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quasi real time. The method is predicated on a restricted class of blurs,
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ity density functions. Not all images can be usefully enhanced with the
APEX method. However, the method is found effective on a broad class
of galaxy images, including Hubble space telescope advanced camera
for surveys �ACS� color imagery. APEX-detected optical transfer func-
tions that successfully sharpen these images are very far from Gaussian,
and of a type seldom found in the imaging literature. Several examples
are given where significantly sharper and visually striking reconstructions
are obtained, with sharpening confirmed by the tripling or quadrupling of
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1 Introduction

The APEX method is a noniterative, single-frame, direct
blind deconvolution technique that can sharpen certain
kinds of high resolution images in quasi real time. The
method operates in Fourier transform space via fast Fourier
transform �FFT� algorithms. The method has been applied
successfully in diverse imaging contexts, including air-
borne reconnaissance, magnetic resonance imaging �MRI�
and positron emission tomography �PET� brain scans, and
scanning electron microscopy.1–3 However, not all images
can be usefully enhanced with the APEX method. This pa-
per explores the possible application of this technique to
astronomical data, including Hubble space telescope imag-
ery. In Fig. 1, a familiar earthbound setting illustrates the
type of improvement that is sometimes possible with the
APEX method. In that example, zooming on selected parts
of the APEX-enhanced image �Fig. 1�b�� reveals buildings
in the distance,2 Holstein cows grazing in the meadow, and
numerous other fine-scale details not readily apparent in the
original image �Fig. 1�a��.

Recently, much excellent work has been done in the area
of blind deconvolution of astronomical data.4–11 Many of
these methods aim primarily at undoing the distorting ef-
fects of atmospheric turbulence in short-exposure, ground-
based observations. Multiframe algorithms, typically in-
volving several hundred short-exposure images of the same
object, appear to be particularly effective. An interesting
a0091-3286/2006/$22.00 © 2006 SPIE
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xample of multiframe blind deconvolution applied to
round-based surveillance of space objects is given
n Ref. 9.

APEX processing is generally not useful in such short-
xposure applications, and the method would probably be
ncapable of reproducing the results in Ref. 9. In a similar
ein, consider the severely blurred early Hubble space tele-
cope imagery caused by manufacturing flaws in the pri-
ary mirror. The much improved imagery following the

993 implementation of corrective optics is best illustrated
ith the M100 galaxy images in Fig. 2. Here, if APEX
rocessing were to be applied to the blurred image in Fig.
�a�, the method would fail to identify the flawed optics
oint spread function �PSF� from the data in Fig. 2�a�, and
t would be unable to produce a useful approximation to the
harp image in Fig. 2�b�.

The APEX method is predicated on an important but
ircumscribed class of radially symmetric shift-invariant
lurs, one that generalizes Gaussian and Lorentzian distri-
utions. This is the class G defined later in Eq. �4�. That
lass does not include the more complex PSFs that charac-
erize the examples mentioned in the preceding paragraph.
ather, the APEX method aims primarily at reconstructing
ne-scale information that may have been smoothed out by

he combined effects of radially symmetric lens aberrations,
ong-exposure turbulence if present, and additional radially
ymmetric blurring, originating from diverse electron opti-
al devices used in the acquisition and recording of the final
igitized image. Presumably, the APEX method will be
uccessful on a given image, only to the extent that a sig-
ificant portion of the unknown image blur can be well-

pproximated by some member of the class G.
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Carasso: APEX blind deconvolution…
It develops that APEX processing is surprisingly effec-
tive on a broad class of galaxy images, including color
Hubble space telescope imagery. APEX-detected optical
transfer functions that successfully sharpen these images
are very far from Gaussian, and of a type not commonly
found in the astronomical imaging literature. Visually strik-
ing enhancements are exhibited in Secs. 9–11. The degree
of sharpening in these images can be quantitatively as-
sessed by comparing image gradient norms before and after
APEX processing. Tripling or quadrupling of gradient
norms is commonly realized. In the case of Hubble tele-
scope imagery, the APEX method can enhance advanced
camera for surveys �ACS� images, in addition to wide-field
and planetary camera 2 �WFPC2� images. An interesting
new method of assessing image sharpness, based on mea-
suring image Lipschitz exponents,12 can also be fruitfully
applied to the present class of images. However, due to
space limitations, a full discussion of that technique must
be deferred to a future report.

2 Heavy-Tailed Lévy PSFs
Important empirical work has identified the general func-

Fig. 1 APEX blind deconvolution of English village image; �a� origi-
nal 512	512 8-bit image and �b� APEX-processed image. Zooming
on selected parts of sharpened image �b� reveals buildings in the
distance,2 and other significant information not easily detectable in
image �a�.
tional form of the optical transfer functions �OTFs� in a c
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ery wide variety of electron optical imaging devices,13,14

ncluding phosphor screens and some types of photographic
lm. Define the 2-D Fourier transform F�h� of a function
�x ,y� by

�h� = ĥ��,�� � �
R2

h�x,y� exp �− 2�i��x + �y�� dx dy .

�1�

hen h�x ,y� is a PSF, it is nonnegative and integrates to
nity. Such a function corresponds to a probability density

unction. The OTF ĥ�� ,�� corresponds to the characteristic
unction of that density. Apparently, most electron optic
maging devices have OTFs that can be expressed by

ˆ ��,�� = exp �− ���2 + �2���, � � 0, 0 � � � 1, �2�

here the constants � and � depend on the particular
evice.13,14 The corresponding densities h�x ,y� are bell-
haped surfaces in physical x ,y space, and belong to the

15,16

ig. 2 Hubble space telescope image of the M100 galaxy before
nd after implementation of 1993 corrective optics package. APEX
ethod applied to image �a� would fail to detect flawed optics PSF,
nd would be unable to produce useful approximation to image �b�.
lass of radially symmetric Lévy stable laws. The con-
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Carasso: APEX blind deconvolution…
stant ��0 in Eq. �2� controls the width of the density
h�x ,y�, and h�x ,y� approaches the Dirac 
 function as �
→0. The constant � is called the Lévy exponent. The case
�=1 in Eq. �2� corresponds to the Gaussian distribution,
while the case �=1/2 corresponds to the 2-D Lorentzian
density

h�x,y� =
�

2��x2 + y2 + �2�3/2 , �x,y� � R2. �3�

For other values of � in Eq. �2�, the corresponding density
h�x ,y� is not known in closed form in the physical vari-
ables x and y. In the Gaussian case �=1, h�x ,y� has expo-
nentially decaying slim tails and finite variance. However,
for 0���1, h�x ,y� has infinite variance,15–19 with heavy
tails that decay like a power of 1 /r, where r= �x2+y2�1/2.

The expression in Eq. �2� can be used to describe other
important types of blurs. The OTF for long-exposure turbu-
lence blurring is given by Eq. �2� with �=5/6 and � deter-
mined by atmospheric conditions.20 The analytically known
diffraction-limited OTF for a perfect lens can be approxi-
mated over a wide frequency range by Eq. �2�, with �
=3/4 and � a properly chosen function of the cutoff
frequency.21 OTF data for 56 different kinds of photo-
graphic film have also been analyzed.22 Good agreement is
found when these data are fitted with Eq. �2�, and the pairs
�� ,�� characterizing each of these 56 OTFs are identified.
It is found that 36 types of film have OTFs where 1/2
���1. The remaining 20 types have values of � in the
range 0.265���0.475. The corresponding PSFs are very
far from Gaussian.

3 Generalized Central Limit Theorem
and the APEX Method

The classical central limit theorem considers the limiting
probability distribution of normalized sums of large num-
bers of independent random variables with finite variance,
and it asserts that that limit is always a Gaussian
distribution.15 In fact, Gaussians are often used to fit em-
pirically obtained bell-shaped data, and this choice is usu-
ally justified on the basis of that theorem. For an example
of just such an approach applied to electron optics PSFs,
see Ref. 23.

Recently, with the advent of more sophisticated mea-
surement methods, numerous physical situations have been
uncovered where Gaussians provide inadequate descrip-
tions of observed bell-shaped data, because legitimate
heavy-tailed behavior cannot be accommodated.17,19,24 A
particularly instructive discussion of the necessity to con-
sider non-Gaussian distributions is contained in a recent
article on high energy particle physics.25 It is now generally
recognized that such heavy-tailed data reflect underlying
random processes with infinite variance and that such pro-
cesses are pervasive in nature.26 Evidently, the behavior
reported in Refs. 13, 14, and 22, is merely one instance of
a recurring pattern.

The generalized central limit theorem considers normal-
ized sums of independent, identically distributed random
variables, with variances that need not be finite. According
to that theorem, the limit of any such sum, if it exists, must

15,18
be a Lévy stable law. Note that while the class of stable c
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aws includes more complex asymmetric specimens, this
aper restricts attention to the radially symmetric case
hrough Eq. �2�.

In some applications, several electron optical devices
an be cascaded together and used to image objects through
distorting medium such as the atmosphere. The overall

umped PSF is then the convolution product of the indi-
idual component PSFs, so that

ˆ ��,�� = exp �− �
i=1

J

�i��2 + �2��i	, �i � 0, 0 � �i � 1.

�4�

he general functional form given in Eq. �4� can also be
sed to best-fit a large class of empirically determined
TFs by suitable choices of the parameters �i, �i, and J.
We define the class G of blurring kernels to be the class

f all PSFs h�x ,y� whose Fourier transforms satisfy Eq. �4�.
e shall be interested in image deblurring problems

f � �
R2

h�x − u,y − v�f�u,v� du dv � h�x,y� � f�x,y�

= g�x,y� , �5�

here g�x ,y� is the recorded blurred image, f�x ,y� is the
esired unblurred image, and h�x ,y� is a known PSF in
lass G. The blurred image g�x ,y� includes noise, which is
iewed as a separate additional degradation,

�x,y� = ge�x,y� + n�x,y� . �6�

ere, ge�x ,y� is the blurred image that would have been
ecorded in the absence of noise, and n�x ,y� represents the
umulative effects of all errors affecting final acquisition of
he digitized array g�x ,y�. The unique solution of Eq. �5�
hen the right-hand side is ge�x ,y�, is the exact sharp im-

ge denoted by fe�x ,y�. Thus,

�x,y� � fe�x,y� = ge�x,y� . �7�

Class G OTFs are nonnegative. This is not generally the
ase with characteristic functions. With class G OTFs we
an define fractional powers Ht, 0� t�1, of the convolu-
ion integral operator H in Eq. �5� as follows:

t f � F −1�ĥt��,�� f̂��,���, 0 � t � 1. �8�

lass G PSFs are intimately related to diffusion processes
n that u�x ,y , t�=Htf is the solution at time t of a general-
zed diffusion equation �see Eq. �13� later�.

These considerations underlie the APEX blind deconvo-
ution approach, which stipulates at the outset that the blur-
ing is isoplanatic, and that the lumped total system optical
ransfer function can be well approximated by Eq. �4�. The
PEX method is based on detecting such Lévy stable PSFs
y appropriate Fourier analysis of the blurred image data.
s discussed more fully in the following, detected repre-

entative values for the constants �i and �i in Eq. �4� are
sed to construct a candidate OTF. This is then used in the
low evolution from the continuation boundary �SECB� de-

27
onvolution method, implemented as a time-reversed dif-
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Carasso: APEX blind deconvolution…
fusion equation. By marching backward in time, one can
visually monitor the deconvolution process as it unfolds,
examine accompanying diagnostic information, and if nec-
essary, choose to terminate that process prior to completion.
Early termination is equivalent to interactive readjustment
of the initial candidate OTF.

4 Images and Their Fourier Transforms
The Fourier transform is the primary computational tool
used in this paper, and the qualitative behavior in Fourier
space of a large class of astronomical images is of interest.
We deal exclusively with square images g�x ,y� of size
2N	2N pixels. To render mathematical formulas more
transparent, we use the same notation ĝ�� ,�� for both dis-
crete and continuous Fourier transforms. In the discrete
FFT case, the frequencies � and � are understood to be
integer-valued and to range from −N to N. Likewise, g�x ,y�
denotes both discrete and continuous images. In the dis-
crete case, the variables x and y are measured in pixels and
range from 1 to 2N.

Given the Lévy pairs ��i ,�i� , i=1,J, where �i�0,0
��i�1, the corresponding discrete class G OTF is the

2N	2N array ĥ�� ,��, where, with integer � ,�

ĥ��,�� = exp �− �
i=1

J

�i��2 + �2��i	, − N � �,� � N . �9�

In this paper, typical parameter values might be N=512,
J=1, �=0.2, and �=0.2. Such OTF arrays are used to con-
struct the SECB deblurred image, as shown later in
Eq. �14�.

Given an image g�x ,y�, the natural logarithm of the ab-
solute value of its Fourier transform ln 
 ĝ�� ,��
 plays a cru-
cial role. This logarithm is well defined except where
ĝ�� ,��=0. At any such zero, we simply redefine ĝ to be the
machine epsilon. In practice, exact zeroes of ĝ�� ,�� are
seldom encountered due to system noise.

Let fe�x ,y� be an exact sharp image as in Eq. �7�. Since
fe�x ,y��0


f ê��,��
 � �
R2

fe�x,y� dx dy = f ê�0,0� = � � 0. �10�

Also, since ge�x ,y�=h�x ,y� � fe�x ,y� and h�x ,y� is a prob-
ability density,

gê�0,0� = �
R2

ge�x,y� dx dy = �
R2

fe�x,y� dx dy = f ê�0,0�

= � � 0. �11�

Using � as a normalizing constant, we can normalize any
Fourier transform quantity q̂�� ,�� by dividing by �. Let

q̂*��,�� = q̂��,��/� , �12�

denote the normalized quantity. The function 
f ê
*�� ,��
 is

highly oscillatory, and 0� 
f ê
* 
 �1. Since fe�x ,y� is real, its
Fourier transform is conjugate symmetric. Therefore, the p
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unction 
f ê
*�� ,��
 is symmetric about the origin on any

ine through the origin in the �� ,�� plane. The same is true
or the blurred image data 
ĝ*�� ,��
.

For any 2N	2N image g�x ,y�, the discrete FFT ĝ�� ,��
s a 2N	2N array of complex numbers. The frequencies �
nd � are integers lying between −N and N, and the zero
requency is at the center of the transform array. This or-
ering is achieved by premultiplying g�x ,y� by �−1�x+y. We
re interested in the values of such transforms along single
ines through the origin in the discrete �� ,�� plane. The
iscrete transforms 
ĝ*�� ,0�
 and 
ĝ*�0,��
 are immediately
vailable. Image rotation can be used to obtain transforms
long other directions. All 1-D Fourier plots shown in this

ig. 3 Fourier behavior in 1024	1024 image of spiral galaxy M101
s typical of a large class of astronomical images. The upper image
as taken by Jacoby, Bohannan, and Hanna, Kitt Peak National
bservatory �National Optical Astronomy Observatory/Association
f Universities for Research in Astronomy/National Science Founda-
ion �NOAO/AURA/NSF��: �a� ln 
 ĝ*�� ,0�
 on 
� 
 �500 for M101 im-
ge. While local behavior is highly oscillatory, global behavior is
enerally monotone decreasing and convex. �b� Least-squares fit of

n 
 ĝ*�� ,0�
 with u���=−� 
�
2�−A, with A=3.85. Fit develops cusp at
=0 and returns �=0.385 and �=0.206. As explained in Sec. 8,
uch trial least-squares fits, using different values of A�0, are basic
o the APEX method.
aper are taken along the axis �=0 in the �� ,�� plane, as is

October 2006/Vol. 45�10�
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Carasso: APEX blind deconvolution…
the case in Fig. 3. In these plots, the zero frequency is at the
center of the horizontal axis, and the graphs are necessarily
symmetric about the vertical line �=0.

The class of astronomical images g�x ,y� considered in
this paper can be described in terms of the behavior of
ln 
 ĝ*�� ,��
 along single lines through the origin in the
�� ,�� plane. While local behavior is highly oscillatory, glo-
bal behavior is generally monotone decreasing and convex
on ��0. This is shown in Fig. 3�a� for a typical galaxy
image along the line �=0, and similar behavior is found
along other lines through the origin in the �� ,�� plane. A
least-squares fit to the oscillatory trace in Fig. 3�a� with a
smooth curve, provides a good representation of this global
monotone convexity property on ��0. �A convex function
is such that given any two distinct points A and B on its
graph, the straight line segment joining A and B lies above
the graph.� Many, but not all, astronomical images exhibit
similar globally monotone convex Fourier behavior. Figure
3�b� illustrates the type of least-squares fit that is basic to
the APEX method, and that is described more fully in Sec.
8. However, use of the APEX method in the manner to be
described later is intended only for images where Fourier
behavior is similar to that shown in Fig. 3�a�.

5 SECB Deblurring and Diffusion Equations
The SECB method is a direct �noniterative� FFT-based im-
age deblurring technique designed for equations in the form
of Eq. �5�, where h�x ,y� is assumed known and belongs to
G. A complete discussion of that method, together with
error bounds and comparisons with other methods, may be
found in Ref. 27. Significantly, the SECB method does not
impose smoothness requirements, such as prescribed
bounds on the Laplacian or other derivatives of the un-
known image f�x ,y�. This is an important consideration
since many images have sharp edges and other localized
nondifferentiable features. In addition, knowledge of the
actual statistical character of the data noise n�x ,y� in Eq.
�6� is not required, and the noise may be multiplicative.
However, an estimate of the L2 norm of n�x ,y� is required.

Considerable experience has been accumulated with the
SECB method. That experience indicates that the SECB
method can often recover fine-scale features in cases where
this is not feasible with iterative methods such as the Lucy-
Richardson, maximum entropy, or Marquina-Osher meth-
ods. Documented numerical experiments supporting these
claims can be found in Refs. 2, 12, and 27.

Class G PSFs are the Green’s functions for certain linear
fractional diffusion equations. As a consequence, the
blurred noisy image g�x ,y� on the right of Eq. �5� can be
interpreted as the noise corrupted solution, at time t=1, of
the diffusion initial value problem

�u

�t
= − �

i=1

J


i�− ���iu, 0 � t � 1,

u�x,y,0� = fe�x,y� , �13�

where 
i=�i�4�2�−�i, and � denotes the Laplacian. When
the exact initial value fe�x ,y� is given, u�x ,y , t�=Htfe is the

solution of Eq. �13� at time t, and u�x ,y ,1�=ge�x ,y�, in d
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greement with Eq. �7�. Here, Ht is the convolution integral
perator defined in Eq. �8�.

Solving the deconvolution problem in Eq. �5� is equiva-
ent to solving the ill-posed backward in time problem in
q. �13�, namely, given the noisy data g�x ,y� at time t=1,
nd an approximation f�x ,y� to the initial data fe�x ,y�. The
ECB method is a regularization method for solving that

ll-posed diffusion problem, one that takes into account the
resence of noise in the blurred image data g�x ,y� at t=1.
he SECB deblurred image f†�x ,y� is an approximation to

fe�x ,y� that is obtained in closed form in Fourier space.
ith z̄ denoting the complex conjugate of z,

f †̂��,�� =
ĥ��,��ĝ��,��


ĥ��,��
2 + K−2
1 − ĥs��,��
2
, �14�

eading to f†�x ,y� on inverse transformation. Here, the
ositive constants s�1 and K are regularization param-
ters, chosen on the basis of prior information, as discussed
n Ref. 2. Typical values used in this paper might be s
0.01 and K=1000. As in Eq. �8�, we also form and display

†�x,y,t� = Htf†�x,y� , �15�

or selected decreasing values of t lying between 1 and 0.
his simulates marching backwards in time in Eq. �13�, and
nables monitoring the gradual deblurring of the image. As
→0 the partial restorations u†�x ,y , t� become sharper.
uch slow motion deconvolution enables detection of fea-

ures in the image before they become obscured by noise or
inging artifacts. As seen in the following, such marching
ackward in time is a vital element in the APEX method.
iagnostic statistical information about u†�x ,y , t� can also
e calculated for selected values of t as t→0. Of particular
nterest are the discrete L1 norm, defined as follows for
N	2N images:

u†�t��L1 = �2N�−2 �
x,y=1

2N


u†�x,y,t�
 , �16�

nd the discrete total variation or TV norm, which mea-
ures image gradients

u†�t��TV = �2N�−2 �
x,y=1

2N−1

��ux
†�x,y,t��2 + �uy

†�x,y,t��2
1/2, �17�

here

x
†�x,y,t� = �2N�−1�u†�x + 1,y,t� − u†�x,y,t�� ,

y
†�x,y,t� = �2N�−1�u†�x,y + 1,t� − u†�x,y,t�� . �18�

In blind deconvolution applications of the SECB
ethod, APEX-detected values for �i and �i are used to

orm the 2N	2N array in Eq. �9�. This is input into Eq.
14�, and inverse FFT algorithms are then used to obtain
†�x ,y , t� in Eq. �15�. This may result in individual pixel
alues that are negative. Accordingly, all negative values
re reset to the value zero. For such nonnegative image

1 †
ata, the discrete L norm �u �t��L1 in Eq. �16� is propor-
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Carasso: APEX blind deconvolution…
tional to the total flux. In a well-behaved deconvolution
process, this total flux should be conserved, and �u†�t��L1

should remain constant as t→0. At the same time, the dis-
crete image gradient norm �u†�t��TV in Eq. �17� should in-
crease monotonically as t→0, reflecting the gradual sharp-
ening of edges and other localized singularities in the
restored image.

6 A Priori Nonuniqueness in Blind
Deconvolution

Blind deconvolution seeks to deblur an image without
knowing the cause of the blur. This is a difficult mathemati-
cal problem in which severe ill-conditioning is com-
pounded with nonuniqueness of solutions. A priori con-
straints can reduce, but not entirely eliminate, the
multiplicity of solutions. While many of these solutions are
physically meaningless and can be rejected on physical
grounds, there often remain infinitely many visually dis-
tinct, physically meaningful solutions. Consider the experi-
ment in Fig. 4.

The sharp 512	512 Sydney image fe�x ,y� in Fig. 4�a�
was synthetically blurred by convolution with a Lorentzian
density h�x ,y� with �0=0.075 and �0=0.5. This produced
the blurred image ge�x ,y� in Fig. 4�b�. To avoid distractions
caused by noise, the blurred image ge�x ,y� in this experi-
ment was computed and stored in 64-bit precision. Deblur-
ring Fig. 4�b� with the correct PSF values �=0.075 and �
=0.5 produces Fig. 4�c�. This is in excellent visual agree-
ment with fe�x ,y� in Fig. 4�a�, as expected. However, Fig.
4�d�, obtained from Fig. 4�b� using the “incorrect” PSF
values �=0.195 and �=0.4, appears even sharper! It is not
evident how, or why, one would eliminate the reconstruc-

Fig. 4 Nonuniqueness in blind deconvolution. Distinct PSFs exist
that produce distinct high-quality reconstructions from the same
blurred image; �a� original sharp 512	512 Sydney image; �b� syn-
thetically blurred Sydney image created by convolution with Lorent-
zian density obtained by choosing �=0.075 and �=0.5 in Eq. �2�, �c�
deblurring of image �b� using correct OTF parameters �=0.075 and
�=0.5, and �d� deblurring of image �b� using “incorrect” OTF param-
eters �=0.195 and �=0.4. Deblurred images obtained using SECB
procedure in Sec. 5, with s=0.001 and K=10,000.
tion in Fig. 4�d�. Both deblurred images were obtained us-
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ng the SECB method with s=0.001 and K=10,000. One-
imensional cross sections of the two distinct PSFs used in
ig. 4 are displayed in Fig. 5. These PSFs exhibit distinct
eavy-tail behavior not shown in Fig. 5. The two restora-
ions also have distinct L1 and TV norms, as shown in
able 1.

Note that Fig. 4�d� was obtained using a specific pair
� ,��, where ���0 and ���0. In fact, there are infinitely
any other specific pairs �� ,�� capable of producing dis-

inct, high-quality reconstructions from the same blurred
mage ge�x ,y� in Fig. 4�b�. These reconstructions may dif-
er markedly from one another at individual pixels, while
eing correct visual representations of the object that was
maged. This is an inherent, a priori, nonuniqueness prop-
rty of the blind deconvolution problem, independently of
ny particular algorithm that might be used to solve that
roblem.

This situation is reminiscent of the multitude of distinct
mages that often exist for some unique astronomical ob-
ects, such as the Whirlpool Galaxy �M51�, for example. In
hat case, these noticeably different photographic represen-
ations of the identical object are all physically meaningful
nd visually correct.

The nonuniqueness of good solutions to the blind decon-
olution problem has not been fully explored in the litera-
ure. When a blind algorithm produces a unique solution,
his may only indicate that that solution is the only one

Table 1 Behavior in deblurred images in Fig. 4.

estoration �, � L1 Norm TV Norm

mage �C� �=0.075, �=0.500 173 6419

mage �D� �=0.195, �=0.400 171 7500

ig. 5 Two distinct PSFs that deblur the image in Fig. 4�b�. Curves
and D are 1-D cross sections of the 512	512 PSFs that respec-

ively produced the images in Figs. 4�c� and 4�d�. These PSFs also
xhibit distinct heavy-tail behavior.
October 2006/Vol. 45�10�
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Carasso: APEX blind deconvolution…
accessible to that particular algorithm. Conceivably, there
may be numerous additional good solutions that remain in-
accessible to the algorithm. And some of these reconstruc-
tions may exhibit features of great interest.

A basic property of the APEX method is that it generally
provides several PSFs that can be used to obtain useful
reconstructions of a given blurred image. As in the preced-
ing example, these reconstructions will differ from one an-
other at individual pixels while being visually correct. As is
well known, a priori knowledge about the desired solution
is a necessary ingredient for solving ill-posed inverse prob-
lems. Such knowledge is expected to guide the user in the
selection of the best solution out of the multiplicity of good
solutions.

7 Slow Motion Blind Deconvolution
and the APEX Method

The following observations underlie the APEX method. In
the basic relation

g�x,y� = h�x,y� � fe�x,y� + n�x,y� , �19�

we can safely assume that the noise n�x ,y� satisfies

�
R2


n�x,y�
 dx dy � �
R2

fe�x,y� dx dy = � � 0, �20�

so that


n̂*��,��
 � 1. �21�

Consider the case where the OTF is a pure Lévy density

ĥ�� ,��=exp�−���2+�2���. Since g=ge+n,

ln
ĝ*��,��
 = ln
exp �− ���2 + �2���f ê
*��,�� + n̂*��,��
 .

�22�

Let �= ��� ,�� 
�2+�2��2� be a neighborhood of the ori-
gin where

exp�− ���2 + �2���
f ê
*��,��
 � 
n̂*��,��
 . �23�

Such an � exists since Eq. �23� is true for �=�=0 in view
of Eq. �21�. The radius ��0 of � decreases as � ,�, and n
increase. However, in many applications, � ,�, and n�x ,y�
are sufficiently small that � extends into the high-
frequency range. For �� ,����, we have

ln 
ĝ*��,��
 � − ���2 + �2�� + ln 
f ê
*��,��
 . �24�

Because of the radial symmetry in the PSF, it is sufficient to
consider Eq. �24� along a single line through the origin in
the �� ,�� plane. Choosing the line �=0, we have

ln 
ĝ*��,0�
 � − �
�
2� + ln 
f ê
*��,0�
, 
�
 � � . �25�

Some type of a priori information about fe�x ,y� is nec-
essary for blind deconvolution. In Eq. �25�, knowledge of

ln 
 f ê
*�� ,0�
 on 
� 
 �� would immediately yield � 
�
2� on

that interval. Moreover, any other line through the origin
ˆ *
could have been used in Eq. �24�. However, ln 
 fe �� ,0�
 is F
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ighly oscillatory, and such detailed knowledge is unlikely
n practice; nor is it actually necessary. Much cruder knowl-
dge, in the form of the smooth curve � that best approxi-

ates ln 
 f ê
*�� ,0�
 in the least-squares sense, turns out to

e sufficient. Indeed, knowledge of the smooth curve � is
he basis for the BEAK method1 of determining � and �
rom Eq. �25�. However, when � is not available, the APEX
ethod must identify a useful PSF from Eq. �25�, using

ore elusive information about ln 
 f̂ e
*�� ,0�
. To compensate

or this handicap, the SECB marching backward in time
ption in Eq. �15� is used, together with visual monitoring
f the unfolding deconvolution. Accompanying diagnostic
tatistical information as t→0, such as the discrete norms
u†�t��L1 and �u†�t��TV in Eqs. �16� and �17� provide the
eans for readjusting initially detected PSF parameters �

nd � and enforcing conservation of total flux. The method
ssumes that fe�x ,y� is a recognizable object, and may re-
uire several interactive trials prior to locating a suitable
SF. As previously noted, such trial SECB restorations are
asily obtained.

Conservation of Total Flux
n the absence of the smooth least-squares fit �, we replace

n 
 f ê
*�� ,0�
 by a negative constant −A in Eq. �25�. For any

�0, the approximation

n 
ĝ*��,0�
 � − �
�
2� − A �26�

s not valid near �=0, since the curve u���=−� 
�
2�−A, has
A as its apex. Choosing a value of A�0, we best fit

n 
 ĝ*�� ,0�
 with u���=−� 
�
2�−A on the interval 
� 
 ��,
sing nonlinear least-squares algorithms. This is illustrated
n Fig. 3�b�. The resulting fit is close only for � away from
he origin. The returned values for � and � are then used in
he SECB deblurring algorithm. Different values of A re-
urn different pairs �� ,��. Experience indicates that useful
alues of A generally lie in the interval 3�A�7. Increas-
ng the value of A decreases the curvature of u��� at �=0,
esulting in a larger value of � together with a smaller
alue of �. A value of A�0 that returns ��1 is clearly too
arge, as ��1 is impossible for probability density
unctions.15 Decreasing A has the opposite effect, produc-
ng lower values of � and higher values of �. As a rule,
econvolution is better behaved at lower values of � than it
s when ��1. A significant discovery is that an image
lurred with a pair ��0 ,�0� can often be successfully de-
lurred with an appropriate pair �� ,��, where ���0 and
��0. An example of this phenomenon is shown in Fig.
�d� in connection with the blurred Sydney image. An ef-
ective interactive framework for performing the preceding
east-squares fitting is the fit command in DATAPLOT
Ref. 28�. This is a high-level English-syntax graphics and
nalysis software package developed at the National Insti-
ute of Standards and Technology. This software tool was
sed throughout this paper.

The following version of the APEX method has been
ound useful in a variety of image enhancement problems
here the image g�x ,y� is such that ln 
 ĝ*�� ,0�
 is gener-

lly globally monotone decreasing and convex, as shown in

ig. 3�a�. Choose a value of A�3 in Eq. �26�, so that the

October 2006/Vol. 45�10�
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Carasso: APEX blind deconvolution…
least-squares fit develops a well-formed cusp at �=0, as
shown in Fig. 3�b�. Using the returned pair �� ,�� in the
SECB method, obtain a sequence u†�x ,y , t� of partial res-
torations as in Eq. �15�, as t decreases from t=1. With a
good choice of A, the total flux norm �u†�t��L1 should re-
main constant or increase very slowly as t decreases, while
the image gradient norm �u†�t��TV should increase mono-
tonically as t decreases from t=1.

Most often, the initially detected value of � turns out to
be too large. The corresponding PSF is then too wide in
physical �x ,y� space, or equivalently, the OTF is too nar-
row in Fourier �� ,�� space. Theoretically, use of too wide a
PSF all the way to t=0, implies sharpening features that
may have already become infinitely sharp at some t��0. In
practice, this leads to severe ringing and other undesirable
artifacts at t=0, indicating that continuation backwards in
time has proceeded too far. An accompanying symptom of
this ill-behaved deconvolution, is that the total flux norm
�u†�t��L1 does not remain constant, but increases apprecia-
bly as t→0. Choosing a new and larger value of A in Eq.
�26�, returns a smaller �, but with a larger �. A useful
strategy is to locate a pair �� ,�� such that �u†�t��L1 in-
creases slowly enough as t decreases, that its value at t
= t�=0.5, say, is only a very few percent more than its
initial value at t=1. In that case, the deconvolution is ter-
minated at t= t�. To enforce total flux conservation, the re-
sulting image at t� is rescaled by multiplying it by the
constant C�= �u†�1��L1 / �u†�t���L1. Ideally, C� should be
very close to unity. However, it is occasionally beneficial to
allow more aggressive deblurring, with the L1 norm in-
creasing by as much as 10% prior to rescaling to bring out
important fine-scale details.

Marching backward in time allows for simultaneous
sampling of numerous values of � while keeping � fixed.
Terminating the deconvolution at t= t��0, is equivalent to
readjusting the original � while keeping the same value of
�. If the pair �� ,�� produces a high-quality restoration at
t= t��0, the pair ��* ,��, where �*= �1− t���, will produce
the same quality results at t=0. We therefore distinguish
between the originally detected �, and the effective � ,�*.
In general, there will be many values of A in Eq. �26�
returning pairs �� ,�� that produce good reconstructions at
some t���0. A large number of distinct pairs ��* ,�� can
thus be found that produce useful, but distinct, results at t
=0.

Ideally, successful APEX blind deconvolution should in-
corporate three elements: clear visual evidence of sharpen-
ing, accompanied by a substantial increase in TV norm, and
conservation of L1 norm.

We have been assuming ĥ�� ,�� to be a pure Lévy OTF
in Eq. �19�. The procedure is very similar for the more
general class G OTFs in Eq. �4�. Here, given prior starting
values for the �i, �i, i=1,J, we best-fit ln 
 ĝ*�� ,0�
 with
−�i=1

J �i 
�
2�i −A, with suitably preselected A�3. This re-
turns J initially detected pairs ��i ,�i�. As before, by moni-
toring the deconvolution process and terminating it at the
appropriate time t��0, we arrive at effective values �i

*

= �1− t���i, such that the J pairs ��i
* ,�i� produce useful
sharpening at t=0. Note that in most applications of the fi

Optical Engineering 107004-8
PEX method considered to date, including those in this
aper, high-quality reconstructions were obtained using the
implest version of that method where J=1. This indicates
hat in many applications, a single pure Lévy stable OTF
an often be found that sufficiently well approximates the
ystem’s more complex composite OTF.

All PSFs and OTFs depicted in this paper, including
hose in Fig. 5, are based on effective Lévy parameter val-
es ��* ,��, producing optimal reconstructions at t=0.

Applications to Gray-Scale Galaxy
Images

ur first example, in Fig. 6�a�, is a 1024	1024 8-bit gray-
cale image g�x ,y� of the spiral galaxy M101. This is
dapted from a similar size color JPEG image obtained by
acoby, Bohannan, and Hanna, Kitt Peak National Optical
stronomy Observatory �NOAO/AURA/NSF�. A plot of

n 
 ĝ*�� ,0�
 was shown earlier in Fig. 3�a�. Using A=3.85,
e best-fit ln 
 ĝ*�� ,0�
 with −� 
�
2�−A on 
� 
 �500. The

ig. 6 APEX blind deconvolution of M101 image: �a� original 1024
1024 M101 image, obtained by Jacoby, Bohannan, and Hanna,
itt Peak National Observatory �NOAO/AURA/NSF�, and �b� APEX-
rocessed image is noticeably sharper. Both images have identical
1 “total flux” norms, but the TV “gradient” norm in image �b� is three

imes larger than in image �a�.
t develops a well-formed cusp at �=0, as shown in Fig.

October 2006/Vol. 45�10�
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Carasso: APEX blind deconvolution…
3�b�, and returns �=0.385 and �=0.206. The patterns illus-
trated in Fig. 3 are typical of all the images discussed in
this paper. Using these Lévy parameters in the SECB
method with s=0.01 and K=1300, we find that at first
�u†�t��L1 increases slowly as t decreases, from an initial
value of 12.84 at t=1 to a value of 12.96 at t=0.65. There-
after, �u†�t��L1 increases more rapidly. At the same time,
�u†�t��TV increases monotonically from 2134 at t=1 to 6747
at t=0.65, i.e., a threefold increase in gradient norm. De-
convolution was terminated at t�=0.65, and the effective
value of � is �*=0.135. The APEX-processed image,
shown in Fig. 6�b�, was rescaled so as to have the same L1

norm as Fig. 6�a�.
Our second example, in Fig. 7�a�, is a 1024	1024 8-bit

gray-scale image of the spiral galaxy M51. This is adapted
from a similar size color JPEG image obtained by Rector
and Ramirez, Kitt Peak National Optical Astronomy Obser-
vatory �NOAO/AURA/NSF�. Here, there is very substantial
documented APEX sharpening, and the deconvolved image

Fig. 7 APEX blind deconvolution of Whirlpool galaxy �M51� image:
�a� original 1024	1024 M51 image obtained by Rector and
Ramirez, Kitt Peak National Observatory �NOAO/AURA/NSF� and
�b� APEX processing very significantly improves original. “Total flux”
L1 norms of images �a� and �b� are equal, the but the “gradient” TV
norm in �b� is more than eight times larger than in �a�.
in Fig. 7�b� very visibly improves on the original. With A a
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5.0, least-squares fitting on 
� 
 �500, returned �=0.364
nd �=0.218. This was input into the SECB method with
=0.01 and K=1300. Deconvolution was terminated at t�

0.48, leading to an effective �*=0.189. Total flux �u†�t��L1

ncreased very slightly, from 30.58 at t=1 to 30.82 at t�

0.48. However, there was a corresponding eightfold in-
rease in �u†�t��TV, from 1948 at t=1 to 16,516 at t�

0.48. Both images in Fig. 7 have identical L1 norms.
Our next example, in Fig. 8�a�, is a 1024	1024 8-bit

ray-scale image of the spiral galaxy M74. This is adapted
rom a JPEG color image taken in August 2001 by the
MOS Team at the Gemini Observatory, Mauna Kea, Ha-
aii. With A=4.25, least-squares fitting of ln 
 ĝ*�� ,0�
 with
� 
�
2�−A, on 
� 
 �500, returned �=0.857 and �=0.157.
ere, more aggressive deblurring was permitted prior to

ermination. With s=0.01 and K=500 in the SECB method,
u†�t��L1 increased by 7% from 61.22 to 65.68 prior to ter-
ination at t�=0.65. The effective value of � is �*=0.3,

ig. 8 APEX blind deconvolution of M74 image: �a� original 1024
1024 M74 image obtained by GMOS Team at Gemini Observa-

ory, Mauna Kea, Hawaii, and �b� APEX processing significantly im-
roves original. “Total flux” L1 norms in images �a� and �b� are equal,
ut the “gradient” TV norm in �b� is four times larger than in �a�.
nd there was a corresponding fourfold increase in

October 2006/Vol. 45�10�
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Carasso: APEX blind deconvolution…
�u†�t��TV, from 4670 to 20,173. The APEX-processed im-
age in Fig. 8�b� was rescaled so as to have the same L1

norm as Fig. 8�a�.
In Fig. 9, ln 
 ĝ*�� ,0�
 is plotted on 
� 
 �500 for the M51

and M74 images before and after APEX processing. Evi-
dently, APEX processing amplifies high-frequency compo-
nents quite significantly. This amplification is carefully or-
chestrated; takes place in a stable, coherent fashion; and
enables recovery of the delicate fine structures and other
features that are evident in Figs. 7�b� and 8�b�. These be-
fore and after Fourier patterns are typical of all the images
shown in this paper.

10 APEX Processing of Color Imagery
Blind deconvolution of color imagery is a subject that is
still very much in its infancy. Major difficulties arise from
the necessity to identify the distinct point spread functions
associated with each color component. More serious diffi-
culties arise from the possibility of unbalanced blind sharp-
ening of individual color components. Conceivably, after a
long and uncertain iterative process, the reconstituted color

Fig. 9 APEX processing leads to significant change in high-
frequency Fourier behavior before and after for �a� the M51 image
and �b� the M74 image.
image may turn out to exhibit physically false colors, such p
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s a green sky or a purple sea. A fruitful mathematical
ramework wherein the blind color problem can be effec-
ively tackled has not yet been formulated.

One approach to color image processing traces its origin
o high-energy physics and string theory.29–31 Here, a color
mage is viewed as a 2-D manifold in 5-D space, namely,
x ,y ,R�x ,y� ,G�x ,y� ,B�x ,y�
, where R, G, and B are the
ed, green, and blue components of the color image g�x ,y�.
he so-called Polyakov functional is then defined on this
anifold, and gradient descent minimization of this func-

ional is implemented. This leads to the Beltrami flow equa-
ions, a coupled system of evolutionary nonlinear partial
ifferential equations for the three time-dependent images
�x ,y , t�, G�x ,y , t�, and B�x ,y , t�. That system is then
olved forward in time numerically, until a steady state is
eached. This formalism has been applied successfully to
olor image denoising. With considerable skill, such an ap-

ig. 10 APEX processing significantly sharpens Andromeda galaxy
M31� image. True color 1024	1024 original �a� was obtained by
ector and Wolpa, Kitt Peak National Observatory �NOAO/AURA/
SF�. Both images have equal L1 “total flux” norms in each RGB
omponent, but component TV “gradient” norms in enhanced image
b� are from two to three times larger than in �a�. Distinct component
TFs were detected and used.
roach might possibly be elaborated into a blind deconvo-

October 2006/Vol. 45�10�0
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Carasso: APEX blind deconvolution…
lution procedure. However, the computational effort re-
quired to process large-size imagery would be challenging.

A remarkable property of the APEX method is the ease
with which it can be applied to color imagery, and the
plausibility of the ensuing results. Clearly, the ability to try
numerous parameter values in quasi real time is of vital
significance. Indeed, efficient exploration in parameter
space is often the key to the successful solution of ill-posed
inverse problems.

The most natural way to use the APEX method is to first
decompose the blurred color image into its three RGB com-
ponents, apply the method to each component in turn, and
then reconstitute the deblurred image. For each RGB com-
ponent, visual monitoring of the partial deconvolution
u†�x ,y , t� in Eq. �15� as t→0 is accompanied by the calcu-
lated diagnostic quantities �u†�t��L1 and �u†�t��TV. As in the
case of gray-scale imagery already discussed, total flux
conservation in each RGB component is enforced by termi-
nating deconvolution at some appropriate time t��0 and
rescaling the image by multiplication by the constant C�

= �u†�1��L1 / �u†�t���L1. In this way, individual Lévy pairs
��* ,�� are detected for each RGB component, often leading
to distinct OTFs for each color. This methodology has also
been found to maintain the balance of colors in all of the
many examples to which it has been applied. We shall now
demonstrate this on several color images, including some
spectacular Hubble space telescope images.

Our first color image, in Fig. 10�a�, is a true-color
1024	1024 JPEG image of the Andromeda galaxy M31.
That image is part of a slightly larger original taken by
Rector and Wolpa at Kitt Peak National Optical Astronomy
Observatory �NOAO/AURA/NSF�. After decomposition
into RGB components, APEX least-squares fitting on 
� 

�500, was applied to each component in turn. The returned

Fig. 11 APEX processing enhances Hubble space telescope image
of NGC2207 involving two merging galaxies. Original �a� was ob-
tained by NASA, ESA, and the Hubble Heritage Team �STSci/
AURA�. Both images have equal L1 “total flux” norms in each RGB
component, but component TV “gradient” norms in enhanced image
�b� are almost three times larger than in �a�. Distinct component
OTFs were detected and used.
values for � and � were then input into the SECB method m
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ith s=0.01 and K=1300. Here, the red and green compo-
ents behaved very similarly, while the blue component’s
ehavior was distinctly different. A value of A=5.5 was
ound useful for the red and green components, while a
arger value, A=7.0, was found necessary to obtain well-
ehaved deconvolution in the blue component. For the red
omponent, �=0.403, �=0.189, and �u†�t��L1 increased by
bout 1.5% from 79.42 to 80.58 prior to termination at t�

0.60. The effective � in this case is �*=0.161. There was
corresponding threefold increase in �u†�t��TV from 8587

o 25,756. For the green component, �=0.410,�=0.187,
nd the L1 norm increased by 2% from 76.16 to 77.80 prior
o termination at t�=0.60. Here, �*=0.164. There was
gain a threefold increase in TV norm from 8552 to 25,862.
or the blue image, the larger value of A resulted in a
ubstantially lower initial �=0.0706, with corresponding
arger �=0.299. Here, �u†�t��L1 decreased very slightly,
rom 97.02 to 96.42, prior to termination at t�=0.60. This
ives �*=0.0282. The corresponding value of �u†�t��TV

ig. 12 APEX blind deconvolution enhances Hubble space tele-
cope image of Orion Reflection Nebula, NGC 1999. Original �a�
as obtained by NASA and the Hubble Heritage Team �STSci/
URA�. Both images have equal L1 “total flux” norms in each RGB
omponent, but component TV “gradient” norms in enhanced image
b� are 5.6 times larger than in �a�. Detected component OTFs
oincided.
ore than doubled, from 8687 to 20,057.

October 2006/Vol. 45�10�1
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Carasso: APEX blind deconvolution…
In this example, the red image OTF coincides with the
green image OTF, and both lie well below the blue image
OTF. Thus, APEX methodology perceived the blue compo-
nent to be much less blurred than the other two compo-
nents, and it processed the image accordingly. All three
components were rescaled to preserve L1 norms, prior to
reconstitution into Fig. 10�b�. Clearly, APEX restoration
has preserved the original colors, while producing a notice-
ably sharper image. Many more stars are now visible
around the edges of the disk, the dust lanes are more clearly
defined, and important structural details near the top left
corner of the image are now better resolved in Fig. 10�b�.
These improvements are very obvious when the full-size
APEX image is displayed on a modern high-resolution
computer screen, but become more muted at reduced size
on the printed page. Moreover, sharpening is significantly
more evident in each of the individual APEX-processed
gray-scale RGB components than is visually apparent in the
reconstituted color image. These observations apply gener-
ally to all of the color imagery displayed in this paper.

The next example is a Hubble space telescope image of
NGC2207, involving two merging galaxies. That image
forms part of the Hubble Heritage Gallery. The original full
resolution 2907	1486 tagged image file format �TIFF� im-
age was obtained by the National Aeronautics and Space
Administration �NASA�, European Space Agency �ESA�,
and the Hubble Heritage Team �STSci/AURA�, using
WFPC2. This was stepped down to the 1024	523 shown
in Fig. 11�a�. We used A=4.75 with s=0.01 and K=1300 in
the SECB method, and terminated the process at t�=0.65 in
each of the three components. Here, APEX perceived the
red component to be more blurred than the other two com-
ponents. For the red image, �*=0.111, �=0.203, and
�u†�t��L1 increased by 10.25% from 19.11 to 21.06, while
�u†�t��TV increased from 3862 to 11,182, a factor of 2.9. For

* †

Fig. 13 APEX processing significantly sharpens 15th anniversary
Hubble Space Telescope Whirlpool galaxy image, released on April
25, 2005. Original �a� recorded with ACS camera by NASA, ESA, S.
Beckwith �STScI�, and Hubble Heritage Team �STScI/AURA�. Both
images have equal L1 “total flux” norms in each RGB component,
but component TV “gradient” norms in enhanced image �b� are four
times larger than in �a�. Detected component OTFs coincided.
the green image, � =0.088, �=0.217, �u �t��L1 increased w
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rom 17.71 to 18.82 �6.8% �, while �u†�t��TV increased by a
actor of 2.8 from 3937 to 11,019. The blue image was
erceived to be the least blurred. Here, �*=0.052, �
0.247, �u†�t��L1 increased by 8.9% from 14.67 to 15.97,
hile �u†�t��TV increased by a factor of 2.4 from 7783 to
7,726. All three RGB components were rescaled to pre-
erve L1 “total flux” norms, prior to reconstitution into Fig.
1�b�.

Our third example is again a Hubble Heritage Gallery
mage, featuring the reflection nebula in Orion, NGC 1999.
he original 750	750 TIFF image was obtained by NASA
nd the Hubble Heritage Team �STSci/AURA�, using the
FPC2 camera. Here, this was stepped down to the 512
512 image shown in Fig. 12�a�. With A=5.5 and s

0.01,K=1300 in SECB, deconvolution was unusually

ig. 14 APEX processing enhances Hubble space telescope Tad-
ole Galaxy image. Original ACS image �a� taken by NASA, STScI,
SA, and the ACS science team. Both images have equal L1 “total
ux” norms in each RGB component, but component TV “gradient”
orms in enhanced image �b� are three times larger than in �a�.
etected component OTFs coincided.
ell-behaved and uniform. For each RGB component,

October 2006/Vol. 45�10�2
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Carasso: APEX blind deconvolution…
�u†�t��L1 was very nearly conserved prior to termination at
t�=0.6. This norm was near 97 for the blue image and near
67 for the red and green images. Moreover, all three OTFs
coincided in this case, as detected Lévy pairs for each com-
ponent were all very nearly equal to �*=0.3 and �=0.17.
Again, for each RGB component, �u†�t��TV increased by the
same factor of 5.6, from 1498 to 8539 for red, from 1450 to
8166 for green, and from 2291 to 12,890 for blue. The
enhanced image is shown in Fig. 12�b�.

As was the case with gray-scale galaxy images, the
striking improvements in visual quality in Figs. 10�b�,
11�b�, and 12�b� appear to correlate well with substantial
increases in TV norms.

11 ACS Imagery
The WFPC2 is Hubble’s main camera and workhorse in-
strument. Our final two examples feature images taken with
the ACS. That instrument outperforms all previous cameras
aboard the Hubble space telescope. To celebrate Hubble’s
15th birthday on April 25, 2005, NASA released the
sharpest-ever color image of the Whirlpool Galaxy M51.
That image was recorded with the ACS camera by NASA,
ESA, S. Beckwith �STScI�, and the Hubble Heritage Team
�STScI/AURA�. The original full resolution 7965
	11,477 TIFF image was stepped down to the 710

Fig. 15 Extent of sharpening in APEX processed image becomes
more evident when zooming on selected parts of images in Fig. 14.
Foreground objects as well as background galaxies in the original
�a�, are brought into sharper focus in the APEX image �b�.
	1024 TIFF image shown in Fig. 13�a�. After decompos- t

Optical Engineering 107004-1
ng that image into RGB components, APEX processing
sing A=5.25 was applied to each component in turn, with
=0.01 and K=1300 in the SECB method. All three com-
onents behaved very similarly, and deconvolution was ter-
inated at t�=0.65 in all three cases. For the red compo-

ent, �*=0.175, �=0.173, and �u†�t��L1 increased by 5.3%
rior to termination from 42.46 to 42.72. However,
u†�t��TV increased by a factor of 3.7 from 5170 to 19,247.
or the green component �*=0.177, �=0.171, and the L1

orm increased from 41.63 to 44.05, a 5.8% increase. The
V norm increased from 4361 to 17,801, a fourfold in-
rease. For the blue component, �*=0.160, �=0.186, and
he L1 norm increased from 41.11 to 43.28, a 5.3% in-
rease. There was again a fourfold increase in the TV norm,
rom 4805 to 19,839. All three component OTFs coincided
n this case. Individual RGB components were rescaled so
s to preserve L1 norms, prior to reconstitution as the
PEX image shown in Fig. 13�b�.
Our last example involves an image of the Tadpole Gal-

xy UGC10214, set against a backdrop that is said to con-
ain a “Whitman’s Sampler of galaxies stretching back to

ig. 16 One-dimensional cross sections of optical transfer functions
hat deblurred images discussed in Secs. 9–11: �a� Non-Hubble
TFs. �b� Hubble OTFs. For color images, the OTF shown is the
ne corresponding to the most blurred RGB component.
he beginning of time.” The full resolution 3806	4160

October 2006/Vol. 45�10�3
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Carasso: APEX blind deconvolution…
TIFF image was taken with the ACS camera by NASA,
STScI, ESA, and the ACS science team. This was stepped
down to the 937	1024 TIFF image shown in Fig. 14�a�.
After decomposing that image into RGB components,
APEX processing using A=5.25 was applied to each com-
ponent in turn, with s=0.01 and K=1300 in the SECB
method. Deconvolution was uniformly well behaved and
was terminated at t�=0.675 in all three components. For
the red component, �*=0.066, �=0.242, and �u†�t��L1 in-
creased by 2.2% prior to termination from 23.54 to 24.05.
At the same time, there was a threefold increase in �u†�t��TV

from 6085 to 18,606. For the green component �*

=0.068, �=0.234, and �u†�t��L1 increased by 3%, from
23.025 to 23.72. Again, there was a near threefold increase
in �u†�t��TV from 6970 to 19,645. For the blue component,
�*=0.103, �=0.201, the L1 norm increased by 3.2% from
25.25 to 26.07, while the TV norm increased threefold from
7731 to 22,756. Again, all three component OTFs coin-
cided. Individual RGB components were rescaled so as to
preserve L1 norms, prior to reconstitution as the APEX im-
age shown in Fig. 14�b�.

Zooming on selected parts of the images in Fig. 14 pro-
vides a useful comparison, as shown in Fig. 15. The extent
of sharpening in the APEX processed image Fig. 15�b� be-
comes clearly evident as foreground objects, as well as
background galaxies, are brought into sharper focus.

The ability of the APEX method to enhance ACS images
is remarkable and unanticipated. Figure 16 shows 1-D
cross-sectional plots of the optical transfer functions that
were detected and used to process all of the images dis-
cussed in Secs. 9–11. Non-Hubble OTFs are shown in Fig.
16�a�, and Hubble OTFs in Fig. 16�b�. The OTFs shown for
color images are the ones associated with the most blurred
RGB component. These OTFs plots are based on effective
values ��* ,��, that produce high-quality SECB reconstruc-
tions at t=0. These are the values shown in Table 2, which
summarizes the results of the APEX experiments described
in Secs. 9–11. The last column in Table 2 indicates the

Table 2 Summary of APEX experiments in Secs. 9–11.

Image Size A t� �* � 	TV

M101 �KPNO� 1024	1024 3.85 0.65 0.135 0.206 	3

M51 �KPNO� 1024	1024 5.00 0.48 0.189 0.218 	8

M74 �GMOS� 1024	1024 4.25 0.65 0.300 0.157 	4

M31 �KPNO� 1024	1024 5.50 0.60 0.164 0.187 	3

Merging �HST� 1024	523 4.75 0.65 0.111 0.203 	3

Orion �HST� 512	512 5.50 0.60 0.300 0.168 	6

M51 �HST� 710	1024 5.25 0.65 0.177 0.171 	4

Tadpole �HST� 937	1024 5.25 0.65 0.068 0.234 	3

Note: KPNO is Kitt Peak National Observatory, GMOS is Gemini
Observatory Photo Gallery, and HST is the Hubble Space Tele-
scope.
resulting multiplying factors for TV norm increases. With

Optical Engineering 107004-1
n average value of � less than 0.2, the preceding 8 OTFs
re very far from Lorentzian ��=0.5�, let alone Gaussian
�=1.0�.
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