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Abstract

For weighted means estimators of the common mean of several normal populations associated (conservative) confidence
intervals are constructed. These intervals are compared to several traditional confidence bounds. Monte Carlo simulation
results of these comparisons are reported.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The common mean estimation problem is one of the traditionally difficult and challenging problems of
mathematical statistics. It appears, for example, when examining data from interlaboratory studies or when
analyzing balanced incomplete block designs with uncorrelated random block effects and fixed treatment
effects.

Let there be p laboratories, each of them measuring the unknown underlying reference value y common to
all laboratories. In the simplest model the measurements Vi i=1,...,p;j=1,...,m, are of the form

Yij=Hu+ej (D

with independent e;~N(0, 7). All parameters u,x7,i = 1,...,p are unknown, and the goal is to estimate y or,
more importantly, to provide a confidence interval for u.

Put Y; = ijl-j/n,-, and denote by u? = Zj vy — Y,-)z/[(n,- — 1)n;], the best unbiased estimate of the
variance, o7 = k7/n;, of Y;. The vector (Y1,..., Y,,ui,...,u?) forms an (incomplete) sufficient statistic with a
well-known distribution.
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2. Weighted means statistics and confidence intervals

The goal here is to explore confidence intervals based on weighted means statistics useful for the common
mean estimation. When all variances 7 are known, the best unbiased estimator of y is a weighted means

statistic

p

Y = Z w;Y;, (2

1

where w; = o™ = 672 /(3" 67%) are normalized weights. In this situation it is also the maximum likelihood
estimator, and without normality assumption (but when all variances are known) this is the best linear (in Y;)
unbiased estimator of u. We investigate the possibility of using estimators (2) to obtain confidence intervals for
p. The suggestion is to employ a quadratic form Y 1 ¢,(Y — ¥)? with positive coefficients g; to estimate var( Y)
for fixed weights w;.

We need the following formula for the distribution function of the squared standard normal variable Z,

1 1 1 — —z/(2u)
P(22<Z):_/ M z>0
T Jo

Vul =u)

(see Abramovitz and Stegun, 1972, Chapters 7, 7.4.9) which implies that with independent standard normal
variables Zi,...,Z, and positive coefficients as, ..., a,,

1 Ee~QuaZD/ g,

)4
1
P ZZ>§ aZ: | = -
( : 3 k> T Jo Vu(l —u)

1 ! du
n/o Vul = w)[T, (T4 ax/u) v

In particular with 7),_; denoting a f-distributed random variable with p — 1 degrees of freedom

1 uP=2/2 dy
P(|Tp—l|>l\/p_ ) =-

1
2z VO — oy

so that as t — oo,

LD r(/2)
u u
P >t = .
(Tpl=0Vp = D™t " T = Jal (o + /)0
Let > 7 g(Y — ¥)? be a quadratic estimator of var(Y). Put Y ¢, = ¢,y = 3, 0?/q;>1/q.
Theorem 2.1. For t — o0,
7 _ 1/(p=1)
lim 7! sup P \/ s >t | =lim# P |T)—11>t5|(p— 1)<prqu-> ) )]
""" Zl % !

In other words, the smallest coverage probability of the confidence interval for u, ¥ + t\/ Mg (Y — Y)%,
when ¢ is large, is attained at the z-distribution with p — 1 degrees of freedom. We will show that this happens
when the variances ¢? are inversely proportional to the coefficients ¢;, o?~#*/q;. Clearly the coverage
probability above is invariant under simultancous scale transformations, so that its infimum is attained

asymptotically at any positive multiple of ¢;',...,q,".
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Proof. One has

p 2
Pl 1Y —u>t Zq,(Y Zq,(cl ; Za)kaka) —t2<Za)ia,Z,~> <0
1

= P(Z'DZ <0)

with the vector Z formed by independent standard normal Z,...,Z,, and the matrix D of the form
D=23"I+ad" —bb"12"? = 3 4+ 312ad "2V — 212ppT 212
Here 2'/2 is the diagonal matrix given by the elements 1; = o; Vi i=1,...,p;

T
_ 1 (L)] . ) _ & _72 _
a= q_t_2<ﬁ((1 ) \/q—l,...,\/%(q %) @) ,

b=

T
W(f\/@

Thus, D is congruent via the diagonal matrix X'/? to the matrix
F=1+ad" —bb",

which does not depend on o1,...,0,.

We look first at the case when a and b are linearly independent, i.e. w’s are not proportional to ¢’s, so that
7> 1/q. Clearly the linear operator corresponding to F leaves the subspace L, spanned by the vectors a and b,
and its orthogonal complement invariant. Its restriction to this complement is the identity transformation, and
the restriction on L has the determinant, d = —y />, and the trace, tr = (¢ — 1/#*)y. Thus, F has eigenvalues 1

with multiplicity p —2, p; =tr/2 —\/tr?/4 —d <0, u, = tr/2 + +\/tr’/4 —d>1, and D has exactly one
negative eigenvalue 4; and p — 1 positive eigenvalues Az, k = 2,...,p.
The characteristic polynomial of the matrix D has the form

14+4"02"' =Dl atOx ' =07
'Oz ' =n'a —14+b670Gz' =DM
= det = D)1+ 4" = D'y =622 = D)7 b)) + (T2 = D)7 1b)?

(see Harville, 1997, Theorem 18.1.1). By Sylvester’s law of inertia (Horn and Johnson, 1985, Theorem 4.5.8),
¢p(4) must have exactly one simple negative root, say, 4;. It is convenient to normalize matrix D so that
A1 = —1, which means that ty,...,1, are subject to the condition

al-z 1 b[2 1) = Cl,‘bi 2 5
<Zr;2+l+ )(Zr;“rl_ >_<Zr;2+1>' ©)

Then according to (3),

bp(A) = —det(A — X) det(

P(Z'DZ <0)
V4
= P(Z% >3 z,zi)
k=2
1 /! w21 dy 1/1 w21 dy
“ndo VI—wlBu+i Tl lgp(—u)l'?

. 1 /! w21 du
a n/o [T+ O (@} /(e + 1) + D (b7 /(i + 1) — 1) — (Cashi /(ury> + D)V
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When ¢t — 00,307 — 1, Y a;b; =S b7 — 1 — 0, but 3. a? — ¢y — 1>0. One gets from (5), 17 — o0, so that
S b7t72 /(3 b7 — 1) — 1. It follows that for 0<u<1,

Cl% 1 b,2 1 d,‘bl‘ 2
<Zuri_2+l+ ><Zuri‘2+l_ >_<Zuri_2+l>
= (1 —wqy (Y87 = 1)1 +o()]

with the o(1) term which is uniform in u. As before,

1 b 2=V dy
lim 7! sup P(Z'DZ<0) =
- 2 1/2 R
”1 """ p ”«/ani(zbi—l)/ 0 1 —u
and the values 7; minimizing [ ] t; under condition (5) are %f ~ pbf /00 b? — 1). We conclude that
b — 1)(17—1)/2 Up/2=1 4y
lim 7! sup Pl|Y —u>t g (Y, — ¥)? :(Z i
202 Z n[1biy/qy o 1—u
I'(p/2)

T JAl(p + Dj2wtgpry 2] N

If vectors a and b are linearly dependent, i.e. w; = ¢;/¢, the matrix
1
F=1—(1+1/(qt*)bb" /(b"h) =1 — (1 — W) bbt

has eigenvalues: 1 with multiplicity p — 1, and 1 — (1 + 1/(g#*)) = —1/(q#*)<0. A similar argument shows that
(4) holds. O

Theorem 2.1 shows that the smallest coverage probability of the approximate (1 — a)-confidence interval

| fntp = DY g(Yi - V7
\/(p — DopIT 4"

is attained at the 7-distribution with p — 1 degrees of freedom. Notice that the width of this interval is invariant
under multiplication of the ¢’s by a common positive factor.

Theorem 2.1 holds for a more general quadratic form »_,; g;(Y; — Y)(Y; — Y), with a symmetric matrix
O = {q;}- Indeed with d denoting the vector of ones, and w the vector of we1ghts put in the proof ¢ = dTOd
and b= (¢ —1/12)"120"%d, so that a = \/q — 1/207"?w — b, and y = 0T Q"' w.

When p = 2, (4) is an equality which holds for all ¢ such that

(6)

1

2<q— max ¢;(2w; — Dw; 2.
1

This condition means positivity of the diagonal elements of F; without it the supremum in (4) is 1 for any p.
Bakirov (1987) has shown that (4) is an equality for all p when 2>p — 1,w; = p~! (i.e. Y is the sample mean
Y)and ¢, = 1/[p(p — 1)] (i.e. an unbiased multiple of the sample variance estimates the variance of Y). In fact,
in this situation the minimal value of (4) under condition (5) occurs when for some m =0,1,...,p— 1,
©7 =--- =1} =0and all remaining 7} = ps*/((p — 1)(p — m) — ms*). It follows that

I

pip—1)

Pl Ty > ——vPEZD
k-1 —2(p—k)

f(=71,0= sup, PlIY —pul>t

= max
T kk(—1)> 2(p—k)
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Fig. 1. Plot of f(¢) for p = 3.

is attained at the ¢-distribution with p — 1 degrees of freedom. In particular, f(t) = 1 for t<1, and f(¢) =

P(T|>\/p2/2(p — 1) — (p — 2)2)) = 1 — 2r~ ! arctan(y/p2/Qp — 1) = (p — 2)2), 1 <2 <2(p — 1) /(p— 2),
with f(1) = 0.5, and f(¢) = P(|T)—1|>1) for >>p — 1. Plot of this function when p = 3 is shown in Fig. 1.

3. Graybill-Deal estimator: unbiased estimation of the variance and of degree of equivalence

In practice the weights w; are estimated by the available u?, but the conservativeness of the interval (6) holds
in this case as well. One of the traditional (weighted means) estimators of u suggested by Graybill and Deal
(1959) has the form

- . Yﬂ/ug)
Y0:721( i EAE w?Yi Q)
OTIPS
with ? = u;2 /377 _, u;*. Although the variance of this statistic does not have a very simple form, an unbiased
estlmate of thls variance is known. See Sinha (1985) and Voinov and Nikulin (1993, pp. 194-196).

The latter authors express the unbiased estimate dai of the variance of Y in terms of the hypergeometric
function

. (n+ DI (c
F(1,2;¢,2) = ;7( Ij(_n —)i- c; )z”
More precisely,
S F(L2: (4 1)/2,1 = of)
i1/ .
Note that for n; = 3, F(1,2;2;1 —z) = 1/z. Then

var(Y%) =

dai(¥°) =

P
This formula should be compared Wlth the variance estimate [y, 1/u?]” ! which is often suggested but which
systematically underestimates var(Y ). Cochran (1954, p. 126) gives a table of multiples of [Y_, 1/u?] ! which
provide an estimate of var( Y°). Although the value 77 = 3 is not given in this table, this factor seems to be fairly
close to p.

In addition to the common mean estimator and its uncertainty in the international key comparisons studies
one has to give for each laboratory a characteristic of consistency with the common mean (the so-called degree
of equivalence). To estimate this characteristic we use the statistic ¥; — ¥ .
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Here we give the unbiased estimate of the variance of this statistic.

Proposition 3.1. The statistic

F(L1;(n+1)/2,1 — oY) N S OVF(1,2; (n +1)/2,1 — )
Zkl/ui Zkl/ulzc

. . . . >0
is an unbiased estimator of the variance of Y; — Y .

®)

(Y, — ¥y =12 =2

Proof. By independence of u,% and Yy,
var(Y; — ¥°) = 2E(1 — o?)* + > GE(@))’ = 0] — 20]Eof + Y i E(w))’.
k#i k

The unbiased estimate of the last term in the right-hand side is var(Y?), the first term is estimated unbiasedly
by u?. To estimate the second term, ¢? Ew;, one can use the same technique of integration by parts as given in
Theorem 1 in Sinha (1985) to obtain

2720 2 2
o; Ew; =E5,~(u1,...,up

with
n; — 1 * dv
PV R CE DN e

2 2
oiuy, ..., u,) =

The known facts about the hypergeometric function show that

F(L L (n 4 1)/2,1 = of)
5,~(u%,...,u]27 = 1/2
> l/ug

so that the unbiased estimate var(Y; — Y°) indeed has the form (8). O

4. Simulation results

When p = 2, there is a simple formula for the width

20— DS (Y- VY
V@ = DOPTT g e

of the confidence interval (6) which depends neither on the weights w; nor on coefficients g;. Indeed,
Y 1a(Yi— ¥) = (@3q, + 0lg:) (Y1 — Y2)> =[]} ¢(¥1 — Y2)*, so that 4 =1,,(1)|Y; — Y,| and Ed=

[1/2(1)\/2(6% + 03)/m.

Several confidence procedures for the common mean u, when p = 2, are reviewed by Yu et al. (1999). As
most of these procedures may not give an interval, we compared (6) only with the confidence interval based on
the Fairweather (1972) procedure. The estimator of u is based on the weights proportional to
(n; — 3)/[ui(n; — 1)], the width of the interval centered at this estimate is determined from a #-approximation
with estimated degrees of freedom. This approximation supposes the condition, min;n; =5 (which is
commonly violated in interlaboratory studies), and the estimated degrees of freedom is always larger than 4. It
turned out that in the model (1) the average width of the corresponding interval was always smaller than A4.
However, for substantially different o7 the coverage probability of the Fairweather interval falls below the
nominal value, and this fact also holds for larger p. Figs. 1 and 2 portray these characteristics for both
intervals as the function of 4 = 03 /07 when n; = ny = 5. Notice that (6) could be used for any 1,1, and in the
extreme case n; = ny = 1, (6) outperforms the analogue of the Fairweather procedure based on the Cauchy
distribution for the pivot > ¢ Y; — wu; '/ > ciu;'. The behavior of the Fairweather interval dramatically
deteriorates in a random effects model which is discussed later (Fig. 3).
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Fig. 2. Plot of widths of Fairweather confidence interval (line marked by +) and (6) (continuous line).
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Fig. 3. Plot of coverage probabilities of Fairweather confidence interval and (6) (designations of lines are the same as in Fig. 3).

To compare (6) with other procedures based on estimating the variance of a weighted means statistic ¥ by
Mg (Y — Y)?, we investigated an estimator of the variance of ¥ determined by coefficients

g = f L0 ©)

suggested by Rukhin (2003) or by qE.O“) = ? introduced in Rukhin and Vangel (1998).

Another procedure to estimate var(Y) applicable in a more general setting of linear models was put forward
by Horn et al. (1975). To estimate this variance, var(Y)= >} »?var(Y,), the statistic, var(¥)=
S, 02(Y; — Y)? /(1 — ), has been suggested. In other terms

o o

: 1
@ =T (10)

One may be also interested in an unbiased estimator of var( Y) for fixed w’s, i.e. in coefficients ¢’s such that
E> N g(Y — Y)Y = Y1 w?a?. The form of these coefficients follows from the formula (2.8) in Cressie (1982),

-1
1+Zl—2wk] ’

which gives a non-satisfactory answer when max; wy >

4= 1—2a),

1
5
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Table 1
The confidence coefficients (cc) of the confidence intervals and their average half-widths (hw)

¥ GD(11) GD(10) GD(9) DL(11) DL(10) DL(9) F
hw 2.37 242 3.19 2.96 2.32 2.68 2.59 1.20
cc 0.95 0.97 0.98 0.98 0.97 0.98 0.98 0.78

The proof of Theorem 2.1 suggests to look at the special case when w; = ¢;/q, with the interval,
o, b= Dy S - 77
V& = DT o]0

In meta-analysis applications the weights are commonly estimated via &; = (y + u;) > /> 0+ ue) "> with a
positive y determined by the method of moments in the random effects model

yi=u+ti+ey (12)

(1)

with independent ¢;~N(0,t%) and e;~N(0, ?). The most popular method is due to DerSimonian and Laird
(1986). It uses a non-negative y = yp; from the formula

~0
S (Y= V) —p+1

) P 4N 211
it U Qi Uy iy 4]

Here 7' is the Graybill-Deal estimator.

In Table 1 we report the results of a Monte Carlo simulation study when the sample sizes of p = 10
laboratories are chosen to be 5 to 14. The distribution of the variances, a%, is taken to be the inverted gamma-
distribution with parameters o = 2, f = 1/p, so that Eo? = p. The sample means Y; were simulated as Y, =
0;Z; from a standard normal sample Zi,...,Z,; the sample variances ulz were taken to be realizations of
multiples of y?-random variables, u?~a?y2(n; — 1)/(n; — 1). We studied the confidence intervals based on the
following estimators: the overall sample mean, Y the Graybill-Deal (GD) estimator (7) with three intervals
based on (9)—(11); the DerSimonian—Laird (DL) estimator with three similar intervals and the Fairweather
procedure (F) based on z-approximation with estimated degrees of freedom.

Table 1 gives the simulated values of the widths of the intervals based on these procedures and the
corresponding confidence coefficients. Clearly (11) gives a much shorter interval than (10) or (9) although in
terms of the width the Fairweather interval is the best overall. However, its confidence coefficient (0.78) is well
below the nominal 95% value, and this advantage disappears if the model (1) is replaced by (12). These
findings are confirmed by other simulations. Therefore the widely applicable interval (11) can be recommended
in situations where a high coverage probability is desired, when the sample variances u? underestimate the
variances of the sample means Y;, and/or when the sample sizes n; are small.
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