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Experimental characterizations of a quantum system involve the measurement of expectation values of
observables for a preparable state ��� of the quantum system. Such expectation values can be measured by
repeatedly preparing ��� and coupling the system to an apparatus. For this method, the precision of the
measured value scales as 1

�N
for N repetitions of the experiment. For the problem of estimating the parameter

� in an evolution e−i�H, it is possible to achieve precision 1
N �the quantum metrology limit; see Giovannetti et

al., Phys. Rev. Lett. 96, 010401 �2006�� provided that sufficient information about H and its spectrum is
available. We consider the more general problem of estimating expectations of operators A with minimal prior
knowledge of A. We give explicit algorithms that approach precision 1

N given a bound on the eigenvalues of A
or on their tail distribution. These algorithms are particularly useful for simulating quantum systems on
quantum computers because they enable efficient measurement of observables and correlation functions. Our
algorithms are based on a method for efficiently measuring the complex overlap of ��� and U ���, where U is
an implementable unitary operator. We explicitly consider the issue of confidence levels in measuring observ-
ables and overlaps and show that, as expected, confidence levels can be improved exponentially with linear
overhead. We further show that the algorithms given here can typically be parallelized with minimal increase
in resource usage.
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I. INTRODUCTION

When we extract information from a physical system,
fundamental physical limits on the achievable precision are
set by uncertainty relations such as Heisenberg’s uncertainty
principle. The goal of quantum metrology is to measure
properties of states of quantum systems as precisely as pos-
sible given available resources. Typically, these properties
are determined by experiments that involve repeated prepa-
ration of a quantum system in a state � followed by a mea-
surement. The property is derived from the measurement
outcomes. Because the repetitions are statistically indepen-
dent, the precision with which the property is obtained scales
as 1

�N
, where N is the number of preparations performed. This

is known as the standard quantum limit or the shot-noise
limit, and it is associated with a purely classical statistical
analysis of errors. It has been shown that in many cases of
interest, the precision can be improved to 1

N by using the
same resources, but with initial states entangled over mul-
tiple instances of the quantum system, or by preserving
quantum coherence from one experiment to the next. It is
known that it is usually not possible to attain a precision that
scales better than 1

N . �See �1� for a review of quantum-

enhanced measurements.� A setting where this limit can be
achieved is the parameter estimation problem, where the
property is given by the parameter � in an evolution e−i�H

for a known Hamiltonian H �2�, which captures some com-
mon measurement problems. The standard method for deter-
mining � requires the ability to apply e−i�H and to prepare
and measure an eigenstate of H with known eigenvalue. If it
is not possible to prepare such an eigenstate or if we wish to
determine expectations with respect to arbitrary states, this
method fails. Here we are interested in the more general and
physically important expectation estimation problem, where
the property to be determined is an expectation �A�=tr�A��
of an observable �Hermitian operator� or unitary A, for a
possibly mixed state �. Both A and � are assumed to be
experimentally sufficiently controllable, but other than a
bound on the eigenvalues of A or their tail distribution, no
other properties of A or � need to be known. In particular, we
need not be able to prepare eigenstates of A or know the
spectrum of A. The parameter estimation problem is a special
instance of the expectation estimation problem. Parameter
estimation reduces to the problem of determining
tr�e−i�H������� for ��� an eigenstate of H with nonzero eigen-
value. We show that for solving the expectation estimation
problem, precision scalings of 1

N1−� for arbitrarily small �
�0 can be achieved with sequential algorithms and the al-
gorithms can be parallelized with minimal additional re-
sources.

Our motivation for this work is the setting of quantum
physics simulations on quantum computers. This is one of
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the most promising applications of quantum computing �3�
and enables a potentially exponential speedup for the corre-
lation function evaluation problem �4–6�. The measurement
of these correlation functions reduces to the measurement of
the expectation of an operator for one or more states. Be-
cause the measurement takes place within a scalable quan-
tum computer, the operators and states are manipulatable via
arbitrarily low-error quantum gates. The quantum computa-
tional methods that have been described for the determina-
tion of these expectations have order 1

�N
precision. An ex-

ample is the one-ancilla algorithm for measuring �U�
=tr�U�� for unitary U described in �5,7,8�, which applies U
conditional on an ancilla a prepared in a superposition state
�Fig. 1�. Improving the precision without special knowledge
of the operator or state requires more sophisticated algo-
rithms.

Here we give quantum algorithms based on phase and
amplitude estimation �9,10� to improve the resource require-
ments needed to achieve a given precision. We begin by
giving an “overlap estimation” algorithm �OEA� for deter-
mining the amplitude and phase of tr�U�� for U unitary. We
assume that quantum procedures for preparing � from a stan-
dard initial state and for applying U are known and that it is
possible to reverse these procedures. We determine the num-
ber of times, N, that these procedures are used to achieve a
goal precision p and show that N is of order 1 / p. To deter-
mine tr�A�� for observables A not expressible as a small sum
of unitary operators, we assume that it is possible to evolve
under A. This means that we can apply e−iAt for positive
times t. The OEA can be used to obtain tr�A��t
	 i�tr�e−iAt��−1� for small t. The problem of how to measure
tr�A�� with precision p requires determining tr�e−iAt�� with
precision better than pt and choosing t small enough that the
error in the approximation does not dominate. We solve this
problem by means of an “expectation estimation” algorithm
�EEA� with minimal additional knowledge on the eigenvalue
distribution of A. For this situation, the relevant resources are
not only the number N of uses of e−iAt and of the state prepa-
ration algorithm, but also the total time T of evolution under
A. We show that to achieve a goal precision p, N and T are of
order 1 / �p1+�� and 1/ p, respectively, with ��0 arbitrarily

small. The term � in the resource bound is due partly to the
tail distribution of the eigenvalues of A with respect to �.
When it is known that � is an eigenstate of A, so that the
distribution is a delta function, then we have �=0. This ap-
plies to the parameter estimation problem. In the case where
A is unbounded, � is still arbitrarily small if the tail distri-
bution is exponentially decaying. But if only small moments
of A can be bounded, in which case the best bound on the tail
distribution decays polynomially, then � becomes finite.

It is important to properly define the meaning of the term
“precision.” Here, when we say that we are measuring tr�A��
with precision p, we mean that the probability that the mea-
sured value ameas is within p of tr�A�� is bounded below by a
constant c�0. In other words, the “confidence level” that
ameas− p� tr�A���ameas+ p is at least c. Thus ameas± p de-
fines “confidence bounds” of the measurement for confi-
dence level c. One interpretation of confidence levels is that
if the measurement is independently repeated, the fraction of
times the measured value is within the confidence bound is at
least the confidence level. For measurement values ameas that
have an �approximately� Gaussian distribution, it is conven-
tional to use c=0.68 to identify the precision p with the
standard deviation. In this case, the confidence level that the
measurement outcome is within xp can be bounded by
erf�x /�2�, where erf�y� is the error function, erf�x /�2��1

−e−x2/2. This bound is often too optimistic, which is one rea-
son to specify confidence levels explicitly. This becomes par-
ticularly important in our use of the “phase estimation� algo-
rithm �PEA�, whose standard version �9� has confidence
levels that converge slowly toward 1 as x goes to infinity.
Because of these issues, our algorithms are stated so that
they solve the problem of determining tr�A�� with precision
p and confidence level c, where p and c are specified at the
beginning. This requires that the resource usage be param-
etrized by both p and c, and we show that the resource usage
grows by a factor of order �log�1−c�� to achieve high confi-
dence levels c.

An important problem in measuring properties of quan-
tum systems is how well the measurement can be parallel-
ized with few additional resources. The goal of parallelizing
is to minimize the time for the measurement by using more
parallel resources. Ideally, the time for the measurement is
independent of the problem. Typically we are satisfied if the
time grows at most logarithmically. It is well known that for
the parameter estimation problem, one can readily parallelize
the measurement by exploiting entanglement in state prepa-
ration �11�. That this is still possible for the OEA and EEA
given here is not obvious. In fact, we show that there are
cases where parallelization either involves a loss of precision
or requires additional resources. However, the entanglement
method for parallelizing measurements works for expecta-
tion estimation and for overlap estimation when �tr�U��� is
not close to 1.

Our algorithms are well suited for quantum computers
where the contribution of noisy gates to simulation error is
smaller than the desired precision. In principle, this condition
can be met at the cost of a polylogarithmic overhead using
fault-tolerantly implemented qubits and gates �12�. Thus, af-
ter taking into account this overhead, our algorithms are still

{ Uρ

|+〉a 2σ
(a)
+ = tr(Uρ)

FIG. 1. Quantum network for the one-ancilla algorithm to
measure �U�=tr�U�� with �+ �a= ��0�a+ �1�a� /�2 in the logical
basis. The desired expectation is given by tr�U��= �2�+

�a��= ��x
�a��

+ i��y
�a��, where ��x

�a�� and ��y
�a�� are the expectations of the Pauli

matrices �x
�a� and �y

�a� for the final state, which are estimated by
repeating the experiment and measuring either �x

�a� or �y
�a� on the

control �ancilla� qubit labelled a. Because these measurements have
±1 as possible outcomes, their statistics are determined by the bi-
nomial distribution.
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more efficient than independently repeated direct measure-
ments when high precision is desired. If low precision suf-
fices or when using quantum devices with limited quantum
control or without fault tolerance, which algorithm is best
requires further analysis.

II. OVERLAP ESTIMATION

Let U be a unitary operator and � a state of quantum
system S. We assume that we can prepare � and apply U to
any quantum system S� that is equivalent to S. Both the
preparation procedure and U must be reversible. In addition,
we require that the quantum systems be sufficiently control-
lable and that U can be applied conditionally �see below�.
We use labels to clarify which quantum system is involved.
Thus, ��S�� is the state � of system S� and U�S�� is U acting
on system S�. This notation allows us to describe the prepa-
ration of � and the application of U in parallel on multiple
quantum systems.

When we say that we can prepare �, we mean that we can
do this fully coherently. That is, we have access to a unitary
operator V�SE� that can be applied to a standard initial state
�0�SE of S and an ancillary system E �environment� such that
��S�=trE�V�SE��0�SE

SE�0��V�SE��†�. The state V�SE��0�SE is a
so-called purification of ��S�. For our purposes and without
loss of generality, we can assume that � is pure by merging
systems E and S and letting unitaries act on the merged
system. With this simplification we can write �= ������
=V�0��0�V† and use S ,S� , . . . to refer to equivalent merged
systems. The goal of the OEA is now to estimate the overlap
���U��� of ��� with U���.

The OEA and EEA require that S be sufficiently control-
lable. In particular, we require that it be possible to couple S
to ancilla qubits and to implement conditional selective sign
changes of �0�S. Let P0

�S�=I�S�−2�0�S
S�0� be the selective sign

change of �0�S, with I�S� the identity �or no-action� operator.
If an ancilla �control� qubit is labeled a, an instance of the
conditional selective sign change is defined by

cP0
�aS� = �0�a

a�0�I�S� + �1�a
a�1�P0

�S�. �1�

If S consists of qubits and �0�S is the usual starting state with
all qubits in logical state �0�, then this is essentially a many-
controlled sign flip and has efficient implementations �13�.

As mentioned above, for the OEA we require that U can
be applied conditionally. This means that the unitary operator

cU�aS� = �0�a
a�0�I�S� + �1�a

a�1�U�S� �2�

is available for use. When U is associated with an evolution
simulated on a quantum computer, this is no problem since
all quantum gates are readily “conditionalized” �13�. Never-
theless, we note that cU is not required if only the amplitude
����U���� of ���U��� is needed.

The “amplitude estimation” algorithm �AEA� �10� can al-
most immediately be applied to obtain ����U����. To accom-
plish our goals we need to adapt it for arbitrarily prepared
states and use a version that avoids the complexities of the
full quantum Fourier transform �14�. Before we describe and
analyze the version of the AEA needed here, we show how

the OEA uses it to estimate the phase and amplitude of
���U���. Let AE�U , ��� , p� be the estimate of ����U���� ob-
tained by the AEA for goal precision p. �We specify the
meaning of the precision parameter below.�

Overlap estimation algorithm. Given are U, ��� �in terms
of a preparation unitary V : �0�� ����, and the goal precision
p. An estimate of ���U��� is to be returned.

�1� Obtain a=AE�U , ��� , p /4�, so that a is an estimate of
����U���� with precision p /4.

�2� Obtain b0=AE�cU�aS� , �+��aS= �+ �a��� , p /16�.
Note that aS�+��cU�aS��+��aS= �1+ ���U���� /2.

�3� Obtain b	/2=AE�ei�z
�a�	/4 cU�aS� , �+��aS , p /16�.

Note that aS�+��ei�z
�a�	/4 cU�aS��+��aS=ei	/4�1

− i���U���� /2.
�4� Estimate the phase 
 of ���U��� by computing the

argument of the complex number y defined by

Re�y� = �4b0
2 − a2 − 1�/2,

Im�y� = �4b	/2
2 − a2 − 1�/2. �3�

If a, b0, and b	/2 were the exact values of the amplitudes
estimated by the three instances of the AEA, then we would
have y= ���U���. For example, the formula for Re�y� may be
obtained by geometrical reasoning, as shown in Fig. 2.

�5� Estimate ���U��� as ei
a. The reason for not using y
directly is that if the overlap has amplitude near 1, then the
error in the amplitude of y can be substantially larger than
the error in a. �This is because of the way we estimate y
using a PEA; see below.�

We define OE�U , ��� , p� to be the value returned by the
OEA. A flowchart for the algorithm is depicted in Fig. 3.

When a= ����U���� is close to 1, the absolute precision
with which a is obtained is as much as quadratically better
for the same resources. To avoid this nonuniformity of the
precision to resource relationship, we define the precision �
of an overlap by means of a parametrization of ���U��� using
the points �x1 ,x2 ,x3� on the upper hemisphere of the surface

2b 0 a
π-θ

θ
1

R ψ|U |ψ )

1 + ψ|U |ψ

e(

FIG. 2. �Color online� Geometrical construction for computing
Re����U���� from a= ����U���� and 2b0= ��1+ ���U�����. According
to the law of cosines, �2b0�2=a2+1+2a cos�
�, and we have
Re����U����=a cos�
�= ��2b0�2−a2−1� /2.
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of a unit sphere in three dimensions. For this purpose, define
h�x1 ,x2 ,x3�=x1+ ix2 for x1

2+x2
2+x3

2=1 and x3�0. Define the
distance between �x1 ,x2 ,x3� and �x1� ,x2� ,x3�� to be the angular
distance along a great circle. The precision of the value o
returned by the OEA is determined by the distance � between
the liftings h−1�o� and h−1����U���� �see Fig. 4�. We define
the precision of the value returned by the AEA similarly, by
restricting the parametrization to the positive reals. The pre-
cision parameters with which the AEA is called in the OEA
are chosen so that the returned overlap has precision �� p
with respect to our parametrization �see Endnote �15��.

The AEA is based on a trick for converting amplitude into
phase information, so that an efficient PEA can be applied.
Let ��0�= ��� and ��1�=U���. Let S0=I−2��0���0�=VP0V†

be the selective sign change of ��0� and S1=I−2��1���1�
=UVP0V†U† the selective sign change of ��1�. The compo-
sition S=S0S1 is a unitary operator that rotates ��0� toward
��1� in the two-dimensional subspace Q spanned by ��0� and
��1�. The rotation is by a Bloch-sphere angle of 2�
=4arccos����0 ��1���. Thus, the eigenvalues of S in Q are

e±i�. The Bloch-sphere picture of the states and the rotation
are shown in Fig. 5. When ���0 ��1��= ����U����=1, S is the
identity operator. The PEA for S with initial state ��0� deter-
mines the phase � of one of these eigenvalues, where each of
the signs has equal probability of being returned. The overlap
����U���� is obtained from � by the formula ����U����
=cos�� /2�. The PEA requires use of the conditional S opera-
tor cS. As defined, this needs to be decomposed into a prod-
uct of cP0, cU, and cV. A significant simplification is to not
condition U and V and to write cS=V cP0V†UV cP0V†U†.
This works because if the controlling qubit is in state �0�, all
the U’s and V’s are canceled by matching U†’s and V†’s �7�.

Let PE�W , ���� , p� be a phase returned by the PEA for
unitary operator W and initial state ���� with precision goal
p. The AEA may be summarized as follows.

Amplitude estimation algorithm. Given are U, ��� �in
terms of a preparation unitary V : �0�� ����, and the goal pre-

FIG. 3. �Color online� OEA flowchart. An
estimate of the overlap ���U��� is obtained. The
algorithm requires three state preparations and
calls the AEA three times. The amplitude of the
returned value shown in the flowchart may need
to be adjusted according to the value of a to
optimize the precision. For details see the text.

h−1( ψ|U |ψ )

h−1(o)δ

δ

x3

ψ|U |ψ
o

x2

x1

FIG. 4. �Color online� Visualization of the parameterization of
the overlap in terms of points on the upper hemisphere of a unit
sphere. The function h is defined by h�x1 ,x2 ,x3�=x1+ ix2. Note that
for overlaps ����U���� approaching 1 and small �, �� approaches
�2 /2��.

S0S1|ψ〉

2φ
φ

|ψ〉
U |ψ〉

S0S1

S0 S1

FIG. 5. �Color online� Bloch-sphere representation of the rota-
tions induced on the subspace spanned by ��� and U��� by the
operators S0 and S1.
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cision p. An estimate of ����U���� is to be returned.
�1� Let �=PE�S , ��� ,2p� with S=S0S1

=VP0V†UVP0V†U†.
�2� Estimate ����U���� as �cos�� /2��.
The precision parameter for the PEA has the conventional

interpretation �modulo 2	�. Because arccos�����U����� is the
angle along the semicircle in the parametrization of the over-
lap defined above, the precision 2p of the value returned by
the PEA translates directly to the desired precision in the
value to be returned by the AEA.

The PEA �9� for a unitary operator W and initial state ����
returns an estimate of the phase � �“eigenphase”� of an ei-
genvalue ei� of W, where the probability of � is given by the
probability amplitude of ���� in the ei�-eigenspace of W. In
the limit of perfect precision, it acts as a von Neumann mea-
surement of W on state ���� in the sense that the final state is
projected onto the ei�-eigenspace of W. For finite precision,
the eigenspaces may be decohered and the projection is in-
complete, unless there are no other eigenvalues within the
precision bound. The error in the projection is related to the
confidence level with which the precision bound holds.

The original PEA is based on the binary-quantum Fourier
transform �14�. It determines an eigenphase � with precision
1
2n with 2n−1 uses of the conditional cW operator to obtain a
phase kickback to ancilla qubits. The original PEA begins by
preparing n qubits labeled 1 , . . . ,n in state �+ �1 , . . . , �+ �n and
system S in state ����S. Next, for each m=1, . . . ,n, cW is
applied from qubit m to system S 2m−1 times. The binary-
quantum Fourier transform is applied to the n qubits, and the
qubits are measured in the logical basis �0�, �1�. The measure-
ment outcomes give the first n digits of the binary represen-
tation of � / �2	�+ /2n, where ���1/2 with probability at
least 0.405 �9�.

The PEA as outlined in the previous paragraph makes
suboptimal use of quantum resources. We prefer a one-qubit
version of the algorithm based on the measured quantum
Fourier transform �16� and described in �17�, which has been
experimentally implemented on an ion trap quantum com-
puter �18�. An advantage of this approach is that it does not
require understanding the quantum Fourier transform and is
readily related to more conventional approaches for measur-
ing phases. To understand how the algorithm given below
works, note that the eigenstates of W are invariant under cW.
The only interaction with S is via uses of cW. Therefore,
without loss of generality, we can assume that S is initially
projected onto an ei� eigenstate of W with 0���2	. The
bits of an approximation of � / �2	� are determined one by
one, starting with the least significant one that we wish to
learn. Given n, let �.b1 . . .bn�2=
i=1

n bi /2i �with bi=0,1� be a
best n-digit binary approximation to � / �2	�, where the no-
tation �x�2 is used to convert a sequence of binary digits x to
the number that it represents. Write = �� / �2	�
− �.b1 . . .bn�2�2n.

Phase estimation algorithm. Given are W, ���� �as a state
of a quantum system�, and the goal precision p. An estimate
of an eigenphase � of W is to be returned, where the prob-
ability of � is given by the population of ���� in the corre-
sponding eigenspace.

�1� Let n be the smallest natural number such that 2n

�1/ p.

�2a� Prepare �+ �a in an ancilla qubit a and apply
cW�aS� 2n−1 times. With the auxiliary assumption that ���� is
an ei�-eigenstate of W, the effect is a phase kickback, chang-
ing �+ �a to ��0�a+ei2n−1��1�a� /�2.

�2b� Measure a in the ���, ��� basis, so that measurement
outcome 0 �1� is associated with detecting ��� �����. Let bn�
be the measurement outcome. With the auxiliary assumption,
the probability that bn�=bn is cos�	 /2�2.

�3� Do the following for each k= �n−1� , . . . ,1:
�3a� Prepare �+ �a in an ancilla qubit a and apply

cW�aS� 2k−1 times. With the auxiliary assumption, this
changes �+ �a to ��0�a+ei2k−1��1�a� /�2.

�3b� Compensate the phase of �1�a by changing it by

e−i	�.bk+1� . . . bn��2. With the auxiliary assumption, this changes

the state of the ancilla to ��0�a+ei�2k−1�−	�.bk+1� . . . bn��2��1�a� /�2.
�3c� Measure a in the ���, ��� basis to obtain bk�. With

the auxiliary assumption and if bl�=bl for l�k, the probabil-
ity that bk�=bk is cos�	 /2n−k+1�2.

�4� Estimate � as 2	�.b1� . . .bn��2.
A step of the algorithm is depicted in Fig. 6.
The probability P�� that the value returned by the PEA is

2	�.b1 . . .bn�2 is the product of the probabilities cos�	 /2l�2

for l=1, . . . ,n and is bounded below by sin�	�2 / �	�2. This
bound can be obtained by taking the limit n→� in P��. The
worst case is given for ��=1/2, leading to the bound P��
�4/	2	0.405 �9�. Since the goal precision is 2−n, it is ac-
ceptable for the algorithm to obtain the next best binary ap-
proximation to �. For this, the value obtained for bn� may not
be the one with maximum probability, but the subsequent
bits bk� are always the best possible given bn�. Taking this into
account, the probability that the phase returned is within 2−n

is given by P��+ P�1−��8/	2	0.81 �see Endnote �19��.
The key step of the one-qubit phase estimation procedure

is to modify the phase kickback by the previously obtained
phase estimate. This differentiates it from an adaptive phase
measurement method that determines the bits of an approxi-
mation of � / �2	� starting with the most significant bit and
making sufficiently many measurements with different phase
compensations for each bit to achieve high confidence level.
This is the phase estimation method given in �20�, mentioned

FIG. 6. Step �3� of the PEA to estimate bit k of the eigenphase,
where k=3. The phase �̂k is computed according to previously ob-
tained information about the eigenphase. By applying it before the
measurement, the probability of obtaining the optimal value for bit
k is maximized. The measurement is denoted by the triangle point-
ing left with �/� inside and is a measurement in the ���/��� basis.
The outlined part of the network is parallelized in Sec. V.
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in �2� and used in �21�. To ensure that all the digits are
correct with sufficiently high probability, the number of mea-
surements needed for each bit is logarithmic in the number
of digits. It approximates what is done in practice for the
efficient determination of an unknown frequency or pulse
time.

The PEA can be applied directly to the problem of esti-
mating the parameter � in a unitary operator e−i�H if an
eigenstate of H with known eigenvalue can be prepared. In
this application of the PEA it is often possible to avoid the
use of conditional evolutions. For example, suppose that we
can treat the subspace spanned by two eigenstates of H with
known and different eigenvalues as the state space of a qubit.
In this case, the phase kickback required for the PEA can be
implemented by applying e−i�H directly on this qubit. This
removes the need for an ancilla qubit and makes the algo-
rithm useful for improving the efficiency of protocols such as
that used for clock synchronization in �22� from
O(�log�p�� / p) to O�1/ p�.

The resources required by the PEA, AEA, and OEA can
be summarized as follows.

PE�W , ���� , p�: This requires N�p�=2�log2�1/p��−1 uses of
W. ���� is prepared once. Here, �x� denotes the least integer
m�x.

AE�U , ��� , p�: This calls PE once. It requires N�2p� uses
of S=VP0V†UVP0V†U† and one use of V to prepare the ini-
tial state. We count this as being equivalent to 4N�2p�+1
state preparations and 2N�2p� applications of U.

OE�U , ��� , p�: This contains three calls to the AEA with
higher precision. The total resource count is 8N�p /8�
+4N�p /2�+3 state preparations and 4N�p /8�+2N�p /2� uses
of U.

Since N�p� is of order 1 / p, each of these algorithms uses
resources of order 1 / p.

III. CONFIDENCE BOUNDS

The PEA as described in the previous section obtains an
estimate �est of an eigenphase � such that the prior probabil-
ity that ��est−���2−n+1	 is at least 0.81, regardless of the
value of �, where n= �log2�1/ p��. �The comparison of �est to
� is modulo 2	, so that ��est−�� is the angular distance
between ei�est and ei�.� Thus, after having obtained �est, we
say that �=�est±2−n+1	 with confidence level 0.81 or
P��est−2−n+1	����est+2−n+1	��0.81. The error bound
of 2−n+1	 must not be confused with a standard deviation.
Suppose that we use a single sample from a Gaussian distri-
bution with standard deviation � to infer the mean. We
would expect that the confidence level increases as 1
−e−�(�� / ��2) for an error bound of �. �The notation ��x�
means a quantity asymptotically bounded below by some-
thing proportional to x; that is, there exists a constant C�0
such that the quantity is eventually bounded below by Cx.�
In general, it is desirable to have confidence levels that in-
crease at least exponentially as a function of distance � or as
a function of additional resources used. Unfortunately, for a
single instance of the PEA, we cannot do better than have
confidence level 1−O�1/�� for �=�est±2−n+1	� �9�. �Here,

O�x� denotes a quantity that is of order x; that is, a quantity
that is eventually bounded above by Cx for some constant C.
The meaning of “eventually” depends on context. Here it
means “for sufficiently small x.” If the asymptotics of the
argument require that it go to infinity, it means “for suffi-
ciently large x.”� The method suggested in �9� for increasing
the confidence level is to use the PEA with a higher goal
precision of p /2l. However, this improves the confidence
level on �=�est±2−n+1	� to only 1−�(1/ ��2l�) and re-
quires a 2l resource overhead, which is not an efficient im-
provement.

A reasonable goal is to attain confidence level c=1
−e−��r� for �=�est±2−n+1	 with a resource overhead of a
factor of O�r�. This modifies the resource counts from the
previous section from O�1/ p� to O(�log�1−c�� / p), where c is
the confidence level achieved. To attain this goal, we modify
each step of the PEA by including repetition to improve the
confidence level that acceptable values for the bits are deter-
mined. Let the two nearest n-digit binary approximations to
� / �2	� be given by � / �2	�= �.b1 . . .bn�2+� /2n and

� / �2	�= �.b̃1 . . . b̃n�2+ ��−1� /2n, where 0���1. We wish to
obtain one of these approximations with a high confidence
level. For the first step of the PEA, we perform two sets of
r experiments to obtain a good estimate of ��=	��+bn�.
The first set consists of r ��+ �a , �−�a�-measurements of the

state cW2n−1
�+ �a���S. The second consists of r ��+ �a , �−�a�-

measurements of the state cW2n−1
��0�a− i�1�a� /�2���S. Let

x1 ,x2 be the sample means of the measurement outcomes of
the two sets of experiments. In the limit of large r, x1 and x2
approach sin��� /2�2 and sin��� /2−	 /4�2, respectively. We
have

sin���� = cos��� − 	/2� = 1 − 2 sin ���/2 − 	/4�2,

cos���� = 1 − 2 sin ���/2�2, �4�

so we can estimate �� from x1 and x2 by letting �est� be the
phase of the complex vector �1−2x1�+ i�1−2x2�. The prob-
ability of the event E that �� differs from �est� by more than
	 /4 modulo 2	 can be bounded as follows. For this event,
�sin����+ i cos����− ��1−2x1�+ i�1−2x2���2�1/2. It follows
that either �sin��� /2�2−x1��1/4 or �sin��� /2−	 /4�2−x2�
�1/4. The probability of each of these possibilities is
bounded by the probability that the mean of r samples of the
binomial distribution with probability p of outcome 1 differs
from p by at least x=1/4. The probability of this event is
bounded by 2e−2rx2

=2e−r/8 �Hoeffding’s bound �23��. This
bound can now be doubled to obtain a bound of 4e−r/8 on the
probability of E.

Let an=1 if �est� is closer to 	 than to 0 and an=0 other-

wise. Then an=bn or an= b̃n. Which equality holds does not
affect the subsequent arguments, so without loss of general-
ity, assume that an=bn. Suppose that event E did not happen
and that we have correctly obtained an=bn , . . . ,ak+1=bk+1.
For the step of the algorithm that determines the kth bit,
modify the original step by compensating the phase of �1�a

by e−i�	�.bk+1 . . . bn−1�2+�est� /2n−k� and repeating the measurement r
times. We set ak=1 if the majority of the measurement out-
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comes are 1 and ak=0 otherwise. For each measurement, the
probability that the measurement outcome does not agree
with bk is at most sin(���−�est� � /2n−k+1)2. Our assumptions
imply that this is at most sin�	 /2n−k+3�2� �	 /2n−k+3�2. Using
Hoeffding’s bound again, the probability that ak�bk is
bounded by 2e−2r�1/2−�	 / 2n−k+3�2��2e−r/2 �for a loose upper
bound�.

Summing the probabilities, we find that the probability

that we do not learn b1 , . . . ,bn or b̃1 , . . . , b̃n is bounded by
x�n ,r�=2�n−1�e−r/2+4e−r/8. We can therefore say that the
modified PEA yields the desired phase to within 	 /2n−1 with
confidence level 1−x�n ,r�, where x�n ,r� decreases exponen-
tially in r. Note again that this confidence bound should not
be confused with a similar confidence bound for a Gaussian
random variable. Increasing the confidence bound does not
result in the expected increase in confidence level. In order to
have confidence level increasing exponentially toward 1 with
increasing confidence bound and an additional overhead of at
most O(�log�p��), we can repeat the determination of the kth
bit 2n−kr instead of r many times.

For the purpose of having a high confidence level in the
precision with which a quantity is estimated, our algorithms
require the confidence level goal as an input. The modified
PEA may be outlined as follows.

Modified phase estimation algorithm. Given are W, ����S,
a goal precision p, and a goal confidence level c. An eigen-
phase � of W is to be returned, where the probability of � is
given by the population of ���� in the corresponding eigens-
pace. The final state of S consists of states with eigenphases
in the range �± p with prior probability at least c.

�1� Let n be the smallest natural number such that 2n

�1/ p. Let r be the smallest natural number such that
x�n ,r�� �1−c�.

�2� Obtain �est� with the two sets of r measurements de-
scribed above. Let an=1 if �est� is closer to 	 than 0 and an
=0 otherwise.

�3� Do the following for each k= �n−1� , . . . ,1, in this or-
der:

�3a� Obtain an estimate of the kth bit ak of a binary
approximation to � / �2	� by r repetitions of the measure-
ment of steps �3a�–�3c� given previously, but with a phase
compensation that uses �est� as well as the previously obtained
bits.

�4� Return 2	�.a1 . . .an�2.
We define PE�W , ���� , p ,c� to be the value returned by the

modified PEA.
The resources required grow by a factor of less than 2r,

where r=O(�log�1−c��). The constant hidden by the order
notation may be determined from the expression for r in step
�1� and is not very large. To modify the AEA to attain con-
fidence level c, it suffices to change the call to PE by includ-
ing c as an argument. Because the OEA has three indepen-
dent calls to the AEA, it needs to make these calls with
confidence level arguments of 1− �1−c� /3 to ensure that the
final confidence level is c. The resource requirements of all
three algorithms are O(�log�1−c�� / p), where this applies to
the uses of U as well as the state preparation operator V in
the case of the AEA and OEA.

IV. EXPECTATION ESTIMATION

Let A be an observable and assume that it is possible to
evolve under ±A for any amount of time. This means that we
can implement the unitary operator e−iAt for any t. The tradi-
tional idealized procedure for measuring �A�=tr�A�� is to
adjoin a system consisting of a quantum particle in one di-
mension with momentum observable p̂ and apply the
coupled evolution e−iA� p̂ to the initial state � � �0��0�, where
�0� is the position “eigenstate” with eigenvalue 0. Measuring
the position of the particle yields a sample from the distribu-
tion of eigenvalues of A �5,24�. This procedure requires un-
bounded energy, both for preparing �0� and to implement the
coupled evolution. Performing this measurement N times
yields an estimate of �A� with precision of order var�A� /�N,
where the variance is var�A�= ��A− �A��2�. It is desirable to
improve the precision and to properly account for the re-
sources required to implement the coupling.

We focus on measurement methods that can be imple-
mented in a quantum information processor. In order to ac-
complish this, some prior knowledge of the distribution of
eigenvalues of A with respect to � is required. Suppose we
have an upper bound b on �tr�A��� and a bound on the tail
distribution F���� tr���A− �A�������, where ��A− �A�����
denotes the projection operator onto eigenspaces of A with
eigenvalues � satisfying ��− �A����. That is, F���
�
��−�A���� p� with p�=tr���������. Without loss of general-
ity, F is nonincreasing in �. An estimate of the tail distribu-
tion is needed to guarantee the confidence bounds on tr�A��
derived from measurements by finite means. Here are some
examples: If the maximum eigenvalue of A is �max, we can
set b=�max and use F���=1 if ���max and F���=0 other-
wise. Suppose that we have an upper bound v on the vari-
ance var�A�. If we know that the distribution of eigenvalues
of A is Gaussian, we can estimate F��� by means of the error
function for Gaussian distributions. With no such prior
knowledge, the best estimate is F���=min�1,v /�2�. �Ob-
serve that v��2
��−�A���� p�.� Such “polynomial” tails re-
sult in significant overheads for measuring �A�. “Good” tails
should drop off at least exponentially for large � �“exponen-
tial tails”�.

We give an EEA based on overlap estimation. The rel-
evant resources for the EEA are the number M of times a
unitary operator of the form e−iAt is used, the total time T that
we evolve under A, and the number N of preparations of �.
The total time T is the sum of the absolute values of expo-
nents t in uses of e−iAt. For applying the OEA, it is necessary
to be able to evolve under −A as well as A. If the evolution is
implemented by means of quantum networks, this poses no
difficulty. However, if the evolution uses physical Hamilto-
nians, this is a nontrivial requirement. The complexity of
realizing e−iAt may depend on t and the precision required.
Since this is strongly dependent on A and the methods used
for evolving under A, we do not take this into consideration
and assume that the error in the implementation of e−iAt is
sufficiently small compared to the goal precision. In most
cases of interest this is justified by results such as those in
�25�, which show that for a large class of operators A, e−iAt
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can be implemented with resources of order t1+�� /��, where
 is the error of the implementation and �� is arbitrarily
small.

For exponential tails F, our algorithm achieves M ,N
=O�1/ p1+�� and T=O�1/ p� for arbitrarily small �. The order
notation hides constants and an initialization cost that de-
pends on b and F. The strategy of the algorithm is to measure
tr�e−iAt�� for various t. In the limit of small t, tr�e−iAt��=1
+O�t2�− i��A�t+O�t3��, so that �A� can be determined to
O�t3� from the imaginary part of tr�e−iAt��. The first problem
is to make an initial determination of �A� to within a devia-
tion of A as determined by F. This is an issue when b is large
compared to the deviation. To solve the first problem, we can
use phase estimation. We also give a more efficient method
based on amplitude estimation. The second problem is to
avoid excessive resources to achieve the desired precision
while making t small. To solve this problem requires choos-
ing t carefully and taking advantage of higher-order approxi-
mations of �A� by linear combinations of tr�e−iAt�� for differ-
ent times t.

To bound the systematic error in the approximation of �A�
by itr�e−iAt��, note that �Im�ei
�−
��
3 /6. To see this it is
sufficient to bound the Lagrange remainder of the Taylor
series of sin�
�. This bound suffices for achieving �=1/2 in
the bounds on M and N. Reducing � requires a better ap-
proximation, which we can derive from the Taylor series of
the principal branch of ln�x+1�. For �x��1,

�ln�x + 1� − 

k=1

K

�− 1�k−1xk/k� � �x�K+1/��K + 1��1 − �x��K+1� .

�5�

To apply these series to the problem of approximating �A�,
we compute



k=1

K

�− 1�k−1�e−iBt − 1�k/k = 

l=0

K

Cle
−iBlt �6�

for real constants Cl satisfying �Cl��2K. In particular, if B is
an operator satisfying �B��x / t, we can estimate

�t tr�B�� + 

l=0

K

Cl Im tr�e−iBlt���
� �x�K+1/��K + 1��1 − �x��K+1� . �7�

Define Ge���=�F���+��
�F�s�ds. Then Ge��� is an upper

bound on the contribution to the mean from eigenvalues of A
that differ from the mean by more than �. That is, Ge���
� tr��A− �A����A− �A�������=
��−�A������− �A��p�. Like
F���, Ge��� is nonincreasing. We assume that a nonincreas-
ing bound G����Ge��� is known and that G���→0 as �
→�. Because F����Ge��� /�, we can use G to bound both
Ge and F. For x�0, define G−1�x�=inf� �G����x�. The
behavior of G−1 as x goes to 0 determines the resource re-
quirements for the EEA. If A is a bounded operator with
bound �max, then we can use G−1�x���max independent of
x�0. If F is exponentially decaying, then so is G and

G−1�x�=O(�log�x��). For polynomial tails with F���
=O�1/�2+��, we have G���=O�1/�1+�� and G−1�x�
=O�1/x1/�1+���.

The EEA has two stages. The first is an initialization pro-
cedure to determine �A� with an initial precision that is of the
order of a bound on the deviation of A from its mean, where
the deviation is determined from F and G. This initialization
procedure involves phase estimation to sample from the ei-
genvalue distribution of A. Its purpose is to remove offsets in
the case where the expectation of A may be very large com-
pared to the width of the distribution of eigenvalues as
bounded by F and G. The second stage zooms in on tr�A��
by use of the overlap estimation procedure. As before, we
can assume without loss of generality that � is pure, �
= ������. We first give a version of the EEA that achieves
M ,N=O�1/ p3/2� and then refine the algorithm to achieve
better asymptotic efficiency.

Expectation estimation algorithm. Given are A, ��� �in
terms of a preparation unitary V : �0�� ����, a goal precision
p, and the desired confidence level c. The returned value is
within p of �A�=tr�A������� with probability at least c.

Stage I.
�1� Choose � such that F�� /2��1/4 and �� p. � should

be chosen as small as possible. Let ti=	 / �4�b+���. Let r be
the minimum natural number such that 2e−r/8� �1−c� /4 and
set c� according to the identity r�1−c��= �1−c� /4.

�2� Obtain �1 , . . . ,�r from r instances of the PEA, �k
=PE�e−iAti , ��� ,�ti /2 ,c��, where 2	 is subtracted for any re-
turn values between 	 and 2	 to ensure that −	��k�	.

�3� Let �m be the median of �1 , . . . ,�r. We show below
that the probability that ��m / ti+ �A���� is bounded by
2e−r/8+r�1−c��� �1−c� /2.

�4� Let a0=−�m / ti. We expect a0 to be within � of �A�
with confidence level 1− �1−c� /2.

Stage II. If p=�, return a0 and skip this stage.
�1� Choose 
max and t so that they satisfy

�A� 
max
3 /6 � �t/2�p/4,

�B� G�
max/t� � 
maxp/8,

�C� 
max � 1,

�D� t� � 
max. �8�

The constraints and how they can be satisfied are explained
below. The parameter t should be chosen as large as possible
to minimize resource requirements.

�2� Obtain x=OE(e−i�A−a0��t/2� , ��� , �t /2�p /4 ,1− �1−c� /2).
�3� Return −Im�x� / �t /2�+a0.
Consider stage I of the algorithm. The probability that

��m / ti+ �A���� may be bounded as follows. The choice of ti

ensures that eigenvalues � of −Ati within �ti of the mean are
between ±	 /4 and do not get “aliased” by e−iAti in the calls
to the PEA. With probability at least 1−r�1−c��, each �k

returned by these calls is within ti� /2 of an eigenvalue of
−Ati sampled according to the probability distribution in-
duced by ���. Assume that the event described in the previ-
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ous sentence occurred. The probability that ��m / ti+ �A����
is upper bounded by the probability that at least �r /2� of the
r samples fall outside the range �−�A�ti−�ti ,−�A�ti+�ti�.
The choice of � with respect to F implies that Hoeffding’s
bound can be applied to bound this probability by 2e−r/8.
Thus, we can bound the overall prior probability P that
��m / ti+ �A���� by P�2e−r/8+r�1−c��� �1−c� /2.

The resources required for stage I include N=r
=O(�log�1−c��) preparations of ���, M =O(�log�1−c���b
+�� /�) uses of e−iAs �specifically, M is within a factor of 2
of 2r /�ti� and a total evolution time of T=O(�log�1
−c�� /�� �where T is within a factor of 2 of 2r��. Note that
none of these resource bounds depend on the p and that � is
a bound on a deviation of A from the mean with respect to
���. Also, if � is of the same order as b, the formulation of
stage I of the algorithm is such that the uses of phase esti-
mation require minimal precision. In fact, in this case, stage
I of the algorithm could be skipped with minor adjustments
to stage II. We show below that stage I can be modified so
that the overhead as a function of b is logarithmic. The modi-
fication requires that the number of state preparations, N, is
of the same order as M.

In the special case of parameter estimation �see the Intro-
duction�, �= p. Consequently stage II is skipped and the re-
sources of stage I are the total resources required. The algo-
rithm therefore achieves the optimal O�1/ p� resource
requirements for this situation.

Consider stage II of the algorithm. The error
�−Im�x� / �t /2�+a0− �A�� may be bounded as follows. We as-
sume that all the precision constraints of stages I and II are
satisfied. The confidence level that this is true is c overall.
With this assumption, x / �t /2� is within p /4 �the “precision
error”� of tr�e−i�A−a0��t/2��� / �t /2�. There are three contribu-
tions to the “approximation error,” which is the difference
between −Im tr�e−i�A−a0��t/2��� / �t /2� and tr��A−a0���. For
all contributions, we have to consider the fact that a0 ap-
proximates �A� to within only �, which is why we need
constraint �D� of Eq. �8�. The first arises from eigenvalues of
�A−a0��t /2� in �−
max, +
max� due to �Im�ei
�−
� not being
zero and is bounded by 
max

3 / �6�t /2��= p /4 �constraint �A� of
Eq. �8��. The second and third come from eigenvalues of
�A−a0��t /2� outside �−
max, +
max�. Constraint �D� of Eq.
�8� implies that ��a0− �A���t /2���
max/2. Constraints �B�
and �C� of Eq. �8� imply that the contribution to �A� of
eigenvalues differing from the mean by more than

max/ �2�t /2�� is at most 
maxp /8� p /8. However, the
same eigenvalues still contribute to the measurement,
each contributing at most 1 to x. Constraint �B� of Eq. �8�
together with the inequality F����G��� /� imply that
F(
max/ �2�t /2��)� tp /8, so this contribution has probability
at most tp /8 and therefore adds at most another p /4 �after
dividing by t /2� to the approximation error. Thus, the com-
bination of the approximation and precision error is less than
p, as desired. Clearly these estimates are suboptimal; tighter
choices of 
max and t could be made. However, this does not
affect the asymptotics of the resource requirements.

To find good solutions 
max and t subject to the constraints
given in Eq. �8�, we can rewrite the constraints as follows:

�A�� G−1�
maxp/8� � 
max/t � �p/8�/�
max
2 /6� ,

�B�� 
max � 1, 
max/t � � . �9�

The first inequality of �A�� is implied by constraint �B� and
the second by constraint �A� of Eq. �8�. To satisfy these
constraints, we first find 
max�1 as large as possible so that

�A�� � � G−1�
maxp/8� � �p/8�/�
max
2 /6� , �10�

and then set t=
max/G−1�
maxp /8�. Consider the three ex-
amples of bounded, exponential, and polynomial tails. For
the case of bounded tails, constraint �A�� of Eq. �10� can be
solved by setting 
max according to �max= �p /8� / �
max

2 /6�, so
that 
max= �3p / �4�max��1/2. The parameter t is given by

max/�max= �3p /4�1/2 /�max

3/2 =��p1/2�. For the case of expo-
nential tails, we can use G−1�x�=O(�log�x��) to show that

max=�(�p / �log�p���1/2) and t=�(p1/2 / �log�p��3/2) �see End-
note �26��. For polynomial tails with G−1�x�=O�x−1/�1+���, we

get 
max=��p�2+��/�1+2��� and t=��p�5+6�+�2�/��1+���1+2����
�see Endnote �27��.

The resource requirements for stage II of the EEA can be
estimated as M =O(�log�1−c�� / tp) uses of an exponential of
the form e−iAs, N=O(�log�1−c�� / tp) state preparations, and a
total time of T=O(�log�1−c�� / p), in terms of the parameter t
computed in step �1� �of stage II�. The dependence on G
shows up in the value of t. With t as computed in the previ-
ous paragraph, for bounded A, M and N are O(�log�1
−c�� / p3/2). For exponential tails, M and N are O(�log�1
−c�� / �p / �log�p���3/2). For polynomial tails, they are
O(�log�1−c�� / p����), where ���� is a polynomial satisfying
����→1+1/2 for �→� and ����=1+5 for �=0.

To reduce the resource requirements of stage II of the
EEA, we use overlap estimation at multiple values of t and
Eq. �6�. Here is the modified stage. We assume that K�2.

Stage II�.
�1� Choose 
max and t so that they satisfy

�A� 
max
K+1/��K + 1��1 − 
max�K+1� � �t/2�p/4,

�B� G�
max/t� � 
maxp/�8K2K� ,

�C� 
max � 1,

�D� t� � 
max. �11�

The parameter t should be chosen as large as possible to
minimize resource requirements.

�2� For l=1, . . . ,K, obtain yl
=OE(e−i�A−a0��lt/2� , ��� , �t /2�p / �4K2K� ,1− �1−c� / �2K�). Let
y0=1.

�3� Return −Im�
l=0
K Clyl� / �t /2�+a0.

The precisions and the confidence levels in the calls to the
OEA have been adjusted so that the final answer has the
correct precision and confidence level. The explanation for
this is similar to that for the original stage II �see Endnote
�28��.

The earlier method for finding 
max and t is readily
adapted to the constraints in stage II�. Constraint �A�� of Eq.
�10� now reads as
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�A�� � � G−1
„
maxp/�8K2K�…

� �p/8��K + 1��1 − 
max�K+1/
max
K , �12�

and we can set t=
max/G−1(
maxp / �8K2K�). To simplify
the right-hand side of Eq. �12�, we add the inequality

max�1/ �K+1� and use the inequality 1 /4� �2/3�3

� �1−1/ �K+1��K+1 �for K�2� to replace the right-hand
side by �p /32��K+1� /
max

K . Thus for bounded tails,

max=��min(1/K , �Kp�1/K)� and t=��min(1/K , �Kp�1/K)�,
where we give the asymptotic dependence on K expli-
citly but suppress parameters not depending on K or p
�see Endnote �29��. For exponential tails, 
max
=��min(1/K , �p / �log�p���1/K)� and t=��min(1/ K��log�p��
+K�� , p1/K / �log�p��1/K��log�p��+K��)� �see Endnote �30��.
For polynomial tails with exponent �, 
max
=�(min�1/K , p�2+��/�K−1+K���) and t=��min(1/ K�2K/�1+��

��Kp−1�1/�1+���� ,2−K/�1+��p�2 + ��2/��1+���K−1+K���+1/�1+��)� �see
Endnote �31��.

With the expressions from the previous paragraph, we
can estimate the resources requirements of stage II�. In terms
of t, M and N are O(K22K�log�1−c�� / tp) and T
=O(K32K�log�1−c�� / p), where the powers of K account for
the K calls to the OEA, the coefficient in the denominator of
the precision, and in the case of T, the factor of l in the
evolution time. For bounded tails, we obtain M ,N
=O(�log(�1−c�)�K32K / p1+1/�K�), where we have loosely in-
creased the power of K by 1 to account for the upper bound
of O�1/K� on t. For exponential tails, M ,N=O(�log(�1
−c� /K)�K42K / �p / �log�p���1+1/�K+1�) �with appropriate in-
creases in the power of K�, and for polynomial tails, M ,N
=O(�log(�1−c� /K)�K423K / p���,K�) �with conservative in-
creases in the power of K and the exponent of 2�, where
��� ,K� approaches 1+1/ �1+�� for large K. Note that for
�=0, this approaches the “classical” resource bound as a
function of precision.

The final task of this section is to modify stage I so that
the dependence of the resource requirements on b is logarith-
mic rather than linear in b. The basic idea is to use logarith-
mic search to reduce the uncertainty in �A� to �. Define q by
b=q�.

Stage I�.
�1� Choose � minimal so that G����� /6 and F���

�1/18. Set the initial estimate of �A� to a=0 and the initial
precision to pa=b=q�.

�2� Repeat the following until pa��:
�2a� Set t=1/ �pa+�� and obtain x

=OE(e−i�A−a�t , ��� ,1 /18,1− �1−c� / �2�log2�q���).
�2b� Update a and pa according to the assignments

a←a−Im�x� / t and pa← �� /6+ �5/18��pa+���.
We claim that at the end of this stage, we have determined

�A� to within � with overall confidence level 1− �1−c� /2, so
that we can continue with the second stage, as before. To
verify the claim, it is necessary to confirm that at the end of
step �2b�, the updated estimate a of �A� has precision pa. The
error in a can be bounded as we have done for stage II. Let
a0 be the estimate of A used in the call to the OEA. There is
an error of less than 1/ �18t�= �pa0

+�� /18 due to the preci-

sion of x in the call to the OEA. The remaining error is due
to the approximation of tr��A−a0�t�� by −Im�tr�e−i�A−a�t���.
For eigenvalues � of A within 1/ t of a, this is bounded by
��t+Im�e−i�t���1/6, which translates into an approximation
error of at most 1 / �6t�= �pa0

+�� /6. Eigenvalues of A further
from a than 1/ t= pa0

+� are at least � from �A�. This re-
quires the inductive assumption that �a0− �A��� pa0

. The con-
tribution to the mean from such eigenvalues is bounded by
� /6, and the bias resulting from their contribution to x is at
most F��� / t= �pa0

+�� /18. Adding up the errors gives the pa

computed in step �2b�. The confidence levels in the calls
to the OEA are chosen so that the final confidence level is
1− �1−c� /2. To see this requires verifying that the number of
calls of the OEA is at most �log2�q��. It suffices to show that
if pa0

�2�, then � /6+ �5/18���+ pa0
�� pa0

/2. Rewrite the
left-hand side as �8/18��+ �5/18�pa0

, which for pa0
�2� is

less than �4/18�pa0
+ �5/18�pa0

= pa0
/2.

Each call to the OEA in stage II� has constant precision,
which implies that M and N are both O(log�q�)
=O(log�b /��) for large q. The total time T is O�1/��.

V. PARALLELIZABILITY

To what extent are the algorithms given in the previous
sections parallelizable? Consider the OEA. At its core is the
PEA with a unitary operator S that has two eigenvalues e±i�

on the relevant state space. In the sequential implementation,
one of the eigenvalues is eventually obtained with the de-
sired precision. Which eigenvalue is returned cannot be pre-
dicted beforehand. The initial state is such that each one has
equal probability. If it is possible to deterministically �or
near-deterministically� prepare an eigenstate ���� with �say�
eigenvalue ei� using sufficiently few resources, then we can
use the entanglement trick in �11� to parallelize the algorithm
�see Fig. 7�. Instead of applying S sequentially 2k−1 many
times to determine bit k of the phase, we prepare the en-

|0〉
⊗2

k
−1

a E E−1

|ψφ〉 S

|ψφ〉 S

|ψφ〉 S

|ψφ〉 S

FIG. 7. Parallelization of the PEA algorithm to estimate the
bit k=3 of the phase. This replaces the outlined parts of the network

in Fig. 6. E is an entangler such that E�0�a
�2k−1

= ��0. . .0�a
+ �1. . .1�a� /�2 and E�100. . .0�a= ��0. . .0�a− �1. . .1�a� /�2. E−1 is the
decoding operation that maps E−1�0. . .0�a= �+0. . .0�a, and
E−1�1. . .1�a= �−0. . .0�a, where �± �= ��0�± �1�� /�2. The kth bit is es-
timated from the measurement outcome of the first ancilla qubit in
the logical basis.
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tangled state ��0. . .0�a+ �1. . .1�a� /�2 on 2k−1 ancilla qubits
and 2k−1 copies of ����. We next apply cS between the jth
ancilla and the jth copy of ���� and then make a measure-
ment of ��0. . .0�a± �1. . .1�a� /�2. On a quantum computer,
the measurement requires decoding the superposition into a
qubit, which can be done with O�2k� gates. The decoding
procedure can be parallelized to reduce the time to O�k� �see
Endnote �32��. Using this trick reduces the time of the PEA
to O(log�1/ p�) �the number of bits to be determined�, count-
ing only the sequential uses of S and ignoring the complexity
of preparing the initial states ���� and the decoding overhead
in the measurement. The repetitions required for achieving
the desired confidence level are trivially parallelizable and
do not contribute to the time. It is possible to reduce the time
from O(log�1/ p�) to O�1� by avoiding the feed-forward
phase correction used in the algorithm and reverting to the
algorithm in �20� and mentioned in �2�.

Based on the discussion in the previous paragraph, the
main obstacle to parallelizing the OEA is the preparation of
����. If �=2 arccos��tr�S���� is not close to 0, ���� can be
prepared near deterministically with relatively few resources
as follows. Suppose we have a lower bound  on �. With the
original initial state, use sequential phase estimation with
precision  /2 and confidence level 1− �1−c�p /B to deter-
mine whether we have projected onto the eigenstate ����
with eigenvalue ei� or the one with e−i�. The occurrence of p
in the confidence level accounts for the total number of states
that need to be prepared. The parameter B is a constant that
provides an additional adjustment to the confidence level. It
must be chosen sufficiently large, and other confidence level
parameters must be adjusted accordingly, to achieve the de-
sired overall confidence level. If we have projected onto
����, return the state. If not, either try again or adapt the
parallel PEA to use the inverse operator S† instead of S for
this instance of the initial state. The �sequential� resources
required are of the order of �log(�1−c�p)� /, but all the
needed states can be prepared in parallel. For  constant, the
time required by the parallel PEA is increased by a factor of
O(�log(�1−c�p)�). The parallel overlap estimation for a uni-
tary operator U based on these variations of phase estimation
thus requires O(�log(�1−c�p)�) time, provided ����U���� is
not too close to 1.

For ����U���� close to 1, the OEA is intrinsically not par-
allelizable without increasing the total resource cost by a
factor of up to O��p�. This is due to the results in �33�, where
it is shown that Grover’s algorithm cannot be parallelized
without reducing the performance to that of classical search.

For example, consider the problem of determining which
unique state �k� of the states �0� , . . . , �2n� has its sign flipped
by a “blackbox” unitary operator U. This can be done with
n many uses of the OEA by preparing the states ��b� that
are uniform superpositions of the �i� for which the number i
has 1 as its bth bit. If ��b�U��b�=1−1/2n−2, then the bth
bit of k is 1. If ��b�U��b�=1, then it is 0. It suffices to use
an unparametrized �Fig. 4� precision of 1/2n−1 and confi-
dence level sufficiently much larger than 1−1/n. Because
�1−cos����=O��2�, the parametrized precision required is
��1/2n/2�. ���x� is a quantity that is both O�x� and ��x�.�
Thus O�n2n/2� sequential resources suffice, which is close to
the optimum attained by Grover’s algorithm. However, the
results of �33� imply that implementing a quantum search
with depth �sequential time� d requires ��2n /d� uses of U for
d�2n/2. This implies that to achieve a parametrized preci-
sion of ��1/2n/2� for 1− ����U����=O�1/2n� using time
O�2n/2 / P� requires ��2n/2P� resources �P represents the
amount of parallelism�.

The EEA was described so that overlap estimation is used
with small � and therefore cannot be immediately parallel-
ized without loss of precision or larger resource require-
ments. However, for the version of overlap estimation
needed for stages I� and II�, it is only the imaginary part of
the overlap that is needed, and the parameters are chosen so
that the overlap’s phase is expected to be within 1 of 0 �be-
cause 
max�1�. The actual precision required is absolute in
the overlap, not the parametrization of the overlap in terms
of the upper hemisphere in Fig. 4. This implies that we can
call the parallel overlap algorithm with an intentionally sup-
pressed overlap. If the desired overlap is ���U���, one way to
suppress it is to replace U�S� by cU�aS� and the initial state by
�I�a� /2����S

S���. The suppression ensures that the phases in
the calls to the PEA are sufficiently distinguishable to allow
the near-deterministic preparation of the appropriate eigen-
states discussed above. This adds at most a constant over-
head to the EEA due to the additional precision required to
account for the scaling associated with the overlap suppres-
sion.
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max
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max��+ �log�p /8���
max
2
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small p. To solve constraint �A��, maximize 
max

subject to C�
maxp /8�−1/�1+��� �p /8� / �
max
2 /6�. Equivalently


max
2−1/�1+��=
max

�1+2��/�1+��
�D�p1+1/�1+��=D�p�2+��/�1+�� for

some constant D�. Hence 
max=��p�2+��/�1+2��� works.
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max/G−1�
maxp /8�=�(p�2+��/�1+2��

��p�2+��/�1+2��+1�1/�1+��)=��p�5+6�+�2�/��1+2���1+����.
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OEA is at least 1−K�1−c� / �2K�=1− �1−c� /2. Thus
the confidence for stage II� matches that of stage II. Assum-
ing that all the yl have the stated precision, the differ-
ence �
l=0

K Clyl−
l=0
K Cltr�e−i�A−a0��lt/2���� is bounded by

B=
l=0
K Cl�t /2�p / �4K2K�. Since �Cl��2K, B� �t /2�p /4.

As before, the approximation error �−Im(
l=0
K Cl

�tr�e−i�A−a0��lt/2���) / �t /2�−tr��A−a0���� has three contribu-
tions. The first is due to the error term in Eq. �7� for eigenval-
ues of �A−a0��t /2� in �−
max, +
max�. This is bounded by

max

K+1 / ��K+1��1−
max�K+1�t /2��. Constraint �A� implies that it
is at most p /4. The second and third contributions are due to
other eigenvalues of �A−a0��t /2�. The contribution to the
mean of these eigenvalues can be bounded by using constraints
�B�, �C�, and �D�. These eigenvalues differ from a0 by at least
2
max/ t. According to constraint �D� and the correctness of
stage I, they therefore differ from the mean by at least 
max/ t.
By use of �B� and �C�, their contribution to the mean is
bounded by p / �8K2K�. Each such eigenvalue still contributes
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yl by at most F�
max/ t�� tp / �8K2K�, which changes the re-
turned value by at most p /4.
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+1� /�max and can set t=
max/�max. Asymptotically K+1 is
equivalent to K in the expressions obtained.
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max= Kp / ��log�p��
+3K��1/K=���p / �log�p���1/K�. Observe that �log�
max��
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independent of K. To obtain t, note that G−1(
maxp / �8K2K�)
=O(�log�p��+K) where we used the order notation to absorb
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K .
It is sufficient to solve 
max

K−1/�1+��
�D2−K/�1+��p1+1/�1+��
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for some sufficiently small constant D. Here we used
the fact that �K+1� /K1/�1+��=��1�. Thus we can set

max=��2−K/�K−1+K��p�2+��/�K−1+K���. The first factor
is ��1�. To bound t, G−1(
maxp / �8K2K�)=O�2K/�1+��

�p−�2+��/��1+���K−1+K���−1/�1+���. Thus t=��2−K/�1+��

�p�2 + ��2/��1+���K−1+K���+1/�1+���.
�32� It suffices to assign the qubits to the leaves of a binary tree.

The decoding proceeds recursively by applying controlled NOT

operations to pairs of leaves with a common parent, removing
the target qubit, assigning the control qubit to the parent, and
removing the leaves from the tree. The qubit that ends up at the
root of the tree is measured in the ���,��� basis.

�33� C. Zalka, Phys. Rev. A 60, 2746 �1999�.
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