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ABSTRACT 
 
We present a novel measure of fingerprint image quality, 
which can be used to estimate fingerprint match 
performance. This means presenting the matcher with 
good quality fingerprint images will result in high matcher 
performance, and vice versa, the matcher will perform 
poorly for poor quality fingerprints. We discuss the 
implementation of our fingerprint image quality metric 
and we present the results of testing it on 280 different 
combinations of fingerprint image data and fingerprint 
matcher system. We found that the metric predicts 
matcher performance for all systems and datasets. Our 
definition of quality can be applied to other biometric 
modalities and upon proper feature extraction can be used 
to assess quality of any mode of biometric samples. 

 

1. INTRODUCTION 
 
Automatically and consistently determining the quality of 
a given biometric sample for identification and/or 
verification is a problem with far reaching ramifications. 
If one can identify low quality biometric samples, this 
information can be used to improve the acquisition of new 
data. This same quality measure can be used to selectively 
improve an archival biometric gallery by replacing poor 
quality biometric samples with better quality samples. The 
weights for multimodal biometric fusion can be selected 
to allow better quality biometric samples to dominate the 
fusion. All of these applications require that the quality of 
the biometric sample be determined prior to identification 
or verification. Most of these applications also require that 
quality of the biometric sample be computed in real-time 
during data acquisition. The image quality measure 
presented here meets all the above requirements: it 
assesses quality of a fingerprint before any matching 
process, and is fast enough to meet the speed requirement.  

A fingerprint is a pattern of friction ridges on the 
surface of a fingertip. A good quality fingerprint has 
distinguishable patterns and features that allow the 
extraction of features, which are useful for subsequent 
matching of fingerprint pairs. A minutia-based automatic 

fingerprint matching algorithm uses features that compare 
local ridge characteristics (minutia) of two fingerprints 
xg(i) and xp(j) and produces a real-valued similarity score sij, 
where subscript g(i) denotes i-th gallery (file) and p(j) 
denoted j-th probe (search) fingerprint images and sij is the 
similarity score of the i-th gallery and the j-th probe 
samples. We call similarity scores of a genuine (i.e. same 
person) comparisons match scores, and similarity scores 
of imposter (i.e. different person) comparisons non-match 
scores. A higher similarity score is construed to indicate a 
higher likelihood that the samples come from the same 
individual. Let sm(xi) denote the match score for sample 
xp(i) and sn(xji) the non-match scores of xp(i) and xg(j), with 
i∫j.  Let M(sm) denote the cumulative distribution function 
(CDF) of the match scores, and N(sn) the CDF of non-
match scores. The Detection Error Tradeoff characteristic 
(DET) is a plot of the false non-match rate, FNMR=M(sm) 
against the false match rate, FMR=1-N(sn) for all values 
of sm and sn. The DET, and the equivalent ROC, are the 
commonest statement of performance of a verification 
system. We define fingerprint image quality as a predictor 
of matcher performance before a matcher algorithm is 
applied. This means presenting the matcher with good 
quality fingerprint images will result in high matcher 
performance, and vice versa, the matcher will perform 
poorly for poor quality fingerprints. Despite some on-
going and past efforts in the investigation of fingerprint 
image quality [5,6,7], to our knowledge, nobody has 
publicly defined fingerprint image quality as a scalar 
predictor of matcher performance. Before proceeding any 
further, we need to quantify matcher performance. 

The similarity score is the ultimate statement of 
expected performance: in conjunction with the underlying 
match and non-match distributions it yields likelihood for 
the samples coming from the same person or different 
people. Figure 1 shows the histogram of NIST VTB[2] 
match and non-match scores of fingerprint impressions of 
216 subjects in data set NIST SD29. It is typical for the 
match distribution to be wider than non-match distribution 
and it is quite typical for the two distributions to overlap. 
The overlap of match and non-match distributions means 
a given sample xi will match falsely if its match score 
sm(xi) is less than some non-match scores sn(xji). If the 
quality measure q is to be predictive of a matcher, 
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 Figure 1 - SD29 VTB match and non-match scores histogram 
performance, good quality fingerprints must be those with 
high match scores and well separated from the non-match 
distribution. Similarly, poor quality fingerprints are those 
with lower match scores, in particular those whose match 
scores are in the region of overlap with non-match scores. 
Therefore, the quality measure q should be indicative of 
the degree to which the match distribution M(sm) is 
separated from the non-match distribution N(sn). 
Specifically, we define the quality qi of biometric sample 
xi to predict 
o(xi) = [s(s(xji))]-1 (sm(xi) - E[sn(xji)])   "xiœ or         (1) 
where E[.] is the mathematical expectation, and s(.) is 
standard deviation. Comparing a probe sample xi with an 
internal gallery of G samples, which includes one and 
only one sample from the same subject (person), results in 
a vector of G scores, s. Only one element of vector s is 
xi’s match score, and the other G-1 are its non-match 
scores. E[.] is evaluated by computing mean of all non-
match scores of probe sample xi to all G-1 non-matching 
gallery entries. Likewise, s(.) is standard deviation 
estimated solely from the non-matching elements of s.  
We call o(xi) normalized match score of sample xi. 
Basically, we are comparing the subject’s biometric 
sample to the claimed match sample and to other non-
matching samples, and adjusting the raw score on the 
basis of the extra scores. 

 
2. FINGERPRINT IMAGE QUALITY 

 
For each fingerprint, we define its image quality as the 
prediction of its normalized match score. Similarity 
scores, and therefore normalized match scores (1) are 
functions of both probe and gallery samples, but quality as 
defined here is a scalar value which is measured for each 
sample separately. Therefore, pairwise quality 
q=H(qgallery,qprobe) should be predictive of recognition 
performance of pair (xgallery,xprobe).  Extensive testing at 
NIST [1,2] has shown that recognition errors are triggered 

by low quality samples. That is, H(.) is simply the 
minimum of the individual numbers qprobe, and qgallery, and 
so pairwise quality is defined as q=min(qgallery, qprobe). In 
an operational setting, if the enrolled samples are assured 
to have high quality, then a measurement of quality of a 
subject’s biometric sample (probe) can be sufficient for 
predicting its normalized match score. We measure (scalar 
value) quality qi for biometric sample xi by first 
computing a feature vector vi, which contains appropriate 
signal or image fidelity characteristics of xi, and then 
finding some (nonlinear) mapping from vi to o(xi). 
Mathematically speaking  

vi=L(xi) and qi=o*(xi)=I(vi)                         (2)   
The function L(.) will be realized by computing 

characteristics and features of xi that convey information 
useful to a matching algorithm. Applying L(.) to a sample 
xi results in an n-dimensional feature vector vi. For 
fingerprints, this includes measured clarity of ridges and 
valleys, size of the image, and measures of number and 
quality of minutiae. The function I(.) is a mapping from 
the space of feature vectors v to normalized match scores 
o(.). o*(xi) is the predicted value for o(xi). Equation 2 
suggests use of various regression methods to estimate the 
response function o(.) from a vector of variables v. We 
tried various regression methods and failed to find a good 
fit primarily because sample-specific measures 
(components of vector v) are not linearly related to the 
response variable o(.) and hence nonlinear functions have 
to be found, outliers heavily influence data, and residual 
errors are not Gaussian for any of the regression methods 
tried. In addition, it is sufficient to know the level of 
quality (e.g. high, good, medium, low) and, since quality 
is defined as the prediction of o(.) (i.e. normalized match 
scores), it is sufficient to know the range of o(xi) (e.g. 
high, good, medium, low) rather than its exact value for 
each sample xi. These facts lead us to restate the problem 
in terms of classification. This means we define sample 
quality as a measure that predicts the bin o(xi) falls in. 
Now function I(.) from Equation 2 is basically a classifier 
that maps feature vector vi of sample xi to a quality 
number Q such that o(xi) falls in the k-th bin where, 
without loss of generality, Q = k. That is, the quality 
number qi of sample xi is the bin in which o(xi) will fall.  

The number K of allowed bins constitutes a coarseness 
parameter, against which the quality number can be traded 
off. For example, a high / low level (K = 2) is easier to 
achieve than the continuous case, where K tends to 
infinity (regression).  In this paper we chose K = 5, that is 
we have five levels of quality: poor (q=5), fair (q=4), 
good (q=3), very good (q=2), and excellent (q=1).  The 
choice of 5 levels of image quality is a compromise. 
Studies at NIST [2] show that eight to ten levels would be 
needed to fully characterize a matcher that is very 
sensitive to image  



Q QUALITY RANGE 
5 POOR [0, W-1(0.75)] 
4 FAIR (W-1(0.75)], C-1(0.05)] 
3 GOOD (C-1(0.05), C-1(0.2)] 
2 VERY GOOD (C-1(0.2), C-1(0.6)] 
1 EXCELLENT (C-1(0.6), C-1(1)] 

Table 1. Bin boundary for normalized match scores o(.). The 
boundaries were set by inspection to give useful categorization 
of the normalized match scores statistic. 
quality. Three levels (good, bad, reject) of quality are 
sufficient to characterize matchers that are not very 
sensitive to image quality. We have selected five levels, 
using irregularly spaced quantiles of o(.) as o(.)’s bin 
boundaries. Table 1 shows the o(.) bin boundaries, where 
W(.) and C(.) denote the CDF of falsely (wrongly) and 
correctly matched samples, respectively. Our bin 
boundary selection agrees with our definition of quality; 
we are labeling samples with poorest recognition rate, and 
hence matched falsely, as poor. Samples with fair quality 
are those that are borderline; some of these samples are 
matched falsely. Most of the good quality samples are 
matched correctly, and very good and excellent are those 
samples that are almost entirely matched correctly. In 
other words, excellent quality samples are those with very 
high FNMR and poor quality samples are those with high 
FMR. 
 

3. IMPLEMENTATION 
 
In this section we discuss our implementation of L(.) and 
I(.) in Equation 2 for fingerprint images. We first apply 
L(.) to a biometric sample xi to get feature vector vi and 
then use vi as input to a neural network I(.). L(.) is realized 
by computing the characteristics and features of biometric 
sample xi that convey information useful to a matching 
algorithm. It is known that fingerprint matcher algorithms 
commonly in use are sensitive to clarity of ridges and 
valleys, measures of number and quality of minutiae, and 
size of the image.  We have used NIST Fingerprint Image 
Software (NFIS2) [3] package to extract features, thereby 
implementing L(.). The MINDTCT package of NFIS2 has 
a fingerprint minutia detector algorithm that reads an 
ANSI/NIST formatted file and searches the file structure 
for a grayscale fingerprint record, automatically detects 
minutia, assesses minutia quality, and generates an image 
quality map. 

MINDTCT generates the quality map by measuring 
the quality of localized regions in the image including 
determining the directional flow of ridges and detecting 
regions of low contrast, low ridge flow, and high 
curvature. These last three conditions represent unstable 
areas in the image where minutiae detection is unreliable. 
The information in these regions is integrated into one 

 
Figure 2. Examples of fingerprints subjectively assessed to be 
of good and poor quality and their grayscale quality maps  
general map that contains 5 levels of quality (4 being the 
highest quality and 0 being the lowest). The quality 
assigned to a specific block is determined based on its 
proximity to the blocks flagged in the above mentioned 
regions. The background has a score of 0, and a score of 4 
means a very good region of fingerprint. Figure 2 shows 
quality maps grayscale image with black, dark gray, 
medium gray, light gray, and white corresponding to 
scores of 0 to 4, respectively, for two fingerprints of 
different quality. It is notable that the gray scale quality 
map image is mostly dark gray or black for the poor 
quality print, and mostly white for the good quality print. 
For each fingerprint we used MINDTCT to generate its 
quality map. Blocks with quality 0 are regarded as 
background. We compute the total number of blocks with 
quality 1 or better as the effective size of the image or 
foreground. Then percentages of foreground blocks with 
qualities 1, 2, 3, or 4 are computed. We call them quality 
zones 1, 2, 3, and 4, respectively. Fingerprint images with 
higher number of quality zone 4 (equivalently smaller 
number of quality zone 1 and/or 2) are more desirable.  

NFIS2 also computes a quality/reliability associated 
with each detected minutia point. Two factors are 
combined to produce a quality measure for each detected 
minutia point. The first is taken directly from the location 
of the minutia point within the quality map described 
above. The second factor is based on simple pixel 
intensity statistics (mean and standard deviation) within 
the immediate neighborhood of the minutia point. Based 
on these two factors, NFIS2 assigns a quality value in the 
range 0.01 to 0.99 to each minutia. 

We used the quality map and minutia quality 
assessment of NFIS2 to define our feature vectors as 
shown in Table 2. Therefore, for each fingerprint image, 
an 11-dimensional feature vector is computed using 
MINDTCT of NFIS2. We performed exploratory data 
analysis and found that distribution of none of the 
components of our feature vector is normal or even nearly 
normal and the correlation factors of none of the features 
are strong enough to predict the normalized match score 
all by itself. However, there is strong evidence that some 
linear or nonlinear combination of these features can 
predict normalized match scores defined in Equation 1. 
We chose the artificial neural network as the nonlinear 
classification method. The neural network has the 
capability of acting as an approximation function for any  



 NAME DESCRIPTION 
1 foreground #of blocks that have quality 1 or better 

2 total #of 
minutia # of total minutiae found in the fingerprint 

3 min05 # of minutiae that have quality 0.5 or better 
4 min06 # of minutiae that have quality 0.6 or better 
5 min075 # of minutiae that have quality 0.75 or better 
6 min08 # of minutiae that have quality 0.8 or better 
7 min09 # of minutiae that have quality 0.9 or better 

8 quality 
zone 1 

percentage of the foreground blocks of 
quality map with quality =1  

9 quality 
zone 2 

percentage of the foreground blocks of 
quality map with quality =2 

10 quality 
zone 3 

percentage of the foreground blocks of 
quality map with quality =3 

11 quality 
zone 4 

percentage of the foreground blocks of 
quality map with quality =4 

Table 2. Feature vector description 
arbitrary nonlinear function and is not dependent on 
model-based distribution functions in either the feature or 
the classification space. We used the neural network 
implementation in NFIS2 package. The theory behind the 
machine learning techniques used in this program is 
discussed in[4]. It trains a 3-layer feed-forward nonlinear 
perceptron model.  The five classes of quality explained in 
Table 1 are the neural network outputs. The input to 
neural network is the 11-dimension feature vector 
discussed in Table 2. We chose 22 hidden nodes. 
Boltzmann pruning, i.e. dynamic removal of connections, 
is performed during training. The activation functions 
used for hidden nodes as well as output nodes are 
sinusoids. NIST has acquired a collection of live-scan and 
scanned paper fingerprints datasets collected at different 
operational settings from different government agencies 
[2]. We used a subset of these datasets (5244 images) for 
training and the rest (234700) for testing our system. Care 
was taken to design a training set balanced in terms of 
numbers of different finger positions of different quality 
chosen from different datasets.  

Our evaluation criterion is ranked ROC as a function 
of image quality. Given a quality number taking on K 
integral values, K ROC characteristics are generated. 
Similarity scores of probe images of quality qk and gallery 
images of quality qk or better are used in the computation 
of the k-th ROC. As it is shown in Figure 3, the highest 
recognition performance is achieved for samples with 
quality 1 (excellent), and samples with quality 5 (poor) 
have the lowest performance.  We have used similarity 
scores of 14 different fingerprint systems supplied by 8 
commercial fingerprint vendors[2] and fingerprint images 
of 20 different fingerprint data sets to test our fingerprint 
image quality metric. Our fingerprint quality measure 
successfully predicts matcher performance in all 280 
cases. 

 

Figure 3. ROC as a function of image quality for right index 
fingerprints of 6000 subjects with 2 prints per subject, 
therefore a similarity matrix of size 6kx6k.  

 
4. CONCLUSION 

 
We presented a novel measure of fingerprint image 
quality, which can be used to estimate fingerprint match 
performance. Results of extensive test of our system 
showed that it generalizes very well to other matchers and 
other datasets. Our implementaion is publicly, but export 
controlled, availale as part of NFIS2.  
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