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Abstract

The primary goal of this work is to extend two methods of random effects models to multiparameter
situation. These methods comprise the DerSimonian–Laird estimator, stemming from meta-analysis, and
the Mandel–Paule algorithm widely used in interlaboratory studies. The maximum likelihood estimators are
also discussed. Two methods of assessing the uncertainty of these estimators are given.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and summary

Statistical modeling and analysis of collaborative studies pose several fundamental questions
about determination of the consensus (reference) value and its associated uncertainty. An appro-
priate choice of stochastic model can be especially difficult especially when measurements are
made across a range of values of a physical characteristic, i.e. the reference value is a curve or
a multivariate vector. Hedges and Olkin [7] discuss several methods for combining data from
several experiments which form the heart of the meta-analysis. In particular, in Chapter 10 these
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authors discuss multivariate models for effect size when observations from experimental and
control group are available.

Multivariate data sets occur increasingly often in applications in interlaboratory metrological
studies known as Key Comparisons when one has to determine the key comparison reference
value (KCRV), i.e. the consensus vector mean. In this paper, statistical procedures are derived for
consensus vector evaluation (a discretized version of possibly irregular underlying curve) along
with estimates of the uncertainty of this value. An approach in spirit of meta-analysis for interlab-
oratory data is proposed when participating laboratories exhibit different accuracy. This model for
Gaussian distributions leads to a class of matrix-weighted vector statistics to estimate the common
vector mean and to a method of assessing the uncertainty of these estimates. In Section 2, maxi-
mum likelihood estimators are reviewed including the restricted maximum likelihood estimator.
Since these estimators do not admit explicit form, and the likelihood equations may have several
roots, we suggest to employ in practical situations simpler procedures, scalar versions of which are
widely used in biological and physical applications and which deserve more attention from statis-
tical community. These scalar procedures are the DerSimonian–Laird estimator and the Mandel–
Paule algorithm. Their method of moments origin and their relationship to the maximum like-
lihood estimator and to the restricted maximum likelihood estimator are discussed in Section 3.

We investigate the estimation problem of the covariance matrix of these procedures in Section
4 where approximate confidence ellipsoids are constructed. Section 5 contains results of Monte-
Carlo simulation study and answers for motivating examples for this study. One of these examples
is the Key Comparisons of accelerometers (CCAUV.V-K1) [11] which was organized to compare
measurements of sinusoidal linear accelerometers over the range of frequencies from 40 Hz to
5 kHz. It was the first such study in the field of vibration and shock with the task of measuring
the charge sensitivity of two accelerometers standards (we report results only for single-ended
design accelerometer). Each of the 12 participating National Metrology Institutes measured charge
sensitivity at the specified frequencies by employing two transfer standard accelerometers under
agreed physical conditions. The common charge sensitivity and its uncertainty was one of the
goals of the study. The participating institutes reported their means and the sample covariance
matrices for the frequencies in this range. We suggest two methods for estimating the reference
value for charge sensitivity as a function of frequency and give confidence ellipsoids. In the
original study this value is found separately for each type of accelerometer and for each specified
frequency.

Another example is the study of Pyroceram 9606, a glass ceramic material especially suited for
high temperature applications. This material is being used for performance evaluation of instru-
ments measuring thermal properties such as thermal conductivity, thermal diffusivity, and specific
heat (heat capacity). All these characteristics are temperature dependent, so the reference value
must be a function of temperature. Twenty-eight thermal conductivity experiments in different
countries have been performed on this material, and a consensus value for diffusivity and heat
was needed. We have used unpublished data (participating laboratories results were of widely
differing quality) kindly provided by J. Filliben and R. Zarr (National Institute of Standards and
Technology).

2. The matrix formulation of the model and likelihood equations

In accordance with the goals discussed in Section 1 we formulate the following mathematical
model in the situation where multiple (correlated) q-dimensional measurements are made by each
of p laboratories. In our model, the ith laboratory repeats its vector measurements ni(> q) times,
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and the vector data Xij for i = 1, . . . , p and j = 1, . . . , ni follow a one-way random effects
MANOVA model, which may be both unbalanced and heteroscedastic, i.e.

Xij = � + �i + �ij , (1)

with mutually independent �i ∼ Nq(0, �) and �ij ∼ Nq(0, �i ), j = 1, . . . , ni . The vector �
plays the role of the common mean or the reference value, �i is the between-laboratories effect,
and the �’s are the measurement errors. The unknown q × q matrix � may have rank smaller than
q; � represents an unknown q-dimensional parameter common to all laboratories. The goal is to
estimate the structural parametric vector �, and to provide a standard error for this estimate. The
covariance matrices �i and � are nuisance parameters.

In matrix notation this model can be written as a particular case of the general linear model

y = T� + � + e.

Here y is the total data vector of dimension n = q(n1 + · · · + np); T is a matrix of size n × q

formed by q × q identity matrices written as a column; and n-dimensional vector � is formed by
stacked ni copies of �i , i = 1, . . . , p. Thus � is the unknown parameter (fixed effects) vector, and
(�1, . . . , �p)T is random effect vector uncorrelated with the errors vector e.

The usual estimators of the laboratory means and of their covariance matrices are Xi = X̄i =∑
j Xij /ni , and Si = ∑

j (Xij −Xi)(Xij −Xi)
T /[�ini], �i = ni − 1, with Xi, Si , i = 1, . . . , p,

being (incomplete) sufficient statistics. Reduction by sufficiency to the sample means Xi and
the sample covariance matrices Si makes this problem more specific. The model (1) leads to the
following model for Xi ,

Xi = � + �i + �i . (2)

Under the above assumptions, �i ∼ N(0, �), �i ∼ N(0, �i = �i/ni), with �i and �i being
independent. Then, clearly,

Var(Xi) = � + �i .

The multiples of the sample covariance matrices, �iSi , are known to have a Wishart distribution
Wq(�i , �i ).

2.1. The maximum likelihood estimators

The loglikelihood function � for Xi and Si can be written as

−2� =
∑

i

[(Xi − �)T (�i + �)−1(Xi − �) + log |�i + �|]

+
∑

i

�i[tr(Si�
−1
i ) + log |�i |].

The maximum likelihood estimator of � has the form, �̂ = ∑p
i=1 �̂iXi , where the matrix weights

have the form

�̂i =
⎡⎣∑

j

(�̂j + �̂)−1

⎤⎦−1 (
�̂i + �̂

)−1
,

and �̂i and �̂ are found as maximizers of �. When q = 1, this estimator was studied in [1,13,15].
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The likelihood equations for �i and � are(
�̂i + �̂

)−1 [
I − (Xi − �̂)(Xi − �̂)T (�̂i + �̂)−1

]
+ �i�̂

−1
i

(
I − Si�̂

−1
i

)
= 0 (3)

and ∑
i

[
(�̂i + �̂)−1(Xi − �)(Xi − �)T (�̂i + �̂)−1 − (�̂i + �̂)−1

]
= 0. (4)

Here and further I denotes the identity matrix whose dimension is clear from the context.
It follows that∑

i

�i�̂
−1
i

(
I − Si�̂

−1
i

)
= 0.

It is practical to determine the maximum likelihood estimators of �, �i’s for fixed � = Y . Thus,
if for non-negative definite matrix Y

F(Y ) = min
�,{�i }

∑
i

[
(Xi − �)T (�i + Y )−1(Xi − �) + log |�i + Y |

+ �i (tr(Si�
−1
i ) + log |�i |)

]
,

then the maximum likelihood estimator of � is arg min F(Y ).
The minimizers �̂(Y ) and �̂i (Y ) can be determined from (3). An iterative scheme for solving

(3) for fixed i and �̂,

�(k+1)
i = [�iI + Bk]−1 [�iSi + Bk(Xi − �̂)(Xi − �̂)T BT

k ], k = 0, 1, . . .

with Bk = �(k)
i

[
I + �(k)

i

]−1
, converges fast. Eq. (4) shows that

F ′(Y ) =
∑

i

�i

[
�̂

−1
i (Y )Si�̂

−1
i (Y ) − �̂

−1
i (Y )

]
,

so that for any non-negative definite matrix Y0,

F(Y ) = F(Y0) + tr(F ′(Y0)(Y − Y0)) + O(‖Y − Y0‖2).

The Hessian of F can be found from (3), but it has a complicated form. The constrained optimiza-
tion problem (the matrix Y must be non-negative definite) is rather awkward. For these reasons,
it is much more convenient to solve unconstrained optimization problems in q × r-dimensional
matrix Z, r = 1, . . . , q of rank r with Y = ZT Z.

If Y − Y0 = V T V , then

(�̂i + Y )−1 = (�̂i + Y0)
−1 − (�̂i + Y0)

−1V
[
I + V T (�̂i + Y0)

−1V
]−1

V T (�̂i + Y0)
−1,

and

|�̂i + Y | = |�̂i + Y0| × |I + V T (�̂i + Y0)
−1V |.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

A.L. Rukhin / Journal of Multivariate Analysis 98 (2007) 435 –454 439

Therefore,

F(Y ) � F(Y0) −
∑

i

[
(Xi − �̂)T (�̂i + Y0)

−1V
[
I + V T (�̂i + Y0)

−1V
]−1

× V T (�̂i + Y0)
−1(Xi − �̂) − log |I + V T (�̂i + Y0)

−1V |
]

,

where �̂i = �̂i (Y0), and �̂ = �̂(Y0). Therefore, one can construct a recursive sequence Zk+1 =
Zk + tkPk, k = 0, 1, . . . for Yk = ZT

k Zk , in which the search directions Uk are taken to be the
eigenvectors of F ′(Yk) corresponding to negative eigenvalues and positive step sizes tk are chosen
as to minimize∑

i

[log |I + t2UT
k (�̂i + Yk)

−1Uk| − t2(Xi − �̂k)
T (�̂i + Yk)

−1

× Uk[I + t2UT
k (�̂i + Yk)

−1Uk]−1UT
k (�̂i + Yk)

−1(Xi − �̂k)].
Then, provided this minimum is attained at a positive tk , F(ZT

k+1Zk+1)�F(ZT
k Zk) = F(Yk).

The estimator of Var(�̂) is usually obtained from the inverse of the observed Fisher information,

V̂ ar(�̂) =
⎡⎣∑

j

(�̂j + �̂)−1

⎤⎦−1

. (5)

Sometimes the likelihood equations are solved via the EM-Algorithm in which the �i are
interpreted as missing observations (see [14, Chapter 8]). This method works well when �i do not
depend on i, but for different �i’s leads to fairly cumbersome equations even when q = 1. Besides
the recursive sequence obtained by this method is guaranteed to converge only to one of local
maximums. The likelihood function may not be unimodal, i.e. can have several local extrema,
so that all iterative algorithms are sensitive to the initial value. The estimator of Y discussed in
Section 3.1 provides a good choice for this value.

In variance component problems the restricted maximum loglikelihood estimator is commonly
recommended. To obtain the form of the restricted function, one can use the expression obtained
in [5, p. 325]. It is based on the matrix formulation of the model (1) given in Section 2. The
covariance matrix V of �+ e is block-diagonal with niq ×niq blocks formed by sums of diagonal
blocks determined by the matrix �i and blocks formed by �. Therefore, V −1

i has a similar
form with the diagonal blocks �−1

i and the off-diagonal entries −�−1
i �(I + ni�

−1
i )��−1

i . Also
|V | = ∏p

i=1 |�i |(ni−1)|ni� + �i |.
Thus the restricted loglikelihood function �R in the variance parameters �i and � is to within

an additive constant,

−2�R =
∑

i

[
(Xi − �̂)T (�i + �)−1(Xi − �̂) + log |�i + �|

]
+ log

∣∣∣∣∣∑
i

(�i + �)−1

∣∣∣∣∣+∑
i

�i

[
tr(Si�

−1
i ) + log |�i |

]
. (6)

We will use (6) later in Section 3.2.
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3. Weighted means statistics

Because of complicated nature of the maximum likelihood estimator, simpler procedures are
desired. Even without normality assumption when the within-trials and between-trials covariance
matrices �i and � are known, the least-squares estimator of the parameter � in the model (1) is a
weighted means statistic X̃. Let Wi = [Var(Xi)]−1 = (�i + �)−1 and W = ∑p

i=1 Wi. Then X̃

is found from the following equation,

WX̃ =
p∑

i=1

WiXi. (7)

It makes sense to employ the available statistics Si to approximate the within-trials covariance
matrices �i . In other terms we restrict the class of estimators (7) to those with matrix weights of
the form

Wi = Wi(Y ) = (Si + Y )−1 (8)

for some non-negative definite matrixY. If W− = [∑p
i=1 Wi(Y )

]−
, denotes a generalized inverse

of
∑p

i=1 Wi , then an estimator X̃ of � from this class has the following representation,

X̃ = X̃Y = W−
p∑

i=1

WiXi =
p∑

i=1

�iXi. (9)

Estimators of the form (9) are of interest. They include the analog of one of the traditional
estimators of the common vector mean suggested by Graybill and Deal [4] in the case q = 1,

X̃0 =
[

p∑
i=1

S−1
i

]− p∑
i=1

S−1
i Xi, (10)

and the sample mean,

X̃∞ = 1

p

p∑
i=1

Xi.

Sometimes the within-laboratories variances �i can be assumed to be known (in practice they are
taken to be Si). The maximum likelihood estimator X̃SM of � also is a weighted means statistic
(9) with the weights of the form (8), where Y = YSM is the minimizer in Y of the negative
loglikelihood function,

p∑
1

[
(Xi − X̃)T (Y + Si)

−1(Xi − X̃) + log |Y + Si |
]
. (11)

The resulting likelihood equation,

p∑
1

[
(Y + Si)

−1(Xi − X̃)(Xi − X̃)T (Y + Si)
−1 − (Y + Si)

−1
]

= 0,

can be solved iteratively.
In the sequel we give two simpler methods of choosing the matrix Y.
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3.1. DerSimonian–Laird procedure

If the matrix weights Wi are arbitrary, but the matrix W is non-singular, then for X̃ defined
by (7), ∑

i

W
1/2
i E(Xi − X̃)(Xi − X̃)T W

1/2
i

=
p∑

i=1

W
1/2
i

(
I − W−1Wi

)
Var(Xi)

(
I − W−1Wi

)T

W
1/2
i

+
p∑

i=1

W
1/2
i W−1

⎛⎝∑
k:k �=i

WkVar(Xk)Wk

⎞⎠W−1W
1/2
i . (12)

In particular, when Wi = �−1
i , Var(Xi) = �i + �,∑

i

�−1/2
i

(
I − W−1�−1

i

)
�
(

I − W−1�−1
i

)T

�−1/2
i

+
∑

i

�−1/2
i W−1

⎛⎝∑
k:k �=i

�−1
k ��−1

k

⎞⎠W−1�−1/2
i

=
∑

i

�−1/2
i E(Xi − X̃)(Xi − X̃)T �−1/2

i − pI +
∑

i

�−1/2
i W−1�−1/2

i . (13)

We suggest to use (13) as an estimating equation for the parameters � and � in the following
way (provided that �i are replaced by Si). Let X̃0 be the Graybill–Deal estimator (10). Put

B =
∑

i

S
−1/2
i (Xi − X̃0)(Xi − X̃0)

T S
−1/2
i − pI +

∑
i

S
−1/2
i

(∑
k

S−1
k

)−1

S
−1/2
i ,

so that (symmetric) B estimates the right-hand side of (13). With �̃i = [∑p
j=1 S−1

j ]−1S−1
i ,

determine a symmetric matrix Y from the equation

∑
i

S
−1/2
i (I − �̃i ) Y (I − �̃i )

T S
−1/2
i +

∑
i

S
−1/2
i

⎛⎝∑
j :j �=i

�̃j Y �̃T
j

⎞⎠ S
−1/2
i = B. (14)

Take YDL = Y+ to be the positive part of Y, i.e. let YDL have the same spectral decomposition as
Y, with eigenvalues being positive parts of these of Y. The matrix weights of the estimator X̃DL
then are

Wi = (YDL + Si)
−1. (15)

Eq. (14) extends the procedure suggested by DerSimonian and Laird [3] when q = 1, which is
an immensely popular method in biostatistics especially in analysis of multicenter clinical trials.
In fact, the number of references to the paper by DerSimonian and Laird exceeds 1500. This
popularity is due mainly to the fact that this is a simple non-iterative procedure, which admits an
approximate formula for the variance of the resulting estimator.

To solve (14), denote by Vec(A) the q2 × 1 vector formed by stacking the columns of the q × q

matrix A under each other, and by A
⊗

B the tensor (Kronecker) product of matrices A and B.
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Then, according to Lemma 16.1.2 and Theorem 16.2.1 in [6]

Vec
(
S

−1/2
i (I − �̃i ) Y (I − �̃i )

T S
−1/2
i

)
=
[
S

−1/2
i (I − �̃i )

⊗
S

−1/2
i (I − �̃i )

]
Vec(Y ),

and

Vec

⎛⎝∑
i

S
−1/2
i

⎛⎝∑
j :j �=i

�̃j Y �̃T
j

⎞⎠ S
−1/2
i

⎞⎠ =
⎛⎝∑

i �=j

S
−1/2
i �̃j

⊗
S

−1/2
i �̃j

⎞⎠Vec(Y ).

Thus, the vectorized version of (14) holds when⎡⎣∑
i

S
−1/2
i (I − �̃i )

⊗
S

−1/2
i (I − �̃i ) +

∑
i �=j

S
−1/2
i �̃j

⊗
S

−1/2
i �̃j

⎤⎦Vec(Y )

= Vec(B).

Assuming that the needed matrix is invertible, one obtains the formula for Y,

Vec(Y ) =
⎡⎣∑

i,j

S
−1/2
i �̃j

⊗
S

−1/2
i �̃j +

∑
i

S
−1/2
i

⊗
S

−1/2
i

−
∑

i

S
−1/2
i �̃i

⊗
S

−1/2
i −

∑
i

S
−1/2
i

⊗
S

−1/2
i �̃i

]−1

Vec(B). (16)

Eq. (14) can be solved by using matrices of smaller size. Denote by Vech(A) the q(q +1)/2×1
vector formed by stacking the subdiagonal elements of a q × q matrix A under each other,
Vech(A) = (a11, a21, . . . , aq1, a22, . . . , a2q, . . . , aqq)T . Then for every symmetric matrix A,
Vec(A) = GqVech(A), with the duplicating matrix Gq of size q2 × q(q + 1)/2 (see [5, Sec-
tion 16.4] or [9, Section 3.8]). If Hq is a left inverse of Gq , (14) means that

Hq

⎡⎣∑
i

S
−1/2
i (I − �̃i )

⊗
S

−1/2
i (I − �̃i ) +

∑
i �=j

S
−1/2
i �̃j

⊗
S

−1/2
i �̃j

⎤⎦GqVech(Y )

= Vech(B),

and Vech(Y ) can be obtained from this equation.

3.2. The Mandel–Paule procedure

When q = 1, an easily implementable method for estimating the common mean was suggested
by Mandel and Paule [10]. The goal here is to extend this algorithm to the vector situation.

Even without the normality assumption, (12) implies that for the optimal weights, Wi =
[Var(Xi)]−1,

E
∑

i

[Var(Xi)]−1/2(Xi − X̃)(Xi − X̃)T [Var(Xi)]−1/2

= pI −
∑

i

[Var(Xi)]−1/2W−1[Var(Xi)]−1/2. (17)
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As in Section 3.1, the identity (17) can be used as the estimating equation for � and �, provided
that �i are estimated by Si . The suggestion here is to choose Y, which is designed to estimate �,
as an (approximate) solution of the matrix equation,∑

i

(Si + Y )−1/2(Xi − X̃)(Xi − X̃)T (Si + Y )−1/2

+
∑

i

(Si + Y )−1/2

[∑
k

(Sk + Y )−1

]−1

(Si + Y )−1/2 = pI. (18)

Notice that (18) implies that

tr

(∑
i

(Xi − X̃)T (Si + Y )−1(Xi − X̃)

)
= (p − 1)q,

and for q = 1 the second sum in the left-hand side of (18) reduces to 1. In this case the original
Mandel–Paule algorithm recommends weights of the from (8) such that∑

i

(Xi − X̃)2

Si + Y
= p − 1.

Eq. (18) can be interpreted as a simplified version of the restricted maximum likelihood equation.
Indeed it follows from (6) that

(�̂i + Y )−1 = (�̂i + Y )−1

⎡⎣(Xi − �̂)(Xi − �̂)T +
(∑

k

(�̂k + Y )−1

)−1
⎤⎦ (�̂i + Y )−1

+ �i�̂
−1
i (I − Si�̂

−1
i ).

If �̂k = Sk , then∑
i

(Si + Y )−1/2(Xi − �̂)(Xi − �̂)T (Si + Y )−1/2

= pI −
∑

i

(Si + Y )−1/2

[∑
k

(Sk + Y )−1

]−1

(Si + Y )−1/2,

so that, if the estimates Si from the individual studies are close to the REML estimators, then
the REML estimator of � must be close to the solution Y of (18). When q = 1, a similar result
was derived in [12]. Asymptotic properties of the scalar version of the Mandel–Paule rule are
investigated in [13].

To find an approximate solution, we look for solutions close to YDL and put YMP = YDL + y

with a “small” symmetric matrix y. Matrix differentiation [9, Section 8.1] shows that with

WDL =
∑

k

(Sk + YDL)−1,

L = 1

2

∑
i

(Si + YDL)−1/2[(Xi − X̃DL)(Xi − X̃DL)T + W−1
DL ]

×(Si + YDL)−1/2
⊗

(Si + YDL)−1 + 1

2

∑
i

(Si + YDL)−1
⊗

(Si + YDL)−1/2
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×[(Xi − X̃DL)(Xi − X̃DL)T + W−1
DL ](Si + YDL)−1/2

−
∑
i,j

(Si + YDL)−1/2�j

⊗
(Si + YDL)−1/2�j

+
∑
i,j

(Si + YDL)−1/2(Xi − X̃DL)X̃T
DLW−1

DL �j

⊗
(Si + YDL)−1/2�j

+
∑
i,j

(Sj + YDL)−1/2�j

⊗
(Si + YDL)−1/2(Xi − X̃DL)X̃T

DLW−1
DL �j

−
∑
i,j

(Si + YDL)−1/2(Xi − X̃DL)XT
j (Sj + YDL)−1

⊗
(Si + YDL)−1/2�j

−
∑
i,j

(Si + YDL)−1/2�j

⊗
(Si + YDL)−1/2(Xi − X̃DL)XT

j (Si + YDL)−1,

and

R =
∑

i

(Si + YDL)−1/2(Xi − X̃DL)(Xi − X̃DL)T (Si + YDL)−1/2

+
∑

i

(Si + YDL)−1/2W−1
DL (Si + YDL)−1/2 − pI,

the vectorized version of (18) for the “correction” term y has the form,

L Vec(y) = Vec(R).

If the matrix L is non-singular,

Vec(y) = L−1 Vec(R). (19)

As in Section 3.1, (19) can be replaced by

Vech(y) = [HqLGq ]−1Vech(R).

The simulations show that the solution obtained from the following simplified version Lsim of
the matrix L leads to a good numerical approximation to Vech(y),

Lsim = 1

2

∑
i

(Si + YDL)−1/2[(Xi − X̃DL)(Xi − X̃DL)T + W−1
DL ]

×(Si + YDL)−1/2
⊗

(Si + YDL)−1 + 1

2

∑
i

(Si + YDL)−1
⊗

(Si + YDL)−1/2

×[(Xi − X̃DL)(Xi − X̃DL)T + W−1
DL ](Si + YDL)−1/2

−
∑
i,j

(Si + YDL)−1/2�j

⊗
(Si + YDL)−1/2�j .

After y has been determined, one can take YMP = [YDL + y]+ (so that YMP has the same spectral
decomposition as YDL + y, with the eigenvalues being positive parts of these of YDL + y).

Thus, the Mandel–Paule rule is the weighted means statistic (7) whose matrix weights have the
form,

Wi = (YMP + Si)
−1. (20)
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As the DerSimonian–Laird estimator, this extension of the Mandel–Paule rule provides the
estimate X̃ of the common parameter � along with the estimate YMP of �.

We formulate our main results.

Proposition 3.1. The DerSimonian–Laird estimator of the common vector mean � is the weighted
mean statistic (9) with the matrix weights (8) where Y = YDL solves (14). The vectorized form
of this matrix satisfies (16). The Mandel–Paule rule is determined by the weights of the form (8)
with Y found from (18). If the REML estimators of �i are Si , then the Mandel–Paule estimator
is the REML estimator of Y. Its approximate version is given by YMP = YDL + y, where y
satisfies (19).

Now we turn to estimation of the covariance matrix of the weighted means statistics (7), as this
estimator is needed for confidence ellipsoids.

4. Covariance matrix estimation

Here we discuss two estimators of the covariance matrix of the weighted means statistics (7)
for arbitrary, but fixed, symmetric non-negative definite matrix weights Wi assuming that W =∑p

i=1 Wi is a non-singular matrix. Denote �i = W−1Wi , i = 1, . . . , p. Then
∑p

i=1 �i = I, and
all eigenvalues of �i are real positive numbers, smaller than one, although these matrices do not
have to commute or to be symmetric or positive definite.

4.1. Unbiased quadratic procedures

We start with the search for a quadratic estimator in the residuals, Xi − X̃, of

Var(X̃) =
p∑

i=1

�iVar(Xi)�
T
i .

In other terms the goal is to find q × q non-negative definite matrices Qi , such that

p∑
i=1

QiE(Xi − X̃)(Xi − X̃)T QT
i =

p∑
i=1

�iVar(Xi)�
T
i ,

or
p∑

i=1

Qi(I − �i )Var(Xi)(I − �i )
T QT

i +
∑
i �=j

Qj�iVar(Xi)�
T
i QT

j

=
p∑

i=1

�iVar(Xi)�
T
i .

It follows that for any i = 1, . . . , p,

Qi(I − �i )Var(Xi)(I − �i )
T QT

i +
∑
k:k �=i

Qk�iVar(Xi)�
T
i QT

k = �iVar(Xi)�
T
i .
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As in Section 3.1, these equations hold for all symmetric matrices Var(Xi) if and only if

Hq

⎡⎣Qi(I − �i )
⊗

Qi(I − �i ) +
∑
k:k �=i

Qk�i

⊗
Qk�i

⎤⎦Gq

= Hq

(
�i

⊗
�i

)
Gq. (21)

The identity (21) shows that for i = 1, . . . , p,

Hq

(
Qi

⊗
Qi

) [
(I − �i )

⊗
(I − �i ) − �i

⊗
�i

]
Gq

+ Hq

∑
k

(
Qk

⊗
Qk

) (
�i

⊗
�i

)
Gq = Hq

(
�i

⊗
�i

)
Gq.

We rewrite these equalities in the form

Hq

(
Qi

⊗
Qi

) [
(I − �i )

⊗
(I − �i ) − �i

⊗
�i

]
GqHq

= Hq�i

⊗
�iGqHq − Hq

∑
k

(
Qk

⊗
Qk

) [
�i

⊗
�i

]
GqHq,

and use the fact that for any q × q matrix A, (A
⊗

A)GqHq = GqHq(A
⊗

A) [9, Section 3.8].
Assuming that matrices (I − �i )

⊗
(I − �i ) − �i

⊗
�i = I

⊗
I − �i

⊗
I − I

⊗
�i are

invertible, one gets

Hq

(
Qi

⊗
Qi

)
GqHq

=
[
Hq

(
�i

⊗
�i

)
GqHq − Hq

∑
k

(
Qk

⊗
Qk

) (
�i

⊗
�i

)
GqHq

]

×
[
(I − �i )

⊗
(I − �i ) − �i

⊗
�i

]−1
.

Let

�j = Hq�j

⊗
�j

[
I
⊗

I − �j

⊗
I − I

⊗
�j

]−1
Gq. (22)

Then multiplying by Gq from the left and summing up by i gives

∑
i

Hq

(
Qi

⊗
Qi

)
Gq

⎡⎣I +
∑
j

�j

⎤⎦ =
∑
j

�j ,

so that for i = 1, . . . , p,

Hq

(
Qi

⊗
Qi

)
Gq = �i −

∑
j

�j

⎡⎣I +
∑
j

�j

⎤⎦−1

�i =
⎡⎣I +

∑
j

�j

⎤⎦−1

�i . (23)

Thus, an unbiased quadratic estimator of Var(X̃) exists if and only if the weights �i are such that
the corresponding matrices (22) admit representation (23).
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Notice that if �(i)
1 , . . . , �(i)

q are the eigenvalues of �i , then �i has eigenvalues �(i)
s �(i)

t /(1−�(i)
s −

�(i)
t ), 1�s� t �q.For example, if all matrices�i commute, then the eigenvaluesHq(Qi

⊗
Qi)Gq

must be proportional to those of �i , i.e.

�(i)
s �(i)

t

1 − �(i)
s − �(i)

t

= C�(i)
s �(i)

t

for 1�s� t �q. This can hold if and only if �(i)
s ≡ �(i), i.e. if all �i are scalar multiples of I,

�i = �(i)I,
∑

i �(i) = 1, in which case when maxk �(k) < 1
2 , �i = (�(i))2

1−2�(i) I, and

Qi =

√
(�(i))2

1 − 2�(i)√
1 +∑

k

(�(k))2

1 − 2�(k)

I.

In the case when �(i) ≡ 1/p, i.e. X̃ is the sample mean X̃∞, the unbiased quadratic estimator is
the classical unbiased estimator,

S = 1

p(p − 1)

p∑
i=1

(Xi − X̃)(Xi − X̃)T .

If (23) holds, an estimator of Var(X̃) can be readily found. Indeed,

Vech

(
p∑

i=1

QiE(Xi − X̃)(Xi − X̃)T QT
i

)

=
p∑

i=1

Hq

(
Qi

⊗
Qi

)
GqVech(E(Xi − X̃)(Xi − X̃)T )

=
⎡⎣I +

∑
j

�j

⎤⎦−1 [∑
i

�iVech(E(Xi − X̃)(Xi − X̃)T )

]
. (24)

Thus, Vech(
∑p

i=1 �iVar(Xi)�T
i ) could be estimated by the right-hand side of (24). The same

formula is amenable to calculation of the unbiased estimator of Vech(Var(X̃)) when more general
estimators of the form∑

i

CiVech((Xi − X̃)(Xi − X̃)T )

with q(q + 1)/2 × q(q + 1)/2 matrices Ci (not necessarily of the form (23)) are allowed. Of
course such an estimate may not produce a positive definite matrix in which case its positive part
is taken.
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When q = 1, one obtains the formula originally derived in [2],

Q2
i = �2

i

1 − 2�i

[
1 +

∑
k

�2
k

1 − 2�k

]−1

.

Obviously this is not a satisfactory solution if maxi �i � 1
2 .

4.2. Almost unbiased estimators of a covariance matrix

As in the general case an unbiased quadratic estimator of Var(X̃) does not exist, we put forward
a different estimator which can be justified in a more general setting of linear models (such as
(1)).

As before, let �i be fixed normalized matrix weights,
∑

i �i = I. To estimate the covariance
matrix Var(X̃) of the (unbiased) weighted means statistic X̃, one can use the almost unbiased
estimate of Var(Xi) derived in [8] as follows. One has

V ar(Xi − X̃) = (I − �i )Var(Xi)(I − �i )
T +

∑
k �=i

�kVar(Xk)�
T
k

=
∑

k

�kVar(Xk)�
T
k + Var(Xi) − �iVar(Xi) − Var(Xi)�

T
i .

Of course, when �i = [∑p
j=1 Var(Xj )

−1]−1Var(Xi)
−1, the first term in the right-hand side

simplifies to

∑
k

�kVar(Xk)�
T
k =

[
p∑

i=1

Var(Xi)
−1

]−1

= 1

2
�iVar(Xi) + 1

2
Var(Xi)�

T
i ,

and by substituting this expression in the previous formula, one obtains

V ar(Xi − X̃) = Var(Xi) − 1
2�iVar(Xi) − 1

2Var(Xi)�
T
i .

Horn et al. [8, p. 382] argue that by continuity if the weights are only approximately correct, this

is an approximate identity. Thus, an almost unbiased estimator of Var
(
Xi − X̃

)
is derived by

solving (in Vi) the following equation

(Xi − X̃)(Xi − X̃)T = Vi − 1
2�iVi − 1

2Vi�
T
i .

Here symmetric Vi serves as an estimate of Var(Xi). This solution can be found like one in (23).
More precisely,

Vech(V̂ ar(Xi))

=
[
Hq

(
I − 1

2
�i

⊗
I − 1

2
I
⊗

�i

)
Gq

]−1

Vech((Xi − X̃)(Xi − X̃)T ). (25)

The same agreement as in Sections 2 and 3.1 about taking the positive part of a non-positively
defined symmetric matrix is applicable here too. Actually, as in our situation, Var(Xi)��i and
an unbiased estimate Si of �i is available, it makes sense to use as the final estimator of Var(Xi),
max[V̂ ar(Xi), Si] = Si + [V̂ ar(Xi) − Si]+ with V̂ ar(Xi) determined from (25).
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Table 1
The covariance matrices of seven estimators when q = 2; p = 3, 6, n = 9, 18 and their estimates

p = 3, n = 9 p = 3, n = 18 p = 6, n = 9 p = 6, n = 18

Ȳ 0.68 0.07 0.67 0.05 0.35 0.04 0.33 0.02
0.07 0.59 0.05 0.59 0.04 0.28 0.02 0.29

S 0.50 0.05 0.24 0.02 1.23 0.13 0.58 0.06
0.05 0.44 0.02 0.22 0.13 1.08 0.06 0.51

GD 0.68 0.08 0.64 0.07 0.40 0.04 0.34 0.03
0.08 0.64 0.07 0.57 0.04 0.35 0.03 0.31

(28) 0.08 0.01 0.10 0.00 0.03 0.00 0.04 0.01
0.01 0.07 0.00 0.09 0.00 0.03 0.01 0.05

DL 0.54 0.06 0.53 0.07 0.26 0.03 0.25 0.02
0.06 0.46 0.07 0.46 0.03 0.23 0.02 0.21

(26) 0.54 0.06 0.53 0.05 0.26 0.03 0.25 0.02
0.06 0.48 0.05 0.48 0.03 0.23 0.02 0.22

(28) 0.59 0.07 0.58 0.05 0.31 0.03 0.29 0.03
0.07 0.54 0.05 0.54 0.03 0.27 0.03 0.26

MP 0.55 0.08 0.54 0.07 0.28 0.03 0.27 0.02
0.08 0.49 0.07 0.47 0.03 0.24 0.02 0.23

(26) 0.59 0.05 0.57 0.06 0.31 0.03 0.29 0.03
0.05 0.53 0.06 0.52 0.03 0.27 0.03 0.26

(28) 0.42 0.05 0.43 0.05 0.21 0.02 0.22 0.02
0.05 0.39 0.05 0.38 0.02 0.18 0.02 0.19

ML 0.54 0.04 0.53 0.08 0.27 0.04 0.24 0.02
0.04 0.51 0.08 0.47 0.04 0.22 0.02 0.20

(5) 0.46 0.02 0.60 0.05 0.26 0.02 0.31 0.02
0.02 0.31 0.05 0.55 0.05 0.23 0.02 0.28

R 0.54 0.03 0.53 0.02 0.26 0.02 0.24 0.02
0.03 0.46 0.02 0.45 0.02 0.23 0.02 0.21

(26) 0.38 0.01 0.35 0.02 0.23 0.01 0.22 0.01
0.01 0.32 0.02 0.31 0.01 0.21 0.01 0.21

(5) 0.25 0.00 0.31 0.02 0.15 0.01 0.20 0.01
0.00 0.23 0.02 0.29 0.01 0.14 0.01 0.18

SN 0.59 0.05 0.54 0.08 0.30 0.04 0.25 0.03
0.05 0.50 0.08 0.47 0.04 0.26 0.03 0.22

(26) 0.55 0.03 0.52 0.06 0.28 0.03 0.27 0.02
0.03 0.44 0.06 0.46 0.03 0.24 0.02 0.23

(5) 0.36 0.00 0.49 0.05 0.21 0.02 0.25 0.02
0.00 0.29 0.05 0.44 0.02 0.18 0.02 0.23

The resulting formula for Var(X̃) estimator has the form,

V̂ ar(X̃) =
∑

i

�i V̂ ar(Xi)�
T
i , (26)

which can be recovered from its vectorized version via (25),

Vech(V̂ ar(X̃)) =
∑

i

Gq

(
�i

⊗
�i

)
Hq

×
[
Hq

(
I − 1

2
�i

⊗
I − 1

2
I
⊗

�i

)
Gq

]−1

Vech((Xi − X̃)(Xi − X̃)T ). (27)
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The statistic (26) gives an estimate of the covariance matrix of any weighted means statistic for
fixed weights �i . This estimate is uniquely defined when I − 1

2�i

⊗
I − 1

2 I
⊗

�i is invertible,
which holds provided that I − �i is non-singular.

When �i ≡ p−1I, i.e. when X̃ is the sample mean, this estimator coincides with the classical
unbiased estimator S.

Proposition 4.1. An unbiased quadratic estimator,
∑p

i=1 Qi(Xi − X̃)(Xi − X̃)T QT
i , of the

covariance matrix
∑p

i=1 �iVar(Xi)�T
i for fixed weights �i is defined when the matrices �i given

by (22) admit representation (23), in which case its vectorized form is given by the right-hand side
of (24). The almost unbiased estimator (26) of Var(X̃) satisfies (25) and its vectorized version is
given by (27).

An alternative estimator of Var(X̃) is

Ṽ ar(X̃) =
[∑

i

V̂ ar(Xi)
−1

]−1

. (28)

In particular, this estimate is commonly used for the maximum likelihood estimator although it
is known to underestimate the true variance. Exact theoretical comparison of (28) and (26) is
difficult, but simulations reported in the next section suggest that (26) is a better estimate of this
variance.

5. Example and simulation results

Here we report the results of a Monte-Carlo simulation study when q = 2 or 3, p = 3 or 6.
The distribution of Si was taken to be that of a Wishart random matrix with parameters ni − 1
and �i . The distribution of the within-laboratory covariance matrices, �i , was the inverse Wishart
distribution with parameters q + 2 and I, so that E�i = I. We chose � = [1, 0.2; 0.2, 0.8] for
q = 2 and � = [1.8, 0.2, 0.1; 0.2, 2.1, 0.4; 0.1, 0.4, 2.5] when q = 3. The sample sizes vector
either had equal coordinates, ni ≡ n = 9; n = 18, or n was a permutation of integers 1, . . . , p

plus 5.

Table 2
The estimators of � = [1.00, 0.20; 0.20, 0.80], q = 2 when p = 3, 6, n = 9, 18

p = 3, n = 9 p = 3, n = 18 p = 6, n = 9 p = 6, n = 18

yDL 1.23 0.19 1.19 0.19 1.11 0.20 1.06 0.19
0.19 1.05 0.19 1.03 0.20 0.93 0.19 0.86

yMP 0.91 0.14 0.91 0.14 0.93 0.16 0.95 0.16
0.14 0.80 0.14 0.77 0.16 0.77 0.16 0.78

�̂ 0.56 0.03 0.67 0.10 0.63 0.10 0.83 0.14
0.03 0.38 0.10 0.48 0.10 0.53 0.14 0.68

�̂SN 0.70 0.08 0.71 0.12 0.98 0.10 0.95 0.11
0.08 0.64 0.12 0.58 0.10 0.88 0.11 0.83

�̂R 0.44 0.05 0.63 0.10 0.67 0.11 0.85 0.13
0.05 0.38 0.10 0.55 0.11 0.58 0.13 0.70
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Table 3
The estimators of� = [1.0, 0.2, 0.1; 0.2, 1.2, 0.8; 0.1, 0.8, 1.6], q = 3 whenp = 3, 6; n is a permutation of (1, . . ., p)+5

p = 3 p = 6

yDL 1.20 0.15 0.07 1.13 0.17 0.11
0.15 1.36 0.75 0.17 1.35 0.73
0.07 0.75 1.80 0.11 0.73 1.93

yMP 0.90 0.13 0.09 0.77 0.13 0.06
0.13 1.04 0.62 0.13 1.00 0.54
0.09 0.62 1.28 0.06 0.54 1.41

�̂ 0.89 0.12 0.09 0.94 0.15 0.10
0.12 1.11 0.48 0.15 1.02 0.12
0.09 0.48 1.23 0.10 0.12 1.09

�̂R 0.94 0.11 0.05 1.48 0.09 0.06
0.11 1.08 0.41 0.09 1.63 0.38
0.05 0.41 1.20 0.06 0.38 1.84

�̂SN 1.02 0.14 0.02 1.09 0.16 0.01
0.14 1.10 0.06 0.16 1.15 0.19
0.02 0.06 1.40 0.01 0.19 1.45

Table 4
The covariance matrices of six estimators for q, p and n as in Table 3

p = 3 p = 6

DL 0.25 0.01 0.00 0.23 0.01 0.04
0.01 0.26 0.10 0.01 0.27 0.10
0.00 0.10 0.33 0.04 0.10 0.45

(26) 0.24 0.01 0.01 0.22 0.02 0.01
0.01 0.27 0.10 0.02 0.26 0.09
0.01 0.10 0.33 0.01 0.09 0.42

MP 0.28 0.01 0.00 0.24 0.01 0.05
0.01 0.30 0.09 0.01 0.29 0.09
0.00 0.09 0.36 0.05 0.09 0.51

(26) 0.31 0.02 0.00 0.27 0.03 0.05
0.02 0.32 0.10 0.03 0.33 0.11
0.00 0.10 0.41 0.05 0.11 0.54

ML 0.27 0.03 0.01 0.25 0.01 0.04
0.03 0.26 0.10 0.01 0.24 0.10
0.01 0.10 0.30 0.04 0.10 0.40

(26) 0.31 0.02 0.00 0.27 0.03 0.05
0.02 0.32 0.10 0.03 0.33 0.11
0.00 0.10 0.41 0.05 0.11 0.54

R 0.28 0.03 0.01 0.25 0.01 0.04
0.03 0.25 0.13 0.01 0.24 0.10
0.01 0.13 0.33 0.04 0.10 0.40

(26) 0.31 0.02 0.00 0.27 0.03 0.05
0.02 0.32 0.10 0.03 0.33 0.11
0.00 0.10 0.41 0.05 0.11 0.54

SN 0.27 0.01 0.00 0.25 0.01 0.04
0.01 0.25 0.10 0.01 0.24 0.10
0.00 0.10 0.30 0.04 0.10 0.40

(26) 0.31 0.02 0.00 0.27 0.03 0.05
0.02 0.32 0.10 0.03 0.33 0.11
0.00 0.10 0.41 0.05 0.11 0.54
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Table 1 contains the covariance matrices of the studied estimators. The DerSimonian–Laird
method, and the Mandel–Paule algorithm (which behaved very similarly to the DerSimonian–
Laird method) systematically were among the best procedures. They did remarkably well com-
pared to the “golden standard” of maximum likelihood procedures which are more computation-
ally intensive (Tables 2, 3). The Graybill–Deal estimator GD has a variance matrix substantially
exceeding that of all other estimators, and the sample mean was the second worst. For this rea-
son we excluded these estimators in Table 4 which gives the simulated values of the covariance
matrices of six estimators and their estimates via (26), (28) or (5) when q = 3 and the sample
sizes of p = 3, 6 laboratories are chosen at random. Clearly, (26) gives a much better estimate
of the covariance matrix of the weighted means procedures than (28). The latter is especially
inadequate in the case of the Graybill–Deal estimator GD. Because of heterogeneity the sample
covariance matrix S turns out to be a rather poor estimator of the covariance matrix of the sample
mean.

Tables 2 and 3 contain the estimators of the between-laboratory effect � for these values of q, p

and n. They show that the likelihood estimators systematically underestimate � while the Mandel–
Paule procedure, YMP, and the DerSimonian–Laird method, YDL, gave better answers. However,
since the DerSimonian–Laird rule is computationally simpler than the Mandel–Paule algorithm,
we can recommend it in the multivariate case (and it does not need any recommendations in the
scalar case being the tool-of-choice for meta-analysis.)

Our simulations also demonstrated that the distribution of the pivotal ratio, (�̂−�)T [V̂ ar(�̂)]−1

(�̂ − �) can be well approximated by a multiple of F-distribution with q and p − q degrees of
freedom (Fig. 1).
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Fig. 1. The plot of the estimated density of [V̂ ar(�̂)]−1/2(�̂−�) for the maximum likelihood estimator when q = 2, p = 7,
and � = [1, 0.2; 0.2, 0.8].
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Fig. 2. Confidence ellipsoid for the charge sensitivity in the Key Comparisons of accelerometers, q = 3, p = 14, YDL is
the zero matrix.
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Fig. 3. Confidence ellipse for the diffusivity and thermal heat in the thermal diffusivity example, q = 2, p = 28, and
YDL = [0.084, −0.277; −0.277, 0.914].

To illustrate techniques of Section 3 we implemented them in the accelerometers key compar-
isons study [11] mentioned in Section 1 and in interlaboratory study of thermal diffusivity and
conductivity. Only the results for the frequencies 40, 50 and 63 Hz are given here (Fig. 2).
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The Mandel–Paule procedure and the DerSimonian–Laird method gave virtually the same an-
swer for �T = [0.12678, 0.12667, 0.12672], with the zero matrix �̂ and the estimated covariance
matrix V̂ ar(X̃) = 1.0e − 07∗ [0.3982, 0.0222, −0.0206 : 0.0222, 0.3849, 0.0075; −0.0206,

0.0075, 0.3856].
This matrix leads to an approximate confidence ellipsoid for � on the basis of F-distribution

with q = 3 and p − q = 11 degrees of freedom. This ellipsoid provides useful information about
the joint behavior of the charge sensitivities for these frequencies. Notice that the maximum
likelihood estimators were slightly different: [0.12675, 0.12671, 0.12667] (Fig. 3).
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