
Book Title
Book Editors
IOS Press, 2003

1

Cryptographic Primitives Can Be Fragile

René Peralta1

Information Technology Laboratory
National Institute of Standards and Technology

Abstract. We show that a well-known coin-flipping protocol is breakable in the
sense that one of the parties can pre-determine the result of the coin-flip. The way
in which the protocol fails is illustrative of subtle ways in which a protocol de-
signer may combine secure cryptographic primitives - such as one-way functions
and encryption - in a way that produces aninsecurecryptographic protocol.

Keywords. Cryptographic protocols, coin-flipping, formal verification

1. Introduction

Protocol designers, even experienced ones, sometimes make unwarranted assumptions
about cryptographic primitives. Often the same assumptions are made when designing
formal verification tools for cryptographic protocols. Whereas the former is an error, the
latter is a powerful abstraction tool which can result in the discovery of a protocol flaw.
Using abstractions such as nonces, cryptographic signatures, and black-box encryption
and decryption, formal methods have been successfully used for finding flaws in some
cryptographic protocols. In particular, key-exchange protocols in asynchronous, multi-
user environments have been successfully analyzed and debugged using formal methods.

Concrete implementations of cryptographic primitives always have ancillary prop-
erties that constrain their use. We illustrate with an example: It is not known whether
breaking the RSA cryptosystem is as hard as factoring the modulusN . In fact, there is
some evidence that the two problems may not be equivalent [BV98]. A cryptosystem that
is provably secure, under the assumption that factoring is hard, is due to Rabin [Rab79].
Rabin’s encryption function is simplyF (X) = X2 mod NA, whereNA (a product of
two large primes) is the public key ofA.2 It is often the case that a sender may wish to
send the same message to two recipientsA andB. Using Rabin’s encryption function,
the sender would sendYA = M2 mod NA andYB = M2 mod NB over a public chan-
nel. It turns out it is easy to recoverM from (YA, NA, YB , NB) without having to factor
either of the moduli [BW83].

The above problem, caused by an ancillary property of a secure cryptographic prim-
itive, is well known. This note provides examples of protocol failures that are not well

1Correspondence to: René Peralta, Information Technology Laboratory, National Institute of Standards and
Technology, Gaithersburg, MD 20899-8900, U.S.A. Tel.: +1 301 975 2900; Fax: +1 301 840 1357; E-mail:
rene.peralta@nist.gov.

2Squaring modulo a product of two primes is a four-to-one function. An additional two bits of cyphertext
are necessary to fully specify the message being sent. We omit details.



2 René Peralta / Cryptographic Primitives Can Be Fragile

known. In particular, we show that two coin-flipping3 implementations are breakable in
the sense that one of the parties can pre-determine the result of the coin-flip. The way in
which the protocols fail is illustrative of the problem being discussed. Namely, there are
insecure ways of using secure cryptographic primitives.

Finding the kinds of errors illustrated in this note is currently beyond the capability
of formal verification tools. This happens because the problems occur below the level of
abstraction of the tools. As formal verification methods become more powerful, they may
be able to incorporate “knowledge” about cryptographic primitives into their analyses.
We would need to identify and formalize properties that are relevant to security as well
as amenable to being incorporated into formal tools. We believe extending the range
of applicability of formal methods to the kinds of issues described in this note is an
important research problem.

2. One-way functions may not fully hide their argument

A function f : N −→ N is one-way if it is asymptotically hard to invert. Informally,
this means the computational complexity of finding anx such thatf(x) = y for a given
y is super-polynomial in the number of bits ofx. Cryptographic protocols typically use
uniformly hard to invert functions. Informally, this means that ifA is a probabilistic-
polynomial-time (PPT) algorithm andx is picked uniformly at random among alln-bit
numbers, the probability thatA, on inputf(x), outputsx′ such thatf(x) = f(x′) is
super-polynomially small inn. This notion of hardness is quite a bit stronger than the
notion of one-way. Consider, for example, the discrete logarithm assumption (DLA):

Let A be a probabilistic polynomial-time algorithm. If

• P is chosen uniformly at random among alln-bit primes;
• g is chosen uniformly at random among all generators of the multiplicative

groupZ∗
P ;

• x is chosen uniformly at random in{0, .., P − 2};

then the probability thatA returns x on input (P, g, gx mod P ) is super-
polynomially small inn.

The Discrete Logarithm Assumption.

Many useful cryptographic protocols rely on the DLA. Thus, it is important to un-
derstand what is notguaranteed by the DLA. In particular, there is nothing in the DLA
that saysx is completely hidden byy = gx mod P . For example,x is even if and only
if the Legendre symbol

(
y
P

)
= y

P−1
2 mod P = 1. More generally, ifd dividesP − 1

thenx mod d is computable from(g, y, P ) in time polynomial ind andlog P . In terms
of the low-order bits ofx, a slightly stronger result shows that, ifP = 2kT + 1 with
T odd, then thek low-order bits ofx can be efficiently computed. Although these facts
have been known for decades, the following protocol appears in a standard cryptography
reference book (see [Sch96], page 90):

3Coin-flipping is an important cryptographic tool due to Manuel Blum [Blu82].



René Peralta / Cryptographic Primitives Can Be Fragile 3

step 0: Alice and Bob agree on a one-way functionf and security parametern.
step 1: Alice chooses uniformly at random ann-bit numberx and sendsy = f(x)

to Bob.
step 2: Bob guesses whetherx is odd or even.
step 3: Alice revealsx ; Bob verifies thatf(x) is indeed equal to they he got at

step 1; Bob wins the coin-toss if he guessed right at step 2.

Flawed Coin-Flipping Protocol Using One-Way Functions.

The above protocol fails whenever the one-way functionf does not hide the least
significant bit of its argument (e.g. as in the discrete logarithm). Secure coin-flipping is
a well-solved problem (see, for example, [Blu82,CG85,Per86]), and we do not need to
“fix” the above protocol. For completeness we do point out that this can be done by

• requiringf to injective and uniformly hard; and
• asking Bob to guess the value of ahard predicateof x givenf(x).

By “hard predicate” (ofx given f(x)) we mean a Boolean predicateh(x) such that
invertingf is PPT reducible to calculatingh(x) on inputf(x) for a fraction1

2 + n−O(1)

of all n-bit x. WhenP = 2kQ + 1 with Q odd, it is well-known that the(k + 1)st

least significant bit ofx is a hard predicate [Lon84]. Thus, under the discrete logarithm
assumption, the following is a way to meet the two requirements above:

• restrictP to primes congruent to3 modulo4; and
• ask Bob to guess thesecondleast significant bit ofx given(g, gx mod P, P ).

We also point out there exists a general construction of a hard predicate given an arbitrary
uniformly one-way bijection. This result is due to Goldreich and Levin ([GL89]).4

3. Subtle (and not so subtle) design mistakes

We now turn to another coin-flipping implementation in the literature (see [Sch96], page
90, “Coin Flipping Using Public-Key Cryptography”). This protocol attempts to use a so-
called “commuting” encryption-decryption primitive to implement coin-flipping. Func-
tionsf, g are said to commute iff(g(x)) = g(f(x)) for all x. RSA encryption and de-
cryption functions are of the formxc mod N , and hence commute when the modulusN
is constant. That is,

EK1(DK2(x)) = (xd2)e1 mod N

= (xe1)d2 mod N

= DK2(EK1(x)).

4A word of caution is warranted here. Suppose we want to flip not one butk coins and we are toldh1, . . . , hk

are distinct hard predicates. Wecannotsimply use these predicates for our coins, as there is nothing in the
definition of hardness that prevents them from being correlated in the sense that knowing some of them may
make guessing the others easier. What is needed here issimultaneoushardness (see [Per86] for an example of
simultaneously hard bits in the discrete logarithm).



4 René Peralta / Cryptographic Primitives Can Be Fragile

The protocol, specialized to RSA and omitting some useless steps, is as follows:

step 0.0: Alice and Bob jointly generate two large primesP,Q and letN = PQ.
step 0.A: Alice generates, but keeps secret,eA anddA = e−1

A mod φ(N).
step 0.B: Bob generates, but keeps secret,eB anddB = e−1

B mod φ(N).
step 1.A: Alice generates two messagesm1,m2, one indicating heads and the

other indicating tails. She sends{u1 = meA
1 mod N,u2 = meA

2 mod N}
to Bob in random order.

step 1.B: Bob chooses one of theuis at random and sendsv = ueB
i mod N to

Alice.
step 2.A: Alice sendsw = vdA = ueBdA

i = meAeBdA
i = meB

i mod N to Bob.
step 2.B: Bob computesmi = wdB , thereby revealing the result of the coin-flip.

He sendsmi to Alice.
step 3.AB: Both Alice and Bob reveal their key pairs and verify the correctness of

all previous messages.

Flawed Coin-Flipping Protocol Using Public-Key Cryptography.

The protocol description does not indicate exactly how heads and tails are differ-
entiated. We will see that the protocol is breakable independently of how this is done.
Contrary to the situation with the discrete logarithm, the least significant bit of RSA is
secure (see [CG85]). Therefore the reader may assume that heads/tails are encoded via
the parity ofmi.

Analysis

The author of this protocol provides a “proof of security”. Specifically, it is claimed that:

“This protocol is self-enforcing. Either party can immediately detect cheating by the other, and
no trusted third party is required to participate in either the actual protocol or any adjudication
after the protocol has been completed.”

The proof is flawed on two accounts. First, an assumption about secure encryption
is (implicitly) made but turns out to be false. Since we are concerned here with the pos-
sibility of formally verifying security, it is instructive to point out this problem. Auto-
mated verification tools sometimes make similar assumptions by treating the encryption
primitive as a “black box”. This may or may not be warranted depending on the specific
primitive as well as the way in which it is used. In this case, Schneier states that Alice
cannot “read”, at step 2.A, the message sent by Bob at step 1.B. Although it is not clear
what he means by “read”, the subsequent analysis uses this assumption to conclude Alice
cannot tell at step 2.A whether Bob sentv = ueB

1 mod N or v = ueB
2 mod N at step

1.B. This is at least plausible because Alice, despite knowingu1 andu2, does not know
eB at this step of the protocol. However, there is nothing in the protocol description to
prevent Alice from setting, say,u1 = 0 andu2 = 1. Therefore the assumption is triv-



René Peralta / Cryptographic Primitives Can Be Fragile 5

ially false.5 However, it is not this trivial attack that concerns us. It is conceivable that

restrictions could be put onu1 andu2 that would somehow prevent Alice from knowing

whether Bob pickedu1 or u2. For example, Bob could refuse to acceptui = meA
i if he

is able to computemi. Accordingly, we examine amuch weakerstatement and show that

it is also false:

Suppose Alice and Bob share an RSA modulusN . Let e ∈ Z∗
φ(N) be known to

Bob but not known to Alice. If Alice sendsuniformly randomx1, x2 to Bob, and
Bob returnsxe

i mod N with i chosen by a fair coin, then it is not possible for Alice
to tell, with probability significantly better than12 , whetheri = 1 or i = 2.

Flawed Assumption About the Security of RSA.

This does not hold.6 There are likely many ways for Alice to construct thex1, x2

such that she can decide whetheri is 1 or 2 by looking atxe
i mod N . The simplest one

is to note that, sincee is odd,xe
i mod N has the same Jacobi symbol asxi. Therefore all

that Alice has to do is pick thex1, x2 with opposite Jacobi symbol.

The second error is not uncommon in the cryptographic literature. In general form,

this error is as follows:

• at stepi of the protocol, a parameterω, satisfying certain properties, is supposed

to be created by one of the participants;

• at stepi + k of the protocol, the parameterω is disclosed. At this point the other

participant checks thatω “was correctly constructed” (meaning it satisfies the

properties required by the protocol);

• the “proof” of security then makes the unwarranted assumption thatω was cor-

rectly constructedat stepi.

For example, the fact that the parameterseA, dA are revealed at step 3.AB of this

protocol does not mean that Alice generated them at step 0.A of the protocol. Further-

more, the fact that Bob can verify the equationsui = meA
i mod N at step 3.AB does not

mean that Alice constructed theuis in this form at step 1.A.

Having made these observations, the protocol can be broken as follows:

5The reader may think this an “unfair” attack on the protocol, as Bob would simply not accept such values.
Note, however, that “Bob” is not really a person but a computer program, which will only detect such “aberrant”
messages if doing so is explicitly coded.

6Of course, even if the assumption did hold, this would not show this protocol is secure (as the protocol does
not verify that Alice picksx1, x2 uniformly at random). We have worded the assumption in this way because
there are cryptographic techniques that can ensure the distribution of thexis is uniform (e.g. random oracles,
strong pseudo-random number generators ran backwards, etc.).



6 René Peralta / Cryptographic Primitives Can Be Fragile

• Alice does not createeA, dA at step 0.A.
• At step 1.A Alice sends two random numbersr1, r2 with opposite Jacobi sym-

bols.
• Without loss of generality, assume Bob picksr1 and sendsreB

1 at step 1.B. As
explained above, Alice will know thatr1 was chosen becausereB

1 has the same
Jacobi symbol asr1.

• Suppose, without loss of generality, that Alice wants the outcome to be “heads”.
She picks randomds until rd

1 encodes “heads” andrd
2 encodes “tails”.

• Alice setsdA = d, and eA = d−1
A mod φ(N). At this point the values of

m1,m2 are “forced” tom1 = rdA
1 andm2 = rdA

2 respectively.
• Alice can now complete the protocol without Bob ever knowing he got cheated.

Breaking the Second Coin-Flipping Protocol.

Note that encoding “heads” and “tails” via the parity ofmi is not necessary for our
attack to work. The only requirement is that the set of numbers moduloN encoding
“heads” and the set encoding “tails” are large enough (and uncorrelated to RSA encryp-
tion/decryption) so that a pair of random numbers has a non-negligible chance of encod-
ing different coin-flips. In particular, any known encoding usingO(log log N) bits of the
plaintext is susceptible to this attack.

Acknowledgements

I am indebted to Morris Dworkin for many helpful suggestions on this manuscript.

References

[Blu82] Manuel Blum. Coin flipping by telephone. InIEEE COMPCON, pages 133–137, 1982.
[BV98] Dan Boneh and R. Venkatesan. Breaking RSA may not be equivalent to Factoring. In

Proceedings of Advances in Cryptology - Crypto 98, volume 1403 ofLecture Notes in
Computer Science, pages 59–71, Santa Barbara, California, USA, 1998. Springer.

[BW83] M. Blum and Alice Wong. personal communication. circa 1983.
[CG85] Benny Chor and Oded Goldreich. RSA/rabin least significant bits are1

2
+1/ poly(logn)

secure. In G. R. Blakley and D. C. Chaum, editors,Advances in Cryptology - Proceedings
of CRYPTO 84, pages 303–313. Springer, 1985. Lecture Notes in Computer Science No.
196.

[GL89] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions.Proceedings
of the 21th Annual ACM Symposium on the Theory of Computing, pages 25–32, 1989.

[Lon84] D. Long.The security of bits in the discrete log. PhD thesis, Princeton University, 1984.
[Per86] R. Peralta. Simultaneous security of bits in the discrete log. InAdvances in Cryptology

- Proceedings of EUROCRYPT 85, Lecture Notes in Computer Science, pages 62–72.
Springer-Verlag, 1986.

[Rab79] Michael Rabin. Digitalized signatures and public-key functions as intractable as factor-
ization. Technical Report MIT/LCS/TR-212, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, January 1979.

[Sch96] B. Schneier.Applied Cryptography: Protocols, Algorithms, and Source Code in C. John
Wiley & Sons, Inc., second edition, 1996.


