The Other Monte Carlo Method

Isabel Beichl and Francis Sullivan

1. Introduction

In the past few years there has been a surge in research activity concerning
computational methods that use randomness in ways quite different from
its use in the traditional Metropolis algorithm or its use in any of the many
relatives and offspring of the Metropolis algorithm. The community seems to
have settled on the term “sequential importance sampling” (SIS) for one such
class of other Monte Carlo methods. What the term SIS means will become
clear as we go along. For now, just think of SIS as sampling according to a
non-uniform probability distribution that is generated as the choice is being
made and then dividing by the observed probability in order to remove bias.

Sequential importance sampling has been used with remarkable success in
fields including biology, astronomy, simulation of self-avoiding random walks,
signal processing and evolutionary theory [6]. The present authors have used
it to estimate the permanent and thus estimate the dimer covering constant
[2]. In an early paper [5], Knuth used it to estimate the amount of work
needed to solve a puzzle by a backtrack algorithm. Interest in SIS comes
from the fact that it has sometimes succeeded on problems where the Monte
Carlo Markov Chain method (MCMC) has failed or where it is far from
obvious how to apply MCMC. Naturally, there are also cases in which SIS,
or rather the precise version of SIS used, simply does not work. Part of the
difficulty in understanding exactly when and how SIS should be tried is a
consequence of the almost total lack of theory for this method, in contrast to
MCMC, which now has a robust theoretical foundation and a well-developed
set of criteria for determining rate of convergence. The other articles in this
issue of CiSE provide background on some of the theory. But because of
the increasing number of applications, constructing a theory for SIS is an
important challenge facing the statistics research community.

2. The basic idea

We begin by introducing importance sampling in a way that’s slightly non-
standard but which gets us quickly to some of the central ideas in SIS. After

importance sampling is illustrated, we’ll give examples of how to use it se-
quentially.

Suppose we are working with the union of two sets A and B
S=AUB

and we know the size of A, |A|, the number of elements in the set A, and
the size of B, |B|. We also assume that we can sample uniformly from set
A or B and that we can easily determine if an element is in A or B or both.
What we would like to do is to estimate the size of S, |S|, that is count the
number of elements in S. We always have that

AUB = (AAB)U (AN B)

where AAB is the symmetric difference of A and B, that is the elements of
A that are not in B plus the elements of B that are not in A. So, because
the two sets on the right side of the above equation are disjoint, we get

|AUB| = [A| = |[AN B| +|B| - |[An B| + [AN B| < |A[+|B].

The right side of this inequality is the simplest instance of the so-called
Bonferroni bounds. In this case, it restates the obvious fact that AU B may
have fewer elements than the total of | A| and | B|, because of double counting
of the elements of |A N B|. The simple sum is not a very good estimate of
|AU B| because the intersection |AN B| can be considerable. But we can use
importance sampling to compute a number, p < 1, so that

|AUB| = p* (|A] +|B]).

gives a much better estimate.
We define two probabilities, P4 and Pg,

| Al | B|
Py=+———,Pp= 17—
|Al + [B] |A| + |B|
so that
Pys+ Pg=1.

Here is the algorithm for computing p. Choose one of set A or B, A with
probability Py, set B with probability Pg. If A was chosen, then choose

2

an element of A uniformly. The probability of choosing any one element of

A will be %I' Similarly if B was chosen. What is the probability in this

procedure #0r choosing one particular element of S = AUB? There are three
disjoint possibilities, the element is in A\ B, B\ A or AN B. If the element

is in the first case, A but not B, then the probability of selecting A was

4]
Al + (B

Next, having chosen A, we choose an element uniformly. So, if A had been
chosen, any particular element in it is chosen with probability

L
|4

and similarly for B. In either case, multiplying the “choose a set” probability
by the “choose an element” probability we get

1
Al + Bl

Now, let’s calculate the true total probability of choosing some particular
element, say f, from AN B by this process. First we’d have to choose, say, B
and then in B we’d have to choose f. Therefore, the probability of choosing

fis
B 11
Al + 1Bl Bl |Al+|B|

But, the true total probability of choosing f, is

(1A *1>+< IB| *1>_ 2
Al +[B| |A] [Al+1|Bl [B]) [Al+ B[

To compute p we’ll choose elements from A or B by the procedure described
above and record the inverse of the true probability of selecting an element
as just described. We do this by first choosing and then noting if the element

chosen is in one or two sets. (Recall we said that it is assumed to be easy to
do this check.) So each sample will be either

Al + B
1

or else

Al + B
B

What will the mean of the samples be? Clearly something smaller than
|A| + | B|, because every term has this factor multiplied by either 1 or 1/2.
So the mean will be

(IA]+[B]) * p

where p is the mean of the 1’s and 1/2’s. So we have corrected our simple
Bonferroni bound by dividing by the probability of choosing each particular
element. By convention, the inverse of the probability is called the ‘impor-
tance’, hence the term importance sampling. More details on this method for
correcting the Bonferroni bound can be found in [3].

3. Counting via importance sampling
Suppose now, more generally, we want to estimate a sum of T" terms:
F= Z f t
teT
by sampling.

One strategy is to choose M samples f; uniformly at random from among
all |T'| values and then average to give the estimate, |T'|(f). Note that this
can be written:

Zum

That is, for each sample we divide by the probability of choosing that sample.
Now an important point: we could, in fact, use any probability instead of
1/|T| giving

Gl =3 Lp(r) =31

seT (f3> teT

4

The ideal choice, of course, is p(f) = f/F, but this presumes we already
know the answer! However, there are situations in which one needs to design
a good but not perfect p(f). Suppose, for example, we don’t know |T'|. Notice
that this idea still works so long as we can sample f and so can be used to
estimate |T'| itself. All that is needed is a probability distribution on the set
T for sampling the number 1. The distribution must cover all possible values
from T and we don’t know |T'|. This is the genesis of “sequential” methods.

4. Sequential importance sampling

A number of years ago, Knuth developed an approximate counting method
in an attempt to estimate the running time of a back-track program without
actually performing the entire backtrack [5]. The underlying idea is simple.
Recall that any backtrack can be thought of as a search of a tree. The search
backs up to the first ancestor node having an available choice whenever it is
blocked, and continues doing this until an “answer” is found or all nodes have
been examined. If we imagine that the backtrack is a tree (not necessarily
balanced) then this amounts to a depth first traversal of this tree that stops
at a node satisfying some pre-specified condition. In many situations, it is
useful to be able to estimate how much work will be done before the answer
is found, i.e. to estimate how large the tree is without actually traversing all
of it.

If the backtrack search generated a perfect binary tree, the size of the search
is easy to estimate. Just determine d, the depth of the tree and assume that
the whole tree must be traversed before finding the answer. The amount of
work is then 27*1, the number of nodes in the tree. To determine d, just walk
down one branch of the tree and count the number of steps to reach the leaf.

Amazingly, a simple and obvious-seeming generalization of this idea works
in much more general situations where the tree is not binary or even fixed
degree and the depth is not uniform. A “sample” is a traversal of any path
of the tree, stopping when a leaf is reached. The dashed lines in Figure 1 are
an example of such a sample. At each step k choose at random among the
ny children of the current node and record ny. After traversing a path, the
estimate obtained for the number of nodes is given by:

Ctot = no(l + n1(1 + ng(l + ..)))

Figure 1: The Knuth method selects one path and estimates the number of
nodes in the whole tree.

Averaging values of ¢;,; over sufficiently many samples gives the estimate.
Note that this estimates the number of nodes in the tree, a quantity we did
not know before getting the estimate!

Knuth’s method can be thought of as an application of importance sam-
pling. For one sample, the number of possible choices for the first k levels
of the tree is ¢_1 = mngni...nE_1 and, because of the uniform choice at
each level, the probability of making that particular sequence of choices is
1/c, = 1/(nony ...ng_1). If the choices were made using some other, non-
uniform probabilities p;, then the estimate for number of leaves at the k"

step would be ¢,_1 = 1/(pop1 - - - pr—_1)

The novel idea here is the use of probabilities that are determined sequen-
tially at each level of the tree as the computation proceeds. In other words,

the importance sampling is done sequentially, hence sequential importance
sampling, now called SIS. As was mentioned earlier, when SIS works, it works
amazingly well. Naturally, the better the ‘invented’ probability p, the better
the result. In fact, one can show that the whole role of p is to reduce the
variance.

The idea can be used in a variety of situations where one wishes to estimate a
hard-to-compute sum. For example, one standard algorithm for topological
sorting of an acyclic directed graph looks for vertices having no predecessors,
eliminates them and the edges connected to them producing more vertices
having no predecessors, etc. Counting the number of possible topological
sort orders of an acyclic graph is known to be an NP-hard problem. But
obtaining an approximate count is easy via SIS. At each stage, simply record
the number of having no predecessors.

5. Discussion

Call the sum we wish to approximate A, and the approximation A. Then
because the sample 1/p is chosen with probability p, we have that:

var = (1/p*) — (1/p)? Z 1/pa —

From this it is clear that the critical question is the size of the difference:

a/m
A

where this time the average (.) is uniform instead of the p-weighted mean.

If one could design an algorithm so that p actually is the true probability
1/A, then the result would be perfect (and would require only one sample!).
Naturally, this does not happen in real-world applications. One interesting
question is how to understand the trade-off between amount of effort devoted
to generating p on the one hand, and, on the other, the number of samples
needed. We’ll give one example from our own research.

In our work on approximating the permanent of a zero-one matrix we used a
technique called Sinkhorn balancing [8], [1] to get a better p. This increases
the work per sample and decreases the number of samples needed because it
lowers the variance. Recall that for an n x n matrix A, the permanent is like

7

the determinant, except there are no sign changes, i.e. it is defined to be the
sum over S, the set of all permutations on n letters:

per(A) = > T o0

O'ES\ >

For a zero-one matrix, each non-zero term in the sum is equal to one, so to
estimate the permanent means to estimate the number of permutations o
such that [[; a;,;) = 1. We can do this by choosing a non-zero from row one
with some probability p(1), eliminating row one and the appropriate column
to give an (n—1) x (n—1) matrix and then repeat the process on this smaller
matrix. The final probability for a sample is p(1)p(2)...p(n).

In the problem of interest, the matrix A is a zero-one matrix and Sinkhorn
balancing is used to generate a probability for choosing elements row by
row. The idea is to generate diagonal matrices D and £ so that B = DAE is
a doubly stochastic matrix - every row and column sum to one, so that the
entries of a row are probabilities. The balanced matrix B is generated by first
dividing each row by its sum, then each column, then each row, etc. This is
a simple algorithm, but the theory is deep. It’s not obvious it converges and
if it does converge, how long it takes. There are cases in which it converges
and generates B but doesn’t produce diagonal matrices D and £. Not every
pattern of zeros and ones has a corresponding B. The matrix

()

has no corresponding B with the same pattern of non-zeros. However,
Sinkhorn balancing will converge (slowly) to the identity matrix.

Recent work by Chen and Liu [6] uses a much simpler method to generate
p, so that sampling is quicker but more samples are required. In effect, one
iteration of Sinkhorn balancing is done and convergence is not demanded. In
computational experiments we find that Sinkhorn balancing is worth doing -
the total running time of codes is lower than the method of Chen and Liu. On
examples tested, Sinkhorn balancing takes about half the time of the Chen-
Liu method and achieves a standard deviation a factor of more than 40 lower.
However, in his recent book, Liu reports exactly the opposite - the simpler
method is claimed to be better than the balancing method. The explanation

of the difference comes from an important but subtle point about Sinkhorn
balancing. In our application Sinkhorn balancing is used to generate a doubly
stochastic matrix from a zero-one matrix. Balancing is an iterative method
that converges quadratically [9] assuming that the so-called “unsupported”
elements are removed from the input matrix. The unsupported elements are
those that would converge to zero under Sinkhorn balancing. They are easy
to detect using some ideas from graph theory[4]. But if the unsupported
elements are not removed, convergence is sub-linear. In Figure 2 we compare
simple SIS with Sinkhorn balancing for a 20 x 20 Fibonacci matrix, i.e. a
tridiagonal zero-one matrix whose permanent is the 21st Fibonacci number.
We show running average vs error, meaning difference from the true mean.

The results for Sinkhorn balancing look much better and the variance is much
smaller. Of course it is possible that there is an important and subtle aspect
of the Chen-Liu method that we have overlooked. From this it is obvious that
a set of rigorous and usable mathematical tools for evaluating SIS algorithms
is needed.

A final note on the history of SIS. The standard Metropolis algorithm is
usually traced to the 1953 paper by Metropolis, Rosenbluth, Rosenbluth,
Teller, and Teller. Of course, the idea is older and, like all really important
ideas in science, one can argue about its true origin. Interestingly, one of the
earliest papers on SIS is by Rosenbluth and Rosenbluth [7] and dates back
to 1955.

error

x 10" Sinkhorn balancing and SIS

1 T T T T T T T T T
*
0.5 Tk |
*
*-
* * ** *
" 5 * ***
0- 'y o*.**' oooooooo **....;.. ,. ..,.‘..,...-,.'.‘, ---------------------------- deeec00 e iy
*% ooooooo *2%* % | % N mmak*
Lok : K ok
-0.51 : Coe o
1k |
* 3
* Sinkhorn balancing
* SIS
-1.5r -
Sk
-2 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90

number of samples

Figure 2: Comparison between simple SIS and Sinkhorn balancing

10

100

References

1]

2]

Ando, T. “Majorization, Doubly Stochastic Matrices and Comparison
of Eigenvalues” Linear Algebra € Applic. 118, 163 (1989).

Beichl, 1. and Sullivan, F. “Approximating the Permanent via Impor-
tance Sampling with Applications to the Dimer Covering Problem,” J.
Comp. Phys. 149, (1999) pp. 128-147.

Beichl, I. and Sullivan F., “It’s bound to be right”, IEEE Computing in
Science & Engineering, 4 (2002) no. 2, pp 86-89.

Dulmage, A. and Mendelsohn, N. “Coverings of bipartite graphs”, Can.
J. Math. 10 (1958) pp. 517-534.

Knuth, Donald E., “Estimating the Efficiency of Backtrack Programs”,
Selected Papers on Analysis of Algorithms, CSLI Publications, Stanford,
California, (2000).

Liu, Jun S., Monte Carlo Strategies in Scientific Computing (2001)
Springer Series in Statistics, Springer Verlag.

Rosenbluth, M. and Rosenbluth, A. “Monte Carlo calculation of the
average extension of molecular chains”, Journal of Chemical Physics
23, (1955) pp. 356-359.

Sinkhorn, R., “A relationship between arbitrary positive matrices and
double stochastic matrices” Annals of Math. Stat. 35, (1964) pp. 876-
879.

Soules, G. W., “The rate of convergence of Sinkhorn balancing” Linear
Algebra € Applic. 150, (1991) pp. 3-40.

11

