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Abstract

We present a method for multipartite entanglement purification of any stabilizer state shared by

several parties. In our protocol each party measures the stabilizer operators of a quantum error-

correcting code on his or her qubits. The parties exchange their measurement results, detect or

correct errors, and decode the desired purified state. We give sufficient conditions on the stabilizer

codes that may be used in this procedure and find that Steane’s seven-qubit code is the smallest

error-correcting code sufficient to purify any stabilizer state. An error-detecting code that encodes

two qubits in six can also be used to purify any stabilizer state. We further specify which classes

of stabilizer codes can purify which classes of stabilizer states.
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I. INTRODUCTION

In this paper we describe a method for entanglement purification that is able to purify

any stabilizer or graph state. The goal of a purification protocol is to increase the purity

of a mixed state whose qubits are divided among several parties able to communicate only

through classical channels. Specifically, suppose the state |ψ〉 is a pure entangled state of n

qubits and each qubit of |ψ〉 is sent to a different party (Alice, Bob, Charlie, . . . ). In this

initial stage, the qubits are transmitted through noisy quantum channels, so there is some

probability that each may be affected by Pauli σx, σy, or σz errors. After the transmission,

|ψ〉 becomes the mixed state ρ̂. If m copies of |ψ〉 are prepared and transmitted, so that

each party holds m qubits, it may be possible to obtain one or more copies of |ψ〉 with less

noise (more purity). For this purpose, the parties may use local quantum operations and

measurements on their own qubits and classical communication.

The entanglement purification (or “entanglement distillation”) problem was first studied

by Bennett and co-authors in 1995 [1]. They describe a method for two separate parties

to purify a Bell pair by use of local operations on copies of noisy Bell pairs and classical

communication between the two parties. Since then many other researchers have studied this

problem, introducing new protocols for the purification of Bell pairs and providing methods

for purifying other classes of entangled states. For examples of this research see [2–11].

In the remainder of this section we give a brief review of stabilizers and introduce our

method of using operator arrays to characterize many copies of entangled states shared by

sevaral parties. In Sec. II we discuss the use of quantum error-detecting and -correcting

codes for purification. In Sec. III we give classes of stabilizer codes that can be used to

purify specific classes of states including the class of all stabilizer states. In Sec. IV we

discuss these results and make some concluding remarks.

A. Stabilizer Review

When using the stabilizer formalism, instead of writing out vectors in a Hilbert space,

we specify a quantum state |ψ〉 using (i) a set of operators that have |ψ〉 as an eigenstate

and (ii) the eigenvalues of |ψ〉 under each such operator (see chapter 10 of [12]). This set

of operators is the stabilizer of |ψ〉, and we say “|ψ〉 is stabilized by” this set. Although
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the stabilizer often refers to a set of operators whose eigenvalue is one, in this paper we

allow the stabilizer to include operators with other eigenvalues. Several states may share

the same stabilizer, but have different eigenvalues for the members of the stabilizer. We

are interested in states determined by stabilizers consisting of the set of stabilizing Pauli

products – tensor products of Pauli matrices including the identity matrix. Such states are

called “stabilizer states”. Stabilizer states are equivalent to “graph states” [13], where the

latter are specified by means of graphs rather than stabilizers. The stabilizer of stabilizer

states necessarily consists of commuting Pauli products. It forms a projective group (closed

under multiplication up to a phase), so it is sufficient to specify its generators. The number

of independent generators must equal the number of qubits. Because Pauli matrices have

eigenvalues ±1, each generator must also have eigenvalue ±1.

For example, the Bell state |B00〉 = |00〉 + |11〉 (with normalization omitted) has sta-

bilizer generators XX and ZZ and eigenvalues +1 and +1, respectively. Here we use the

abbreviations X, Y and Z for the Pauli σx, σy and σz matrices. Expressions such as XY

refer to the Pauli product where σx and σy act on the first and second qubits, respectively.

We can specify |B00〉 by means of its stabilizer and eigenvalues as follows:

|B00〉 =





X X

Z Z



 ,





+1

+1



 . (1)

Note that these are not numeric matrices in the square brackets. We are simply listing each

generator and its corresponding eigenvalue on each row. The stabilizers of the three other

Bell states are also generated by XX and ZZ, but they have different eigenvalues. The

three qubit Greenberger-Horne-Zeilinger (GHZ) [14] state is

|000〉 + |111〉 =











X X X

Z Z I

Z I Z











,











+1

+1

+1











. (2)

The Bell states and the GHZ states are both in the class of CSS states (named after Calder-

bank, Shore and Steane). A stabilizer state is a CSS state if it can be transformed with

unitary single qubit operations into a form in which each of its stabilizer generators can be

written using only X’s and I’s or Z’s and I’s (the “CSS form”). The class of CSS states is

equivalent to the two-colorable graph states [15]. Methods for purifying any CSS state are

already known [5, 9].
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Consider the state

|∆〉 =











X Z Z

Z X Z

Z Z X











,











+1

+1

+1











. (3)

This state cannot be written in the CSS form, and it is impossible to transform |∆〉 into a

CSS state by using single qubit operations. Readers familiar with the techniques of graph

states may recognize that this state has a triangle graph.

We can also use the stabilizer formalism to describe quantum error-detecting and -

correcting stabilizer codes. (Since all codes considered here are stabilizer codes, from now

on we omit the modifier “stabilizer”.) To define a code, the stabilizer generators are used

to specify a (more than one dimensional) subspace into which one may encode quantum

information. In this case, the subspace consists of the states with identical eigenvalues for

each generator. If we want to encode m logical qubits using n physical qubits, the code

is specified by n −m independent generators of the stabilizer. For example the four qubit

error-detecting code C4 encodes two logical qubits using four physical qubits [16] and is

described by the stabilizer with generators

C4 ⇔





X X X X

Z Z Z Z



 ,





+1

+1



 . (4)

The Hilbert space of the four physical qubits contains 16 dimensions, but the set of states

with +1 eigenvalues of the above operators is a four-dimensional subspace. Four dimensions

are sufficient to contain two logical qubits, which we specify by giving their logical Pauli

operators:

X
(1)
L = XXII (5a)

Z
(1)
L = ZIZI (5b)

X
(2)
L = IXIX (5c)

Z
(2)
L = IIZZ. (5d)

The encoded logical operators have all the algebraic relationships that we expect from the

X and Z operators on two qubits. Because the state of this four qubit system is always

confined to the +1 eigenstate of the stabilizers, there are many equivalent representations

of the logical qubit operators, which we can obtain by multiplying the logical operators by
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members of the stabilizer group. For example we can also write

X
(1)
L ' XXXX ×XXII ' IIXX, (6)

because each of these alternatives has the same effect on the encoded logical qubits.

C4 is an error-detecting code. An X error on any single physical qubit results in a state

for which the eigenvalue of the generator ZZZZ is changed to −1. A Z error will change

the eigenvalue of XXXX to −1, and a Y error changes both eigenvalues. To detect errors

we simply measure each of the code’s generators. We call each such measurement a “parity

check”, and the operator being measured is the “parity check operator”. We assume that

the measurements are projective so that the state after a measurement is a projection of

the initial state onto one of the two eigenspaces of the parity check operator. From each

parity check we obtain an eigenvalue, which must be ±1. The “syndrome” is the vector of

eigenvalues for the generators. The eigenvalue for any parity check operator can be inferred

from the syndrome. Because for C4, the syndrome does not tell us which qubit received the

error, we are unable to correct one-qubit errors.

Codes such as C4 with the property that there is a choice of stabilizer generators that can

be written with only X’s and I’s or Z’s and I’s are called “CSS codes”.

The smallest error-correcting code that protects a single logical qubit requires five physical

qubits [2, 17]. It has the generators

C5 ⇔















X Z Z X I

I X Z Z X

X I X Z Z

Z X I X Z















,















+1

+1

+1

+1















. (7)

This code has the logical operators

XL = XXXXX (8a)

ZL = ZZZZZ, (8b)

and is not a CSS code.

Another code that we use is Steane’s seven qubit code C7, which encodes one logical qubit
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in seven physical qubits [18]. It has the generators

C7 ⇔



























X I X I X I X

I X X I I X X

I I I X X X X

Z I Z I Z I Z

I Z Z I I Z Z

I I I Z Z Z Z



























,



























+1

+1

+1

+1

+1

+1



























, (9)

and the logical qubit operators

XL = XXXXXXX (10a)

ZL = ZZZZZZZ. (10b)

Any single qubit error changes the syndrome. The syndrome gives sufficient information to

identify which of the qubits received the error, so it can then be corrected. This code is a

CSS code, and it has the additional property that it is Hadamard invariant. In particular,

if we apply the Hadamard H operator to every qubit (“transversal Hadamard”), then the

code is unchanged because H performs the transformation

H : X → Z (11a)

Z → X. (11b)

Consequently the stabilizer is transformed into itself with no change in eigenvalues for the

generators. Furthermore, the transversal Hadamard exchanges logical X and Z operators,

from which we infer that its effect on the code is a logical Hadamard operator. We call

CSS codes whose set of stabilizers is Hadamard invariant and for which there are logical

operators in CSS form with respect to which the transversal Hadamard acts as a logical

Hadamard on each encoded qubit, “CSS-H codes”. Note that C4 is not a CSS-H code. The

seven-qubit code is the smallest nontrivial CSS-H error-correcting code. However, there is

a six-qubit CSS-H error-detecting code encoding two logical qubits, which was described in

[19]. It has generators

C6 ⇔















X I X X I X

I X X I X X

Z I Z Z I Z

I Z Z I Z Z















,















+1

+1

+1

+1















, (12)
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and the logical qubit operators

X
(1)
L = XXXIII (13a)

Z
(1)
L = ZZZIII (13b)

X
(2)
L = IIIXXX (13c)

Z
(2)
L = IIIZZZ. (13d)

We have chosen different logical operators from those used in [19], so that the code is

explicitly H-invariant. C6 detects errors, and if we know whether the error is in the first or

second group of three qubits, we can also correct it. Otherwise we know what type of error

has affected the logical qubits, but not which logical qubit was affected. C6 is the smallest

CSS-H error-detecting code.

B. Operator Arrays

In entanglement purification we have n parties and m copies of a large entangled state.

The copies are prepared and distributed so that each party holds one qubit of each copy,

for a total of m qubits per party. The stabilizer group of the full state of this m × n qubit

system has m × n generators, each of which is composed of m × n Pauli matrices. For

example, if two copies of the Bell pair |B00〉 are shared by Alice and Bob, the generators for

this four-qubit system are





















A1 A2 B1 B2

X I X I

Z I Z I

I X I X

I Z I Z





















, (14)

where we use the top line in the chart to label each qubit as belonging to Alice or Bob and

copy one or two of the shared state. Notice that qubits A1 and B1 are entangled with one

another but not with A2 and B2.

We would like a method for representing the stabilizer generators that emphasizes the

structure of these states. Instead of writing each generator as a single row in a table, we

write each generator as an array whose columns belong to a particular party and whose rows
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represent a particular copy of the shared entangled state. The set of generators is a list of

such arrays. Using these operator arrays, we represent the two copies of the Bell pair in Eq.

(14) with










A B

1 X X

2 I I











,











A B

Z Z

I I











,











A B

I I

X X











,











A B

I I

Z Z











. (15)

Here we can easily see that entanglement exists only within rows; row one is never entangled

with row two. We call the generators of the state that has been copied (in this case XX and

ZZ) the “master generators”. The members of Eq. (15) are “single-copy generators”. We

can see that each single-copy generator has identities in all rows except one, which contains

a master generator. The objects listed in Eq. (15) generate the “multi-copy stabilizer”. A

useful subset of the multi-copy stabilizer is the set of “parallel stabilizer elements,” which

are products of single-copy generators having the same master generator. These parallel

stabilizer elements have rows equal to the identity or only one of the master generators.

II. ERROR-CORRECTING CODES FOR PURIFICATION

In this section we describe a general method for understanding entanglement purification

protocols using quantum error-correcting codes. These ideas were described in [4, 6]. The

essence of the scheme is that each party measures the parity check operators of an error-

correcting code on his or her qubits. By comparing the results of these measurements the

parties learn about the errors that have corrupted their states. They correct the errors and

then decode logical qubits into the desired entangled state.

To begin a purification protocol, the parties apply random stabilizer elements to the

noisy states they hope to purify. Each party just applies an agreed-upon single qubit Pauli

matrix to his or her qubit of a particular state. These Pauli matrices make up a random

stablizer element that the parties determine by classical communication before the start of

the protocol. After doing this, they can treat any noisy state as a probabilistic mixture of

states that have the same stabilizer but different eigenvalues for the generators. This fact

was proven for Bell states in [1] and was extended to any stabilizer state by Aschauer, Dür

and Briegel in [5]. We include the proof here for pedagogical completeness.

Let |ψ0〉 be the desired state for which all of the generators eigenvalues are +1. Any pure
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noisy state can be written as

|ψ〉 =
∑

i

αiPi|ψ0〉, (16)

where i extends over all possible syndromes, Pi is a tensor product of Pauli matrices that

moves the state from the all +1 syndrome to syndrome i, and αi is an amplitude. If there is

little noise, the αi are small for Pi not equal to identity. The density matrix for this state is

|ψ〉〈ψ| =
∑

i,j

αiα
∗
jPi|ψ0〉〈ψ0|P

†
j . (17)

An arbitrary noisy mixed state is just a probabilistic mixture of noisy pure states, which we

can write as

ρ =
∑

k

pk

∑

i,j

αikα
∗
jkPi|ψ0〉〈ψ0|P

†
j , (18)

where
∑

k pk = 1. Alice and her friends now apply a random element of the stabilizer group

to this state. After “forgetting” which of the N stabilizer elements they applied, the state

becomes

ρQ =
1

N

∑

Q∈stab.

QρQ† (19)

=
1

N

∑

ijk

pkαikα
∗
jk

∑

Q∈stab

QPi|ψ0〉〈ψ0|P
†
jQ

†. (20)

Because all of the Q’s and P ’s are made of tensor products of Pauli matrices, they must

either commute or anti-commute with one another. Let 〈Q,P 〉 = 0 if P and Q commute

and 〈Q,P 〉 = 1 if they anti-commute. After commuting the P ’s and Q’s we can use the fact

that Q is in the stabilizer of |ψ0〉 to obtain

ρQ =
1

N

∑

ijk

pkαikα
∗
jk

∑

Q∈stab

(−1)〈Q,PiPj〉Pi|ψ0〉〈ψ0|P
†
j . (21)

Let us examine the sum
∑

Q∈stab(−1)〈Q,PiPj〉 over all Q in the stabilizer of |ψ0〉 in the case

where i 6= j. The elements of the stabilizer that commute with PiPj form a subgroup, Qij.

There must be some element of the stabilizer that anti-commutes with PiPj (otherwise PiPj

would itself be in the stabilizer, in which case i = j), let us call this element q. We can

now generate every element of the stabilizer that anti-commutes with PiPj by multiplying

every element of Qij by q. (The elements that anti-commute are a coset of Qij.) Therefore

the number of elements of the stabilizer that commute with PiPj is equal to the number of
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elements of the stabilizer that anti-commute with PiPj. Consequently the terms of Eq. (21)

in the sum over all Q for which i 6= j must all cancel one another leaving us with

ρQ =
1

N

∑

ik

pk|αik|
2Pi|ψ0〉〈ψ0|P

†
i . (22)

This is just a mixture, each of whose terms are eigenstates of the stabilizer operators with

different eigenvalues. Therefore it would be sufficient to measure each of the generators

to extract an error syndrome, correct errors and, if all the errors are corrected, obtain a

pure state. However, because each party holds only a single qubit, they cannot measure the

generators directly.

In the picture of the operator arrays, each party can measure any operator that has

non-identity entries only along his or her column, but the master generators describing the

state are oriented along rows. We can use techniques of error-correcting codes to overcome

this problem. Each party will use an error-detecting or -correcting code that encodes one or

more logical qubits on the m physical qubits. We will assume that every party will use the

same code. They each measure the generators of that code and then share the measurement

results. Depending on the construction of the code and the original state they are trying to

purify, they expect a particular pattern of correlations between their measurement results.

Errors in the transmission of the m entangled states should appear as aberrations in the

syndrome patterns, so they can be detected or corrected. The parties then have an encoded

copy of a state, which they can decode.

Let us consider an example. Suppose Alice and Bob wish to purify Bell pairs |B00〉, and

they share four copies of noisy Bell pairs. We first examine the case in which no errors are
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present. The single-copy generators of the full eight qubit state are





















A B

1 X X

2 I I

3 I I

4 I I





















,





















A B

Z Z

I I

I I

I I





















,





















A B

I I

X X

I I

I I





















,





















A B

I I

Z Z

I I

I I





















,





















A B

1 I I

2 I I

3 X X

4 I I





















,





















A B

I I

I I

Z Z

I I





















,





















A B

I I

I I

I I

X X





















,





















A B

I I

I I

I I

Z Z





















. (23)

Alice and Bob can use the C4 code to purify, so they each measure the two generators of C4

on his and her own qubits. The stabilizer arrays describing these single-party parity checks

are




















A B

1 X I

2 X I

3 X I

4 X I





















,





















A B

Z I

Z I

Z I

Z I





















,





















A B

I X

I X

I X

I X





















,





















A B

I Z

I Z

I Z

I Z





















. (24)

The result of each single-party parity check will be ±1 with probability 1
2
. However





















A B

1 X X

2 X X

3 X X

4 X X





















and





















A B

Z Z

Z Z

Z Z

Z Z





















(25)

are in the multi-copy stabilizer of the states Alice and Bob are purifying. The operators

given in Eq. (25) are parallel stabilizer elements made by repeating the master generators on

multiple rows. They are also examples of “parallel parity checks” in which the same generator

of the purifying code is repeated on multiple columns. In the absence of error, the eigenvalues

of these operators are +1 (because they are in the stabilizer), so the eigenvalues Alice and
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Bob obtain for their XXXX measurements must match and similarly for their ZZZZ

measurements. Let us assume that after these measurements, Alice and Bob transform

their states by applying known Pauli products so that they all have +1 eigenvalues for the

operators in Eq. (24). Note that this is not strictly necessary as long as Alice and Bob keep

track of their Pauli frame, where the Pauli frame is defined by a Pauli product that would

restore the system so that all stabilizer generators have eigenvalue +1. If Alice and Bob know

the Pauli frame they can simply adjust future manipulations of their states to compensate

for the changes in eigenvalues without ever applying Pauli product compensations.

We can now find the generators of the new stabilizer that Alice and Bob share after their

measurements. The new stabilizer must include all of the measurement operators and all

elements of the old stabilizer that commute with the measurements. Eight generators are

required and they include all of Eq. (24) and





















A B

1 X X

2 X X

3 I I

4 I I





















,





















A B

Z Z

I I

Z Z

I I





















,





















A B

I I

X X

I I

X X





















,





















A B

I I

I I

Z Z

Z Z





















. (26)

These are parallel stabilizer elements, so they are in the original multi-copy stabilizer. Alice

and Bob now each possess two logical qubits encoded in C4. We can see the state of these

logical qubits using the logical encoded operators given in Eq. (5). We rewrite the operators

in Eq. (26) using the logical qubit operators as










A B

1 XL XL

2 I I











,











A B

ZL ZL

I I











,











A B

I I

XL XL











,











A B

I I

ZL ZL











. (27)

These are the master generators for two Bell pairs shared between Alice and Bob – exactly

the state they wanted to purify.

Let us now examine the behavior of this scheme in the presence of an error. An error

changes the eigenvalue of one of the single copy generators in Eq. (23) to −1. Alice and Bob

detect this change when they use their single-party parity checks to compile the multi-party

parity checks. For example, if Alice’s first qubit suffers from a Z error, the eigenvalue of the

first single-copy generator in Eq. (23)’s list is −1. Also, the eigenvalue of the first operator
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in Eq. (25)’s list is −1. Therefore the product of the eigenvalues Alice and Bob obtain from

their XXXX single-party parity checks must be −1. They detect this error when they

compare measurement results and obtain their multi-party parity check. A Z error to any

of the eight qubits will cause this same error syndrome, so Alice and Bob cannot correct it.

This analysis allows us to formulate sufficient conditions on the success of purification

schemes of this form: (1) The multi-party parity checks that the parties perform must be

sensitive to any change in the eigenvalues of the generators of the states they wish to purify.

(2) The stabilizer of the desired encoded state must be in the original multi-copy stabilizer

of the qubits to be purified.

III. PURIFYING STABILIZER STATES WITH STABILIZER CODES

In this section we discuss which classes of states may be purified using specified classes

of error-correcting codes. The simplest class of states are the CSS-H states, which can be

transformed using local operations into states whose stabilizer generators can be written in

CSS form and are H invariant as a set. More complex states are CSS, but not H invariant.

The most general class of states we consider includes all stabilizer states. We similarly

classify codes as being CSS-H, CSS, or any stabilizer code.

A. Purifying CSS-H States

All CSS-H states must contain an even number of qubits because there are equal numbers

of Z-type and X-type generators. The only two, four and six qubit CSS-H states are

collections of Bell pairs, but more complicated states can be formed from eight or more

qubits. In the following we describe how any CSS-H state can be purified by use of any

error-detecting stabilizer code. We do this by showing that the multi-copy stabilizer contains

enough versatility to allow any error-detecting stabilizer code to meet the conditions (1) and

(2) stated an the end of the previous section. Matsumoto has already demonstrated that

any stabilizer code can be used to purify Bell pairs and maximally entangled bipartite states

of qudits [4].

Let us examine the example of Alice and Bob purifying a Bell pair using C5 as their

purifying code. The Bell pair has master generators XX and ZZ, and the multi-copy
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stabilizer is generated by the single-copy generators



























A B

1 X X

2 I I

3 I I

4 I I

5 I I



























,



























A B

Z Z

I I

I I

I I

I I



























,



























A B

I I

X X

I I

I I

I I



























,



























A B

I I

Z Z

I I

I I

I I



























,



























A B

I I

I I

X X

I I

I I



























,



























A B

1 I I

2 I I

3 Z Z

4 I I

5 I I



























,



























A B

I I

I I

I I

X X

I I



























,



























A B

I I

I I

I I

Z Z

I I



























,



























A B

I I

I I

I I

I I

X X



























,



























A B

I I

I I

I I

I I

Z Z



























. (28)

Alice and Bob obtain single-party parity checks by measuring



























A B

1 X I

2 Z I

3 Z I

4 X I

5 I I



























,



























A B

I I

X I

Z I

Z I

X I



























,



























A B

X I

I I

X I

Z I

Z I



























,



























A B

Z I

X I

I I

X I

Z I



























,



























A B

1 I X

2 I Z

3 I Z

4 I X

5 I I



























,



























A B

I I

I X

I Z

I Z

I X



























,



























A B

I X

I I

I X

I Z

I Z



























,



























A B

I Z

I X

I I

I X

I Z



























. (29)

Alice and Bob must now construct multi-party parity checks that are in the multi-party

stabilizer and are sensitive to any error that would change the eigenvalue of any of the

single-copy generators. They can do this by multiplying their single-party parity checks in

14



parallel, so that they obtain the eigenvalues of



























A B

1 X X

2 Z Z

3 Z Z

4 X X

5 I I



























,



























A B

I I

X X

Z Z

Z Z

X X



























,



























A B

X X

I I

X X

Z Z

Z Z



























,



























A B

Z Z

X X

I I

X X

Z Z



























. (30)

Each of these operators is in the multi-copy stabilizer because each has rows equal to the

master generators.

If no errors have occurred, Alice and Bob find that all of the multi-party parity checks

give eigenvalues of +1. Suppose for example that Alice’s first qubit has suffered from a Z

error. Then the eigenvalue of the first member of Eq. (28) will be −1. When Alice and

Bob examine their multi-party parity checks, they find that the first and third members of

Eq. (30) have eigenvalue −1. In practice it is not even necessary to identify the particular

qubit that suffered the error. They need only to know how to correctly return the encoded

space to the subsystem with all +1 eigenvalues for the generators of the stabilizers. They

can therefore choose to apply Z to Alice’s or Bob’s first qubit to correct this error. Any

single qubit error will give a different syndrome pattern. However, multi-qubit errors (such

as an X error to Alice’s second qubit and an X error to Bob’s fifth qubit) can result in

the same syndromes as single qubit errors and would cause Alice and Bob to incorrectly

“correct” the errors. However, any combination of errors restricted to a single row of the

array can be corrected. Depending on their error-model and the particular syndrome result

they obtain, Alice and Bob may decide to simply discard their states and try again.
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The X and Z Pauli operators for Alice’s and Bob’s encoded qubits are

X
(A)
L =



























A B

1 X I
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4 X I

5 X I



























, Z
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X
(B)
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A B

1 I X

2 I X

3 I X

4 I X

5 I X



























, Z
(B)
L =



























A B

I Z

I Z

I Z

I Z

I Z



























. (31)

Alice and Bob would like to have purified the state whose encoded generators are the master

generators, i.e.

X
(A)
L X

(B)
L =



























A B

1 X X

2 X X

3 X X

4 X X

5 X X



























, and Z
(A)
L Z

(B)
L =



























A B

Z Z

Z Z

Z Z

Z Z

Z Z



























. (32)

They will have this state after projecting the multi-copy state into the encoded subspace

by measuring the code’s generators, provided that the encoded master generators were in

the original multi-copy stabilizer. This is surely the case because the rows of the encoded

master generators’ arrays contain only the master generators.

Any other CSS-H state can be purified in a similar manner. We need only specify a

method for constructing the multi-party parity checks from the single-party parity checks.

Each multi-party parity check should include columns that contain the identity or only one

of the generators of the purifying code. Which columns have identity and which contain

the generator of the purifying code are determined so that the rows of the multi-party

parity check array match a particular master generator (containing X’s), its Hadamard-pair
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(containing Z’s), or the product of a master generator and its Hadamard pair (containing

Y ’s). For each Hadamard-pair of master generators we construct a number of multi-party

parity checks equal to the number of generators for the purifying code (four for C5). These

generators give a syndrome that tells us which copy has received anX, Y , or Z error affecting

that Hadamard-pair of master generators. Similar syndromes are obtained for each pair of

master generators. We now know which copy of the original state received an error and how

that error affected each of that copy’s pairs of generators. We can use this information to

determine a Pauli product to apply to this copy to restore the correct syndrome and thus

fix the error. For each Hadamard pair of master generators, we can correct an error that

affects only one Hadamard pair of single-copy generators. Multiple errors may be corrected

provided that they each affect single-copy generators associated with different Hadamard

pairs of master generators. If qubits in multiple rows receive errors affecting the same

Hadamard pair of master generators, this procedure may be confused, so Alice and her

friends may want to use a more powerful error-correcting code.

The encoded master generator must also be in the multi-copy stabilizer. We can see that

this is always true because each master generator contains only X’s or Z’s (and I’s), and

each master generator has a Hadamard pair. An encoded generator’s array contains columns

corresponding to the encoded XL (or ZL) operators or the identity, and each row therefore

contains that particular master generator, its Hadamard pair, or the identity. Every array

whose rows are master generators or the identity are in the multi-copy stabilizer, thus the

encoded master generator is in the multi-copy stabilizer. Therefore any stabilizer code can

be used to purify a CSS-H state.

B. Purifying CSS States

Methods for purifying any multi-party CSS state have been obtained by Aschauer, Dür

and Briegel in [5] and by Hostens, Dehaene and De Moor in [9]. Our goal here is to show

that any CSS state can be purified by use of any CSS error-detecting or -correcting code.

Let us use for an example the three qubit GHZ state with master generators ZZI, XXX

and IZZ. This is the simplest CSS state that is not H invariant and has more than one

qubit. Its graph is a three node path. It is instructive to consider why the non-CSS code C5

is unable to purify this state. Suppose that five copies of this state are distributed to Alice,
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Bob and Charlie. The multi-copy stabilizer is generated by
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. (33)

Using C5 as their purifying code, Alice, Bob and Charlie measure the single-party parity

checks
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. (34)

Using these arrays Alice, Bob and Charlie must now construct multi-party parity checks that

are in the multi-copy stabilizer and sensitive to the eigenvalues of all of the generators of

the multi-copy stabilizer. How can they check the eigenvalue of the operator ZZI acting on
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the first copy? They might attempt to combine Alice’s and Bob’s measurement of ZXIXZ

to produce the multi-party parity check


























A B C

1 Z Z I

2 X X I

3 I I I

4 X X I

5 Z Z I



























. (35)

This is unfortunately not in the multi-copy stabilizer because the second row, XXI, is

neither one of the master generators nor a product of some of them. The result of this

measurement will then be ±1 with probability 1
2
, regardless of any errors. In fact it is not

possible for Alice, Bob and Charlie to construct a set of multi-party parity checks using this

code, which is sufficient for detecting errors, so their attempt at purification fails. However,

in the absence of errors, in this particular case the encoded state is still a GHZ state.

Suppose instead that Alice, Bob and Charlie use a CSS code such as C4. Then their single-

party parity checks are columns containing onlyX’s or Z’s. They can combine parallel single-

party parity checks (by which they have measured the same generator of the purifying code)

to form multi-party parity checks whose rows are repetitions of the same master generator or

the identity. These are parallel elements of the multi-copy stabilizer, and by construction of

the error-detecting (or -correcting) code they can detect (or correct) some set of errors on the

initial states. For each master generator containing X’s we have multi-party parity checks

for each generator of the purifying code that contains X’s. This gives a particular syndrome

pattern for diagnosing errors of that master generator on each copy. If the purifying code

is one-error-correcting, we can tell which copy has received a Z (or Y ) error affecting that

master generator. Each master generator containing Z’s is also matched with a particular

syndrome pattern by measuring the code’s Z-containing generators. This can tell us which

copy has received an X (or Y ) affecting that master generator. When using a one-error-

correcting code, this scheme can correct a single error affecting one single-copy generator

associated with each of the master generators. Multiple errors can be corrected provided

that they each affect single-copy generators associated with different master generators. If

the error is correctable, the parties can determine a Pauli product to correct it.

The encoded logical operators also contain only X’s or Z’s and they can similarly be
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combined in parallel to match the master generators, so they are also in the multi-copy

stabilizer. This provides the method to purify any CSS state with any CSS code.

C. Purifying Any Stabilizer State

One can purify any stabilizer state in a manner similar to that just described for CSS-

H states and CSS states; we just need to find an appropriate class of error-detecting or

-correcting codes. For an independent approach to purifying any stabilizer state, see [11].

Let us use the three qubit state with master generators XZZ, ZXZ, and ZZX as an

example. The graph of this state is a triangle, and it is impossible to transform it into a CSS

state by use of single qubit operations. The multi-copy stabilizer for this state includes all

arrays with rows given by the master stabilizers. Alice, Bob and Charlie must ensure that

their purifying code can produce multi-party parity checks and encoded master generators

that are in the multi-copy stabilizer. They cannot use C5 because there is no method of

combining the single-party parity checks to produce a non-trivial element of the multi-copy

stabilizer. They also cannot use C4 because the encoded logical Pauli operators form arrays

whose rows are not equal to master generators and are therefore not in the multi-copy

stabilizer.

Suppose Alice, Bob and Charlie use C7 as their purifying code. The multi-copy stabilizer

has the generators
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. (36)
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Alice measures the single-party parity checks
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. (37)

Bob and Charlie obtain similar parity checks, except that the non-identity operators are

shifted to Bob’s and Charlie’s columns. Each single-party parity check has a Hadamard

pair. Alice, Bob and Charlie can obtain multi-party parity checks by combining in parallel

the same measurements or their Y or Z variants to match a single master generator repeated

on several rows. For example, they can check the parity of






































A B C

1 X Z Z

2 I I I

3 X Z Z

4 I I I

5 X Z Z

6 I I I

7 X Z Z







































(38)

using Alice’s measurement of XIXIXIX, Bob’s measurement of ZIZIZIZ and Charlie’s
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measurement of ZIZIZIZ. They can use this method to obtain three multi-party parity

checks for each master generator because C7 has three Hadamard pairs of generators. If they

were trying to purify a state with Y ’s in the master generators, they could make multi-party

parity checks with columns of Y ’s by use of products of Hadamard pairs. This is sufficient

for Alice, Bob and Charlie to locate and correct any single qubit error.

Now Alice, Bob and Charlie each have a single qubit encoded in the C7 subspace, and

this qubit has the encoded logical operators X
(A,B, or C)
L = XXXXXXX and Z

(A,B, or C)
L =

ZZZZZZZ oriented in columns. XL and ZL are a Hadamard pair. The encoded master

generators have arrays that contain XL’s and ZL’s in columns, and they match a master

generator in each row. Therefore the encoded master generators are in the multi-copy

stabilizer, and Alice, Bob and Charlie can use C7 to purify this state.

Alice and her friends with alphabetized names can use any error-detecting or -correcting

CSS-H code to purify any stabilizer state of many qubits. The smallest example is the

error-detecting code C6, which purifies two copies of the desired state from six. The multi-

party parity checks are built from Hadamard variants of the code’s generators to match each

of the master generators of the state they wish to purify. For each master generator they

construct a number of multi-party parity checks equal to half of the number of generators of

the purifying code. If the code can correct errors, these parity checks give a syndrome that

is sufficient to identify which copy suffered an error affecting that master generator. They

repeat the procedure diagnosing a syndrome for each master generator, so that any single

qubit error is at least detected. Any error combination that affects only one single-copy

generator in each set of single-copy generators associated with a single master generator can

be corrected by a one-error-correcting code.

If their code is an effective error-detecting or -correcting code, they can detect or correct

(insofar as the code is able to correct) errors on their qubits. The encoded master generators

are formed from Hadamard variants of encoded logic operators, so they are present in the

multi-copy stabilizer.

IV. CONCLUSIONS AND DISCUSSION

We introduced a method for understanding entanglement purification with stabilizer

codes using operator arrays. We explained how one can purify (1) any CSS Hadamard
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invariant state using any error-detecting stabilizer code, (2) any CSS state using any error-

detecting CSS code and (3) any stabilizer state using any error-detecting CSS Hadamard

invariant code. The smallest code that can purify any stabilizer state is C6, which is an

error-detecting code encoding two logical qubits in six. The smallest error-correcting code

that can purify any stabilizer state is Steane’s code C7, which encodes one logical qubit in

seven. These state/code combinations are sufficient for purification, because they ensure

that the parties purifying the state can construct multi-party parity checks that are in the

stabilizer of the copies of the state they hope to purify, and the generators describing the

desired encoded state are also in the original stabilizer. We expect that the results we

described here can be extended to purify states of d-dimensional quantum systems using

stabilizer codes such as those described in [20] and the appropriate generalizations of CSS

and CSS-H codes.

These results raise many questions. For example, it is clear that there is great freedom in

choosing codes to purify states. While we have given some sufficient conditions for choosing

codes, we have not studied how to match codes and states to give high efficiency of purified

state production. We expect each state/code combination to have its own conditions on the

required fidelity of the input states. Strategies for maximizing thresholds and efficiencies

are likely to be as rich as those used in other fault-tolerant quantum information processing

tasks.

We anticipate that the entanglement purification methods we have described using sta-

bilizer codes can be translated into the languages of permutation or hashing protocols and

the graph state methods of [11]. This might be accomplished using the lexicon given by

Hostens, Dehaene and De Moor in [6]. Such a translation may deepen our understanding of

all of these methods.

The scheme we outlined here may also have uses that extend beyond entanglement pu-

rification. Some interesting effects can occur even when we choose state/code combinations

that fail. For example if we try to purify two copies of the non-CSS triangle state with sta-

bilizer generators XZZ, ZXZ and ZZX using the code C4, we can detect any errors to the

multi-copy stabilizer because the parity checks are of CSS-H form. However, the encoded

logical Pauli operators are not. The state obtained after the “purification” is not two copies

of the triangle state, but instead an encoded entangled six qubit CSS state whose graph is

shaped like a hexagon. With clever choices for states and codes we can use this procedure for
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a type of remote state preparation that includes error-detection and -correction capabilities.
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