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Chapter 6

Recognition Problem of
Biometrics:
Nonparametric
Dependence Measures
and Aggregated
Algorithms

Andrew L. Rukhin

6.1 Introduction

This chapter explores the possibility of using nonparametric dependence character-
istics to evaluate biometric systems or algorithms that play an important role in
homeland security for the purpose of law enforcement, sensitive areas access, bor-
ders and airport control, etc. These systems, which are designed to either detect
or verify a person’s identity, are based on the fact that all members of the popula-
tion possess unique characteristics (biometric signatures) such as facial features, eye
irises, fingerprints, and gait, which cannot be easily stolen or forgotten. A variety
of commercially available biometric systems are now in existence; however, in many
instances there is no universally accepted optimal algorithm. For this reason it is of
interest to investigate possible aggregations of two or several different algorithms.
Kittler, Hatef, Duin, and Matas [220] and Jain, Duin, and Mao ([193], Sec. 6)
review different schemes for combining multiple matchers.

We discuss here the mathematical aspects of a fusion for algorithms in the
recognition or identification problem, where a biometric signature of an unknown
person, also known as probe, is presented to a system. This probe is compared with
a database of, say, N signatures of known individuals called the gallery. On the
basis of this comparison, an algorithm produces the similarity scores of the probe to
the signatures in the gallery, whose elements are then ranked accordingly. The top
matches with the highest similarity scores are expected to contain the true identity.

A common feature of many recognition algorithms is representation of a bio-
metric signature as a point in a multidimensional vector space. The similarity scores
are based on the distance between the gallery and the query (probe) signatures in
that space (or their projections onto a subspace of a smaller dimension). Because
of inherent commonality of the systems, the similarity scores and their resulting
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68 Chapter 6. Recognition Problem of Biometrics

orderings of the gallery can be dependent for two different algorithms. For this rea-
son, traditional methods of combining different procedures, like classifiers in pattern
recognition, are not appropriate. Another reason for failures of popular methods
like bagging and boosting [55] [358] is that the gallery size is much larger than
the number of algorithms involved. Indeed the majority voting methods used by
these techniques (as well as in analysis of multicandidate elections and social choice
theory [381] are based on aggregated combined ranking of a fairly small number of
candidates obtained from a large number of voters, judges, or classifiers. The ax-
iomatic approach [267] to this fusion leads to the combinations of classical weighted
means (or random dictatorship).

As the exact nature of the similarity scores derivation is typically unknown,
the use of nonparametric measures of association is appropriate. The utility of
rank correlation statistics, like Spearman’s rho or Kendall’s tau, for measuring
the relationship between different face recognition algorithms, was investigated by
Rukhin and Osmoukhina [342]. In Sec. 6.2 the natural extensions of two classical
rank correlation coefficients solely based on a given number of top matches are given.
We demonstrate difficulties with using these correlation coefficients for estimation of
the correlation over the whole gallery. A version of a scan statistic, which measures
co-occurrence of rankings for two arbitrary algorithms across the gallery, is employed
as an alternative characteristic. The exact covariance structure of this statistic is
found for a pair of independent algorithms; its asymptotic normality is derived in
the general case.

An important methodological tool in nonparametric dependence character-
istics studies is provided by the concept of copula [195]. Special tail-dependence
properties of copulas arising in the biometric algorithms analysis are established
in Sec. 6.3. For common image recognition algorithms, the strongest (positive)
correlation between algorithms similarity scores is shown to hold for both large and
small rankings. Thus, in all observed cases the algorithms behave somewhat sim-
ilarly, not only by assigning the closest images in the gallery but also by deciding
which gallery objects are most dissimilar to the given image. This finding is useful
for the construction of new procedures designed to combine several algorithms and
also underlines the difficulty with a direct application of boosting techniques.

As different recognition algorithms generally fail on different subjects, two or
more, methods could be fused to get improved performance. Several such methods
for aggregating algorithms are discussed in Sec. 6.4. These methods are based on
different metrics on the permutation group and include a simple version of linear
fusion suggested by Rukhin and Malioutov [341].

Notice that the methods of averaging or combining ranks can be applied to
several biometric algorithms, one of which, say, is a face recognition algorithm,
and another is a fingerprint (or gait, or ear) recognition device. Jain, Bolle and
Pankanti [192] discuss experimental studies of multimodal biometrics, in particular,
fusion techniques for face and fingerprint classifiers. Methods discussed in Sec. 6.4
can be useful in a verification problem when a person presents a set of biometric
signatures and claims that a particular identity belongs to the provided signatures.

The continued example considered in this chapter comes from the FERET
(face recognition technology) program [312]) in which four recognition algorithms
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each produced rankings from galleries in three FERET datasets of facial images. It
is discussed in detail in Sec. 6.5.

6.2 Correlation Coefficients, Partially Ranked Data,
and the Scan Statistic

One of the main performance characteristics of a biometric algorithm is the per-
centage of queries in which the correct answer can be found in the top few, say,
K, matches. To start quantifying dependence between two algorithms for a large
gallery size N , it seems sensible to focus only at the images in the gallery receiv-
ing the best K ranks. The corresponding metrics for the so-called partial rankings
were suggested by Diaconis [100] and studied by Critchlow [95]. A survey of these
methods is given in Chap. 11 of [266].

Let Xi and Yi, i = 1, · · · , N , be similarity scores given to the gallery elements
by two distinct algorithms on the basis of a given probe. We assume that the
similarity scores can be thought of as continuous random variables, so that the
probabilities of ties within the original scores are negligible.

In image analysis it is common to write similarity scores of each algorithm
in decreasing order, X(1) ≥ · · · ≥ X(N), Y(1) ≥ · · · ≥ Y(N), and rank them, so
that Xi = X(R(i)), and Yi = Y(S(i)). Thus, X(1) is the largest and X(N) is the
smallest similarity score while the rank of the largest similarity score is 1, and
that of the smallest score is N . We use the notation R and S for the vectors of
ranks R = (R(1), · · · , R(N)) and S = (S(1) · · ·S(N)), which can be interpreted
as elements of the permutation group SN . Given a ranking R, introduce the new
ranking R̃ by giving the rank (N + K + 1)/2 to all images not belonging to the
subset of the best K images (which maintain their ranks). More specifically, new
ranks R̃i are obtained from the formula

R̃(i) =
R(i) if R(i) ≤ K

N+K+1
2 otherwise.

This assignment preserves the average of the largestN−K ranks, so that
∑N

i=1 R̃(i) =∑N
i=1R(i) = N(N + 1)/2. Define the analogue of the Spearman rho coefficient for

partial rankings of two algorithms producing rankings R and S as the classical rho
coefficient for the rankings R̃(i) and S̃(i),

ρ̃S =

∑N
i=1

(
R̃(i)− N+1

2

) (
S̃(i)− N+1

2

)

√
∑N

i=1

(
R̃(i)− N+1

2

)2 ∑N
i=1

(
S̃(i)− N+1

2

)2
.

The advantage of this definition is that by using the central limit theorem for linear
rank statistics one can establish, for example, asymptotic normality of the Spearman
coefficient when N →∞. A general result (Theorem 3.2) is formulated later.

The analogue of the Kendall tau coefficient for partial rankings is similarly
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defined. Namely, for the rankings R̃(i) and S̃(i)

ρ̃K =

∑
i,j sign

(
(R̃(i)− R̃(j))(S̃(i)− S̃(j))

)

K(2N −K − 1)
.

The denominator, K(2N−K−1) = K(N−1)+(N−K)K, can be interpreted as the
total number of different pairs formed by the ranks R̃(i) and S̃(i). Unfortunately,
both of these partial correlation coefficients exhibit the same problem of drastically
underestimating the true correlation for small and moderate K.

In accordance with the FERET protocol, four algorithms (I:MIT, March 96;
II:USC, March 97; III:MIT, Sept 96; IV :UMD, March 97) have produced similarity
scores of items from a gallery consisting of N = 1196 images with 234 probe images.
The rank correlation matrix based on Spearman rho coefficients is

S =




1 0.189 0.592 0.340
1 0.205 0.324

1 0.314
1




Disappointingly, both coefficients ρ̃S and ρ̃K have very small values for small and
moderate K (see Fig. 6.1). Although they have the tendency to increase as K
increases, the largest value of ρ̃S (for two most correlated MIT methods I and III)
was only 0.29 for K = 50.
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Figure 6.1. The plot of the partial Spearman rho coefficient for algorithms
I and III as a function of K. The solid line represents the limiting value 0.592.

Another definition of the correlation coefficient for partially ranked data can
be obtained from a distance d(R,S) on the coset space SN/SN−K of partial rank-
ings. The list of the most popular metrics [100] includes Hamming’s metric dH ,
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Spearman’s L2, Footrule L1, Kendall’s distance, Ulam’s distance, and Cayley’s dis-
tance. With d̄ = maxR,S d(R,S), let

ρd = 1− 2
d(R,S)

d̄

be such a correlation coefficient. One can show that, as N →∞, ρd → −1 even for
independent R, S, when d is the Kendall metric or the Spearman metric (including
L1 Footrule). For moderate N , d(R,S) has the expected value too close to d̄ for ρd

to be of practical use. Indeed small variability of ρd makes it similar in this regard
to the coefficient based on Cayley’s distance [101].

To understand the reasons for failure of partial rank correlation characteristics
the following scan (or co-occurrence) statistic was employed. For two algorithms
producing similarity scores Xi and Yi with rankings R and S, put for a fixed M
and u = 1, . . . , N −M + 1,

T (u) = card {i : u ≤ R(i) S(i) ≤ u+M − 1}. (6.1)

For independent Xi and Yi both R and S are uniformly distributed over the per-
mutation group SN . In this case one only needs to consider Wr = S

(
R−1(r)

)
. Let

Y[i] be the similarity score of the second algorithm corresponding to X(i). These
statistics are called concomitants of order statistics X(1), . . . , X(n). Thus, Wr is the
rank of X(i), whose concomitant Y[i] has the rank r, and

T (u) =
∑

u≤r,s≤u+M−1

I(Wr = s),

where I(·) is the indicator function. The random variable T (u) counts the com-
mon ranks between u and u +M − 1. Therefore, in the uniform case it follows a
hypergeometric distribution with parameters (N,M,M),

P (T = t) =

(
M
t

) (
N −M
M − t

)

(
N
M

) , t = 0, 1, · · · ,M.

The behavior of the scan statistic for biometric data is very different from that
for independent R and S. Indeed, for all datasets in FERET, the scan statistic
exhibits a “bathtub” effect, i.e. its typical plot looks bowl-shaped (see Fig. 6.2).
The readings of the scan statistic T (u) for the correlated scores are much larger than
the corresponding values based on independent scores for both small and large u.
These values for independent scores would oscillate around the mean ET = M2/N .
As the variables T (u) must be positively correlated, the covariance function is of
interest.

Theorem 6.1. If the random scores Xi and Yi, i = 1, . . . , N, are independent, then
the covariance function of T (u), for 0 ≤ h ≤ N − 1, 1 ≤ u ≤ N −M − h + 1, has
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Figure 6.2. The plots of the scan statistic for algorithms in the FERET study.

the form

Cov(T (u), T (u+ h)) =





[(M − h)N −M2]2

N2(N − 1)
, h < M,

M4

N2(N − 1)
, h ≥M.

For independent scores neither the covariance between T (u) and T (u+h), nor
the mean of T (u) depend on u; T (u) is then a stationary process, and the bathtub
effect cannot take place.

6.3 Copulas and Asymptotic Normality

To study the structure of dependence of a pair of algorithms, one can employ the
concept of copula defined for two random variables X and Y with cumulative distri-
butions functions FX and FY , respectively. In our context X and Y represent ran-
dom similarity scores of the algorithms. Copula is a function C(u, v), 0 < u, v < 1,
such that

P (FX(X) ≤ u, FY (Y ) ≤ v) = CX,Y (u, v) = C(u, v).

Copulas are invariant under monotone transformations, i.e. if α and β are strictly
increasing, then Cα(X),β(Y )(u, v) = CX,Y (u, v). In this sense, copulas describe the
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structure of dependence. Each copula induces a probability distribution with uni-
form marginals on the unit square. Nelsen [290] discusses further properties of
copulas and methods for their construction.

We assume that the joint distribution of FX(X) and FY (Y ) is absolutely
continuous, and refer to its density, c(u, v), as copula density. On the basis of a
sample, (X1, Y1), . . . , (XN , YN ), this function can be estimated by the empirical
copula density,

cN

(
i

N
,
j

N

)
=

{
1/N, if

(
X(i), Y(j)

)
is in the sample,

0, otherwise.

Note that cN is a probability mass function assigning the weight 1/N to the point
(R(i)/N, S(i)/N), where both R(i) and S(i) are the ranks ofXi and Yi, respectively.
The empirical copula is defined as

CN

(
i

N
,
j

N

)
=

i∑

p=1

j∑

q=1

cN

( p

N
,
q

N

)
.

As the exact distribution of the scan statistic (6.1) for general (dependent)
scores appears to be intractable, we give the limiting distribution of T (u) when
N →∞,

u

N
→ λ,

M

N
→ a, with 0 < λ < 1− a, 0 < a < 1. (6.2)

With C(u, v) denoting the copula for (X,Y ),

N−1
u+M−1∑

r=u

P (Wi = r)→ P (λ ≤ FX(X) ≤ λ+ a, λ ≤ FY (Y ) ≤ λ+ a)

= C(λ + a, λ+ a) + C(λ, λ) − C(λ+ a, λ)− C(λ, λ + a),

which gives the asymptotic behavior of the mean of the scan statistic.

Theorem 6.2. Under regularity conditions R1-R5 in [342] when N → ∞, the

distribution of
√
N

(
T (u)

N −
∫ λ+a

λ

∫ λ+a

λ
c(s, t) ds dt

)
converges to the normal distri-

bution with zero mean and with variance

σ2 = V ar
(
I(λ ≤ U ≤ λ+ a)I(λ ≤ V ≤ λ+ a) + I(U ≤ λ)

∫ λ+a

λ

c(λ, v)dv

−I(U ≤ λ+ a)

∫ λ+a

λ

c(λ+ a, v)dv + I(V ≤ λ)
∫ λ+a

λ

c(u, λ)du

−I(V ≤ λ+ a)

∫ λ+a

λ

c(u, λ+ a)du
)
.

Here λ and a are defined in (6.2), and U and V are random variables with the joint
distribution function C(u, v) and the joint density c(u, v).
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Theorem 6.2 suggests that the observed bathtub behavior of the scan statis-
tics reflects the form of the underlying copula for the scores. The copulas with a

bowl-shaped function of u,
∫ (u+M)/N

u/N

∫ (u+M)/N

u/N
c(s, t) ds dt, appear in all FERET

algorithms pairs. These copulas correspond to mixtures of two unimodal copu-
las: one with the bulk of the mass concentrated at the origin (0, 0) (small ranks),
and the second one concentrated around (1, 1) (large ranks). In other terms, the
density c(u, v) is bimodal: one peak is at (0, 0), and another at (1, 1). The set
{(u, v) : c(u, v) ≥ c} is a union of two sets: C0, which is star-shape about (0, 0),
and C1, which is star-shape about (1, 1).

In particular, the distribution having such a copula satisfies the definition of
left (right) tail monotonicity of one random variable U in another random variable
V [290]. Namely, P (U ≤ u|V ≤ v) is a nondecreasing function of v for any fixed
u. Also P (U > u|V > v) is a nondecreasing function of v for any fixed u. Each
of these conditions implies positive quadrant dependence: P (U ≤ u, V ≤ v) ≥
P (U ≤ u)P (V ≤ v), (i.e. C(u, v) ≥ uv), and, under these monotonicity conditions,
Spearman’s rho is larger than Kendall’s tau, which must be positive. All these
properties have been observed in all FERET datasets.

In practical terms, tail monotonicity properties mean that the strongest cor-
relations between algorithms similarity scores happen for both large and small rank-
ings. Thus, in all observed cases the algorithms behave somewhat similarly not only
by assigning the closest images in the gallery, but also by deciding which gallery
object is most dissimilar to the given image. The explored algorithms pairs be-
have more or less independently one from another only in the middle range of the
rankings. In the FERET experiment only algorithms I and III (both MIT algo-
rithms, MIT, March 96, and MIT, Sept 96) showed fairly high correlation even for
the medium ranks. This finding leads to the conclusion that the partial correlation
coefficients, which are based only on small ranks, in principle, cannot capture the
full dependence between algorithms.

Verification of the suppressed regularity conditions in Theorem 6.2 for specific
families of copulas is usually straightforward. For example, for α > 0, β ≥ 1,

C(u, v) = Cα,β(u, v) =

{[(
u−α − 1

)β
+

(
v−α − 1

)β
]1/β

+ 1

}−1/α

, (6.3)

satisfies these regularity conditions ensuring the asymptotic normality of the statis-
tic T (u). This family, for an appropriate choice of α and β, fits the observed
similarity scores fairly well.

The next result concerns the asymptotic behavior of the partial correlation
coefficient.

Theorem 6.3. The asymptotic distribution of
√
N(ρ̃S − µρ) is normal with zero

mean and variance σ2
ρ. Here a = limN→∞K/N ,

µρ =

(
a3

12
− a2

4
+
a

4

)−1



i i

i

i

i

i

6.3. Copulas and Asymptotic Normality 75

×
[ a∫

0

a∫

0

uv c(u, v) du dv − 1

2

a∫

0

a∫

0

(u + v) c(u, v) du dv +
a

2

a∫

0

1∫

a

u c(u, v) du dv

+
a

2

1∫

a

a∫

0

v c(u, v) dv du +
1

4
C(a, a)(a+ 1)2 − a2

4
(2a+ 1)

]
,

σ2
ρ =

(
a3

12
− a2

4
+
a

4

)−2

×V ar
( [(

U − 1

2

)
I(U ≤ a) +

a

2
I(U > a)

] [(
V − 1

2

)
I(V ≤ a) +

a

2
I(V > a)

]

+

a∫

U

a∫

0

v c(u, v) dv du+
1

2
(a+ 1)(C(U, a) + C(a, V )) +

a∫

V

a∫

0

u c(u, v) du dv
)
,

U and V are random variables with joint distribution function C(u, v), and the joint
density c(u, v).

Figure 6.3. The plot of the estimated theoretical copula for algorithms II
and IV with α = 0.084, β = 1.227.

Genest, Ghoudi, and Rivest [145] discuss pseudo-likelihood estimation of cop-
ula parameters. The pseudo-loglikelihood is l(α, β, u, v) = log cα,β(u, v). To esti-
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mate the parameters α and β, one has to maximize

N∑

i=1

l

(
α, β,

Si

N + 1
,

Ri

N + 1

)
,

which leads to the likelihood-type equations for α̂ and β̂. The complicated form of
these equations prevents an explicit form of the estimator. However, the numerical
computation is quite feasible. The resulting estimators are asymptotically normal,
if in ([95]) α < 1

2 , αβ < 1
2 , and β < 2.

Figures 6.3 and 6.4 portray the empirical and theoretical copulas for [95] to
pseudo-likelihood estimated α and β.

6.4 Averaging of Ranks via Minimum Distance and
Linear Aggregation

A possible model for the combination of, say J , dependent algorithms representable
by their random similarity scores X1, . . . , XJ , involves their joint copula CX1,··· ,XJ

(u1, · · · , uJ), such that

CX1,··· ,XJ
(u1, · · · , uJ) = H(F−1

1 (u1), . . . F
−1
J (uJ)),

where F1, . . . FJ are marginal distribution functions, and H is the joint distribution
function of X1, . . . , XJ .

Figure 6.4. The plot of the empirical copulas for algorithms II and IV.
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If (Xj
1 , . . . , X

j
N ) are similarity scores produced by j-th algorithm, the simi-

larity scores of the aggregated algorithm are defined by a convex combination of
N -dimensional random vectors Fj = (F−1

j (Xj
1), . . . , F−1

j (Xj
N )), i.e., the score given

to the k-th element of the gallery is
∑J

j=1 wjF
−1
j (Xj

k), k = 1, 2, . . . , N . To find
nonnegative weights (probabilities) w1, . . . , wJ , such that w1 + · · · + wJ = 1, we
take

tr


V ar(

J∑

j=1

wjFj)


 =

∑

j,ℓ

wjwℓtr (Cov(Fj , Fℓ)) ,

as the objective function to be minimized. With the vectors w = (w1, . . . , wJ)T , e =
(1, . . . , 1)T , and the matrix S formed by elements tr (Cov(Fj , Fℓ)), the optimization
problem reduces to the minimization of wTSw under condition wT e = 1 with the
solution,

w0 =
S−1e

eTS−1e
, (6.4)

(assuming that S is nonsingular.)
The matrix S can be estimated from archive data, for example, as the rank

correlation matrix based on Spearman rho coefficients in Sec. 6.2. Another possi-
bility is to use the pseudo likelihood estimators of copula parameters (say, α and β
in [95]) as discussed in the previous section by plugging them into the formula for
Cov(Fj , Fℓ). This typically involves additional numerical integration.

A different (but related) approach is to think of the action of an algorithm (its
ranking) as an element of the permutation group SN . Since the goal is to combine
J algorithms whose actions πj can be considered as permutations of a gallery of size
N , the “average permutation,” π̂, of π1, . . . , πJ can be defined by the analogy with
classical means. Namely, if d(π, σ) is a distance between two permutations π and

σ, then π̂ is the minimizer (in π) of
∑J

j=1 d(πj , π). However, this approach does not
take into account different precisions of different algorithms. Indeed, equal weights
are implicitly given to all πi, and the dependence structure of algorithms, which are
to be combined, is neglected.

To form a fusion of dependent algorithms, a distance d((π1, . . . , πJ), (σ1, . . . , σJ)),
on the direct product SN

⊗
· · ·

⊗
SN of J copies of the permutation group can

be used. Then the combined (average) ranking π̂ of observed rankings π1, . . . , πJ

is the minimizer of d((π1, . . . , πJ ), (π, . . . , π)). The simplest metric is the sum∑J
j=1 d(πj , π), as above.

To define a more appropriate distance, we associate with a permutation π the
N ×N permutation matrix P with elements piℓ = 1, if ℓ = π(i); = 0, otherwise. A
distance between two permutations π and σ can be defined as the matrix norm of the
difference between the corresponding permutation matrices. For a matrix P, one of
the most useful matrix norms is ||P ||2 = tr(PPT ) =

∑
i,ℓ p

2
iℓ. For two permutation

matrices P and S corresponding to permutations π and σ, the resulting distance
d(π, σ) = ||P − S|| essentially coincides with Hamming’s metric,

dH(π, σ) = N − card {i : π(i) = σ(i)}.
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For a positive definite symmetric matrix C, a convenient distance d((π1, . . . , πJ),
(σ1, . . . , σJ )) is defined as

dC((π1, . . . , πJ ), (σ1, . . . , σJ)) = tr((Ψ − Σ)C(Ψ − Σ)T ),

with Ψ = P1 ⊕ · · · ⊕ PJ denoting the direct sum of permutation matrices corre-
sponding to π1, . . . , πJ , and Σ having a similar meaning for σ1, . . . , σJ .

The optimization problem, which one has to solve for this metric, consists of
finding the permutation matrix Π minimizing the trace of the block matrix formed
by submatrices (Pj − Π)Cjk(Pk − Π)T , with Cjk, j, k = 1, . . . , J denoting N × N
submatrices of the partitioned matrix C. In other terms, one has to minimize

J∑

j=1

tr((Pj −Π)Cjj(Pj −Π)T )

= tr


Π

∑

j

CjjΠ)T


− 2tr


Π

∑

j

CjjP
T
j


 + tr


∑

j

PjCjjP
T
j


 .

Matrix differentiation shows that the minimum is attained at the matrix

Π0 =


∑

j

PjCjj





∑

j

Cjj



−1

.

The matrix ΠT
0 is stochastic, i.e., eT Π0 = eT , but typically it is not a permutation

matrix, and the problem of finding the closest permutation matrix, determined by a
permutation π, remains. In this problem with Π0 = {p̂iℓ} we seek the permutation
π̂, which maximizes

∑
i p̂iπ(i),

π̂ = arg max
π

∑

i

p̂iπ(i).

An efficient solution to this problem can be obtained from the Hungarian method
for the assignment problem of linear programming (see [21], Sec. 10.7 for details).

In this setting one has to use an appropriate matrix C, which must estimate
on the basis of the training data; C−1 is the covariance matrix of all permutations
π1, . . . , πJ in the training sample.

A simpler aggregated algorithm suggested by Rukhin and Malioutov [341] can
be defined by the matrix P , which is a convex combination of the permutation
matrices P1, . . . , PJ , P =

∑J
j=1 wjPj . Again the problem is that of assigning non-

negative weights w1, . . . , wJ , such that w1 + · · ·+ wJ = 1, to matrices P1, . . . , PJ .
The fairness of all (dependent) algorithms can be interpreted as EPi = µ with
the same “central” matrix µ (in average, for a given probe, all algorithms measure
the same quantity), the main difference between them is the accuracy. The opti-
mal weights w0

1 , . . . , w
0
J , minimize E||∑j wj(Pj − µ)||2. Let Σ denote the positive

definite matrix formed by the elements Etr((Pk − µ)(Pj − µ)T ), k, j = 1, . . . , J.
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The optimization problem still consists in minimization of wT Σw under condition,
wT e = 1. The solution has the form

w0 =
Σ−1e

eT Σ−1e
,

provided that Σ is nonsingular.
The “covariance matrix” Σ can be estimated by, say, Σ̂, from the available

training data. Note that for all k,

Etr(PkP
T
k ) = E

∑

r,q

δrπ(q) = N,

and for k 6= j,
Etr(PjP

T
k ) = Ecard {ℓ : πk(ℓ) = πj(ℓ)}.

Also the training data can be used to estimate µ by the sample mean µ̂ of all
matrices in the training set.

Thus, to implement this linear fusion, these estimates are employed to get the
estimated optimal weights,

ŵ =
Σ̂−1e

eT Σ̂−1e
. (6.5)

After these weights have been determined from the available data and found
to be nonnegative, define a new combined ranking π̂0 on the basis of newly observed
rankings π1, . . . , πJ as follows. Let the N -dimensional vector Z = (Z1, . . . , ZN) be

formed by coordinates Zi =
∑J

j=1 ŵjπj(i), representing a combined score of element
i. Put π0(i) = ℓ if and only if Zi is the ℓ-th smallest of Z1, . . . , ZN . In other terms,
π0 is merely the rank corresponding to Z. In particular, according to π0, the closest
image in the gallery is k0 such that

J∑

j=1

ŵjπj(k0) = min
k

J∑

j=1

ŵjπj(k).

This ranking π0 is characterized by the property

N∑

i=1




J∑

j=1

ŵjπj(i)− π0(i)




2

= min
π

N∑

i=1




J∑

j=1

ŵjπj(i)− π(i)




2

,

i.e., π0 is the permutation that is the closest in the L2 norm to
∑J

j=1 ŵjπj (see
Theorem 2.2, p. 29 in [266]).

If some of the weights ŵ are negative, they must be replaced by 0, and the
remaining positive weights are to be renormalized by dividing by their sum. This
method can be easily extended to the situation discussed in Sec. 6.2 when only
partial rankings are available.

A more general approach is to look for matrix-valued weights Wi. These
matrices must be nonnegative definite and sum up to identity matrix, W1 + · · · +
Wk = I. The optimization problem remains as above.
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Table 6.1. Size of FERET datasets.

D1 D2 D3
Gallery size 1196 552 644
Probe size 234 323 399

The solution has the following, a bit more complicated, form. Let R be the
kN × kN matrix formed by N × N blocks of the form E(PiP

T
j ), i, j = 1, . . . , k.

Partition the inverse matrix Q = R−1 in a similar way into submatrices Qij , i, j =
1, . . . , k. Then the optimal solution is

W 0
i =

∑

j

Qij


∑

ℓ,j

Qij



−1

.

After the matrix P̂ =
∑

iW
0
i Pi has been found, the combined algorithm ranks the

gallery elements as follows:
p̂(i) = arg max

j
pij .

This solution is more computationally intensive as the dimension kN is large, and
the matrix R can be ill-conditioned.

6.5 Example: FERET Data

To evaluate the proposed fusion methods, four face-recognition algorithms (I-IV),
introduced earlier, were run on three 1996 FERET datasets of facial images, dupI
(D1), dupII training (D2), and dupII testing (D3) (see Table 6.1) yielding similarity
scores between gallery and probe images. The set D1 was discussed already in
Sec. 6.2; the gallery consists of N = 1196 images, and 234 probe images were
taken between 540 and 1031 days after its gallery match. For the sets D2 and D3
the probe image was taken before 1031 days. The similarity scores were used for
training and evaluating the new classifiers; all methods were trained and tested on
different datasets.

The primary measures of performance used for evaluation were the recognition
rate, or the percent of probe images classified at rank 1 by a method, and the
mean rank assigned to the true images. Moreover, the relative recognition abilities
were differentiated by the cumulative match characteristic (CMC) curve, which
is a plot of the rank against the cumulative match score (the percent of images
identified below the rank). Finally, the receiver operating characteristic (ROC)
curves were used for measuring the discriminating power of classifiers by plotting
the true positive rate against the false positive rate for varying thresholds. The area
under ROC curve can be used as another quantitative measure of performance.

Both methods of weighted averaging [100] [101] produced similar weights. For
example, the weights obtained from the correlation matrix S based on Spearman
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Table 6.2. Percent of images at rank 1.

Dataset Weights (6.5) I II III IV
D2 D3 48.6 26.0 59.8 47.1 37.1
D3 D2 67.2 48.4 65.7 72.4 61.4
D1 D3 36.3 17.1 52.1 26.1 20.9

rho coefficients for the training set D1 are w = (0.22, 0.32, 0.22, 0.24), while the
weights via [100] are w = (0.24, 0.27, 0.24, 0.25).

These two methods outperformed all but the best of constituent algorithms
II. On different pairs of training and testing datasets, the overall recognition rate of
these methods fell short of this algorithm by 15% in the worst case and surpassed
it by 2% in the best case (Table 6.2). The mean ranks of the two algorithms were
generally within 5 ranks of each other.

In terms of CMC curves, the methods of weighted averaging of ranks [100]
or [101] improved on all but the best of constituent algorithms, the algorithm II,
which was better in the range of ranks from 1 to 30. It looks like this phenomenon is
general for linear weighting, namely for small ranks the best algorithm outperforms
[100] and [101] for all weights giving this particular algorithm a weight smaller than
1. However, the weighted averaging method [100] was better than all of the four
algorithms in the interval of ranks larger than 30 in the D2 dataset (Fig. 6.4). For
each of these methods there was about an 85% chance of the true image being ranked
50 or below, which significantly narrowed down the number of possible candidates
from more than a 1000 images to only 50.

The experiment showed that the weights derived from training for the different
algorithms were all very close, which suggested that equal weights might be given to
the different rankings. Although a simple averaging of ranks is a viable alternative
to weighted averaging in terms of its computational efficiency, in our examples it
was consistently inferior to the methods [100] or [101], and the benefit of training
seems apparent.
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Figure 6.5. Graphs of the cumulative match curves for algorithms I − IV
(marked by *,+, o, x) and the linear aggregation (6.5) (marked by −).


