So we may regard the molar masses M1, M2, M3 and M4

in the measurement equation (31) as constants. Thus, the
uncertainty in the molar mass Y (≡ MPb) arises almost entirely
from the uncertainties associated with the amount fractions
f1, f2, f3 and f4. Therefore the correlation coefficients,
r(y, fi), between the molar mass Y and the amount fractions
are determined from equation (19) and the corresponding
coefficients of contribution, h(y, fi), are determined from
equation (18). The computed values of r(y, fi) and h(y, fi)

are given in table 5.
In table 5, the combined uncertainty u(y) for the molar

mass Y (≡ MPb) is two orders of magnitude smaller than each
of its components ui(y). The reason is that five of the six
correlation coefficients r(fi, fj ) between the amount fractions
are negative and the sensitivity coefficients, which are the
isotope molar masses Mi , are positive. This highlights the
importance of correlations between the input variables. The
coefficients of contribution h(y, fi) add up 100% as expected,
but they have very large positive and negative values. This is a
discomforting consequence of using the measurement equation
(31) based on the amount fractions.

An alternative approach to evaluate the molar mass of lead
is to use the following measurement equation based on the
isotope ratios:

Y = R1 × M1 + R2 × M2 + R3 × M3 + M4

R1 + R2 + R3 + 1
, (32)

where Y ≡ MPb, M1 ≡ M204Pb, R1 ≡ R204/208, M2 ≡
M206Pb, R2 ≡ R206/208, M3 ≡ M207Pb, R3 ≡ R207/208, M4 ≡
M208Pb. The values of isotope ratios, their associated
uncertainties and correlation coefficients are given in
appendix D. As before, the uncertainties associated with the
molar masses M1, M2, M3 and M4 are negligible so they may
be regarded as constants.

Table 6 displays the calculated results together with
correlation coefficients and coefficients of contribution for the
isotope ratios. The values for the molar mass Y (≡ MPb) and its
associated standard uncertainty u(y) displayed in tables 5 and
6 differ in the last digit due to numerical rounding errors. The
coefficients of contribution for the isotope ratios are positive.
In this sense, it is a more pleasing approach than the earlier
one based on the amount fractions.

6. Summary

The coefficient of contribution associated with a component
of uncertainty is a measure of its relative contribution to
the combined standard uncertainty determined according to
the ISO-GUM. The coefficients of contribution are useful
in understanding, managing and improving the measurement
procedure. A good measure of the contribution of a component
of uncertainty should have the following attributes: it should
be dimensionless, one should be able to directly add the
contributions and the sum of all contributions must be 100%.
We described a measure for the coefficient of contribution
which has these attributes. The proposed coefficient of
contribution is suitable for both correlated and uncorrelated
input variables and is useful for a variety of measurement
equations. When the input variables are uncorrelated, the
coefficients of contribution are all positive. When the input
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Table 5. Correlation coefficients (between the molar mass and the amount fractions) and the corresponding coefficients of contribution are
given.

Coefficient
Standard uncertainty Uncertainty contribution Correlation coefficient of contribution

Quantity Value fi u(fi) ui(y) r(y, fi) h(y, fi)

f204Pb 0.013 3890 60.4 × 10−6 0.012 g mol−1 −0.572 9004 −1185.6%
f206Pb 0.249 849 310 × 10−6 0.064 g mol−1 −0.698 6272 −7494.8%
f207Pb 0.214 569 459 × 10−6 0.095 g mol−1 −0.049 1241 −783.7%
f208Pb 0.522 193 369 × 10−6 0.077 g mol−1 0.741 1781 9564.1%

MPb 207.208 072 g mol−1 — 0.000 595 g mol−1 — —

Table 6. Correlation coefficients (between the molar mass and the isotope ratios) and the corresponding coefficients of contribution are
given.

Coefficient
Standard uncertainty Uncertainty contribution Correlation coefficient of contribution

Quantity Value Ri u(Ri) ui(y) r(y, Ri) h(y, Ri)

R204/208 0.025 64 0.000 12 −0.000 20 g mol−1 −0.66 22.6%
R206/208 0.478 46 0.000 72 −0.000 46 g mol−1 −0.92 72.1%
R207/208 0.410 9 0.001 1 −0.000 13 g mol−1 −0.24 5.3%

MPb 207.208 073 g mol−1 — 0.000 594 g mol−1 — —

variables are correlated, the coefficients of contribution may
be positive or negative but they add up to 100%. The
coefficients of contribution are insightful for both correlated
and uncorrelated input variables.
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Appendix A. A list of the symbols used in this
paper

Y Value of the measurand; variable representing
the state of knowledge

y Result of measurement (estimate) for Y

u(y) Standard uncertainty associated with y

ur(y) Relative standard uncertainty u(y)/|y|
Ylinear First order (linear) Taylor series approximation

for Y

Xi Input quantity; variable representing the state
of knowledge

xi Estimate for Xi

u(xi) Standard uncertainty associated with xi

ur(xi) Relative standard uncertainty u(xi)/|xi |

ci Sensitivity coefficient associated with Xi

ui(y) Uncertainty contribution ci · u(xi)

u(xi, xj ) Covariance between Xi and Xj

r(xi, xj ) Correlation coefficient between Xi and Xj

u(y, xi) Covariance between Y and Xi

r(y, xi) Correlation coefficient between Y and Xi

r(yk, yl) Correlation coefficient between Yk and Yl

h(y, xi) Coefficient of contribution from u(xi) to u(y)

Appendix B. The coefficients of correlation between
Ylinear and Xi

The covariance, C(Ylinear, Xi), between Ylinear in equation (2)
and Xi , denoted by u(y, xi), is

u(y, xi) = C(Ylinear, Xi) =
∑

j

cjC(Xi, Xj )

=
∑

j

cju(xi, xj ) =
∑

j

cju(xi)u(xj )r(xi, xj ).

(33)

That is, covariance u(y, xi) is

u(y, xi) = u(xi)
∑

j

cju(xj )r(xi, xj ) (34)

and variances of Xi and Ylinear are u2(xi) and u2(y),
respectively. So the coefficient of correlation, R(Ylinear, Xi),
between Ylinear and Xi , denoted by r(y, xi), is

r(y, xi) = R(Ylinear, Xi) = u(xi)
∑

j cju(xj )r(xi, xj )

u(xi)u(y)

=
∑

j

[
cju(xj )

u(y)

]
r(xi, xj ). (35)

The coefficient of correlation r(y, xi) may be negative
depending on the coefficients of correlation r(xi, xj ) and
sensitivity coefficients c1, . . . , cn. When X1, . . . , Xn are
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uncorrelated, i.e. r(xi, xj ) = 0 for i �= j , equation (35)
reduces to

r(y, xi) = R(Ylinear, Xi) =
[
ciu(xi)

u(y)

]
. (36)

Appendix C. The coefficients of contribution
h(y, xi) add up to one

Dividing both sides of equation (3) by u2(y), we have

∑
i


ciu(xi)

u(y)


∑

j

cju(xj )r(xi, xj )

u(y)





 = 1. (37)

The inner sum in equation (37) is r(y, xi). Therefore,

∑
i

[
ciu(xi)

u(y)
r(y, xi)

]
= 1. (38)

The summands in (38) are h(y, xi) (see equation (11)); so∑
i h(y, xi) = 1.

Appendix D. Values, uncertainties and correlation
coefficients for isotope ratios

Suppose m output quantities Yj , for j = 1, . . . , m, are
evaluated from n input quantities Xi for i = 1, . . . , n through
the following measurement equations:

Yj = fj (X1, . . . , Xn), (39)

for j = 1, . . . , m. Then the correlation coefficient between Yk

and Yl , denoted by r(yk, yl), based on linear approximations
of the measurement equations (39) is

r(yk, yl) =
n∑

i=1

n∑
j=1

ui(yk)

u(yk)
· uj (yl)

u(yl)
· r(xi, xj ), (40)

for k, l = 1, . . . , m [1, section H.2.3].
The amount fractions are calculated from the isotope ratios

Ri as follows:

fi = Ri∑
j Rj

, (41)

where f1 ≡ f204Pb, f2 ≡ f206Pb, f3 ≡ f207Pb, and f4 ≡
f208Pb, R1 ≡ R204/208, R2 ≡ R206/208, R3 ≡ R207/208 and
R4 ≡ R208/208 ≡ 1. The isotope ratios Ri are determined
by mass spectrometry [9]. The values of the isotope ratios,
their associated uncertainties and correlation coefficients used
in this paper are given in tables 7 and 8.

The correlation coefficients between the amount fractions
displayed in table 4 were computed from expressions such as
equation (40) using the software [11].

Table 7. Isotope ratios Ri determined from mass spectrometry [10].

Relative standard
Quantity Value Standard uncertainty uncertainty

R204/208 0.025 64 0.000 12 4.7×10−3

R206/208 0.478 46 0.000 72 1.5×10−3

R207/208 0.410 9 0.001 1 2.7×10−3

Table 8. Correlation coefficients between the isotope ratios arising
from common correction factors are given.

Correlation coefficients R204/208 R206/208 R207/208

R204/208 1 0.41 0.01
R206/208 0.41 1 0.01
R207/208 0.01 0.01 1
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