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Vibrational frequencies determined from ab initio calculations are often scaled by empirical factors. An
empirical scaling factor partially compensates for the errors arising from vibrational anharmonicity and
incomplete treatment of electron correlation. These errors are not random but are systematic biases. We report
scaling factors for 40 combinations of theory and basis set, intended for predicting the fundamental frequencies
from computed harmonic frequencies. An empirical scaling factor carries uncertainty. We quantify and report,
for the first time, the uncertainties associated with the scaling factors. The uncertainties are larger than generally
acknowledged; the scaling factors have only two significant digits. For example, the scaling factor for HF/
6-31G(d) is 0.8982( 0.0230 (standard uncertainty). The uncertainties in the scaling factors lead to
corresponding uncertainties in predicted vibrational frequencies. The proposed method for quantifying the
uncertainties associated with scaling factors is based on theGuide to the Expression of Uncertainty in
Measurement, published by the International Organization for Standardization (ISO). The data used are from
the Computational Chemistry Comparison and Benchmark Database (CCCBDB), maintained by the National
Institute of Standards and Technology, which includes more than 3939 independent vibrations for 358
molecules.

1. Introduction

One of the most popular uses of computational quantum
chemistry models is to predict vibrational frequencies for
spectroscopy, thermochemistry, and reaction kinetics. However,
vibrational frequencies predicted from quantum chemistry
models seldom agree with the corresponding experimental
frequencies. A common practice is to apply an empirical scaling
factor to the computed harmonic frequency to bring it closer to
the “true” fundamental frequency. The empirical scaling factor
carries uncertainty. However, to our knowledge, no one has
quantified the uncertainties associated with the scaling factor
and the corresponding scaled computed frequency. This paper
attempts to quantify these uncertainties.

It is well recognized that an experimental measurement is
incomplete in the absence of a quantitative and valid expression
of its associated uncertainty. Unfortunately, predictions from
computational quantum chemistry models are often reported
without their associated uncertainties, making them incomplete
statements. The termVirtual measurementrefers to a scaled (or
otherwise corrected) computed result together with its associated
uncertainty. The termVirtual measurementemphasizes the
analogy with experimental (physical) measurement along with
its associated uncertainty. Our investigations of the uncertainties
associated with predictions from quantum chemistry models are
intended to help “virtual measurements” supplant “calculated
results.”

Scaling of Computed Frequencies.Harmonic vibrational
frequencies are computed by mass-weighting and diagonalizing
the force constant matrix, which is a matrix of second-order
derivatives of the electronic energy with respect to nuclear
coordinates. Because the force constants are the underlying

quantities, the first approach was to apply empirical scaling to
the force constants.1-4 This remains an effective approach.5

Another approach is uniform scaling of the harmonic vibrational
frequencies. The resulting predictions are less accurate (more
uncertain), but the latter approach has the advantage of
simplicity. The present study deals with this simpler approach.

The first published survey of uniform scaling focused on HF/
3-21G calculations.6 One of the conclusions of that study was
that “the harmonic frequencies calculated at this level exceed
the anharmonic observed frequencies by an average of 180 cm-1

or 12.3%”. It was therefore recommended to multiply the
computed frequencies by the factor 0.89 to counter their bias
of about 12.3%. A more precise factor, 0.8929 ()1/1.12), was
adopted for HF/6-31G(d) calculations as part of the popular
“Gaussian-n” methods for quantitatively predicting molecular
energetics.7 The reason for increasing the number of seemingly
significant digits from two (0.89) to four (0.8929) remains
unclear.

It is now a common practice to apply such scaling factors to
the computed frequencies obtained from quantum chemistry
models. Although the computed quantities are harmonic fre-
quencies, it is implicitly assumed that the scaling factor absorbs
most of the anharmonic effects, as well as errors in the force
constants due to approximations in the electronic structure
calculations. Thus, the scaled computed frequencies serve as
predictions of the fundamental frequencies.

As the computation of vibrational frequencies has become
routine and the number of computational models, each charac-
terized by a level of theory and a basis set, has proliferated, the
demand for scaling factors has increased. Several scaling-factor
studies have been published. For example, on the basis of data
for 36 small molecules, it was reported in 1982 that HF/6-31G-
(d) and MP2/6-31G(d) harmonic frequencies are 12.6% and
7.3% higher, respectively, than the corresponding experimental
fundamentals.8 The corresponding scaling factors are 0.8881
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and 0.9320, respectively. In 1993, a study involving 122
molecules (1066 frequencies) yielded a scaling factor of 0.9427
for MP2/6-31G(d)9 and a scaling factor of 0.8953 for HF/6-
31G(d); however, the authors of that study recommended that
for HF/6-31G(d) the previously recommended value (0.8929)
continue to be used because there was little difference. Two
studies were published independently in 1996 using the same
set of 122 molecules as that in the 1993 study.9 One of them
focused on five density functionals in conjunction with the
6-31G(d) basis sets.10 The other, encompassing 19 theoretical
models, is the most thorough and most cited such study to date.11

Because the same experimental data were used, the results for
HF/6-31G(d) and MP2/6-31G(d) were the same as those in the
1993 study.9 In more recent work, additional basis sets have
been addressed. For a set of 900 frequencies, scaling factors
were reported for HF (0.9066), MP2 (0.9649), and four density
functionals in conjunction with Sadlej’s pVTZ basis sets.12 For
the frequencies above 1000 cm-1 for a set of 41 molecules,
scaling factors were recently reported for HF, B3LYP, and MP2
combined with six of Dunning’s correlation-consistent basis
sets.13 Most recently, a study of B3LYP concluded by recom-
mending that a single scaling factor be used for several related
basis sets.14 As an alternative to the uniform scaling of computed
vibrational frequencies, an improved fit can be obtained by
including a second scaling parameter,12,15,16 but this has not
become popular.

Most of the systematic studies report root-mean-square (rms)
residuals from least-squares fitting of scaling factors. Some also
provide histograms of residuals before and after the scaling.
However, no study has attempted to quantify the uncertainties
associated with the scaling factors and the scaled computed
frequencies. The purpose of the present study is to establish an
approach to quantify those uncertainties. This is important
because (i) a vibrational frequency predicted from a quantum
chemistry model is incomplete without a valid expression of
its associated uncertainty, (ii) scaling factors are typically quoted
to four digits without consideration of their significance, and
(iii) the use of seemingly highly precise scaling factors may be
unwarranted.

Computational Comparison and Benchmark Database
(CCCBDB). The CCCBDB17 is a large, Web-accessible data-
base containing calculated results from many quantum chemistry
models and the corresponding experimental results. The two
goals of the CCCBDB are to provide benchmark, evaluated
experimental data for testing new computational methods and
to illustrate how well the current computational methods
perform, relative to experimental measurements, in predicting
the properties of gas-phase molecules. The CCCBDB initially
focused on gas-phase thermochemistry (enthalpies of formation,
entropies, and heat capacities) and related properties (moments
of inertia and vibrational frequencies). It was later expanded to
include some other properties that are often predicted by using
quantum chemistry models. In particular, the CCCBDB includes
experimental vibrational data for 386 molecules, for a total of
4824 distinct vibrational frequencies. The uncertainties associ-
ated with the experimental measurements range from less than
1 to 15 cm-1.18 Despite continued efforts to ensure the integrity
of experimental data in the CCCBDB, some incorrect experi-
mental values may remain. Indeed, the computational results
in the CCCBDB are useful for identifying questionable experi-
mental vibrational frequencies or mode assignments. The
CCCBDB includes tools for comparing the calculated and
experimental vibrational frequencies for one or more molecules.
The CCCBDB may be used to specify a scaling factor for a

given quantum chemistry model and one or more molecules.
Given the large number of experimental vibrational frequencies
and over a million calculated vibrational frequencies covering
more than 140 computational models, the CCCBDB may be
used to estimate the uncertainties associated with the scaling
factors and the scaled computed vibrational frequencies.

2. Guide to the Expression of Uncertainty in
Measurement

The uncertainty associated with a computed vibrational
frequency arises primarily, but not exclusively, from its bias
(systematic error) with respect to the “true” fundamental
frequency. Before publication of theGuide to the Expression
of Uncertainty in Measurement19 by the International Organiza-
tion for Standardization (ISO), there was no generally accepted
approach to account for the uncertainty arising from a bias. The
approach recommended by the ISOGuide is now generally
accepted. Furthermore, the ISOGuide is the de facto interna-
tional standard for quantifying the uncertainty in measurement.
The ISOGuiderecommends that all uncertainties be expressed
as standard uncertaintiesor asuncertainty interVals, defined
below. A measurandis a property, denoted byY, which is
subject to measurement or prediction. A computed result or an
experimental result, denoted byy, is an estimatefor Y. The
uncertaintyis a parameter associated with the estimatey that
characterizes the dispersion of the values that could reasonably
be attributed toY on the basis of all available information. The
standard uncertaintyis uncertainty expressed as a standard
deviation, denoted byu(y).

The ISOGuide is based on the concept of ameasurement
equation. In its simplest form, a measurement equation is a
mathematical function,Y ) f(Q1, ..., QN), that represents the
process used for determining an estimatey and its associated
standard uncertaintyu(y) from the estimates and their associated
standard uncertainties for various input quantities,Q1, ..., QN.
Each input and output quantity of a measurement equation is
regarded as a variable with astate-of-knowledge probability
distribution having an expected value and a finite standard
deviation. The estimatey is determined by substituting the
estimatesq1, ..., qN for the input variables in the measurement
equationY ) f(Q1, ..., QN). That is,

The standard uncertaintiesu(q1), ..., u(qN) associated with the
input estimatesq1, ..., qN are components of uncertainty in
determining the estimatey. The measurement equationY )
f(Q1, ..., QN) is approximated abouty by a Taylor series as

wherec1, ..., cN are partial derivatives ofY with respect toQ1,
..., QN evaluated atq1, ..., qN. Treating qi and u(qi) as the
expected value and standard deviation ofQi, the variance of
Ylinear gives the following expression for propagating the
uncertainties associated with the input estimates:

wherer(qi,qj) is the correlation coefficient betweenQi andQj

for i, j ) 1, ..., N and i * j. The estimatey and the standard
uncertainty u(y) are the expected value and the standard
deviation of Ylinear. The ISO Guide regardsy and u(y) as

y ) f(q1, ...,qN) (1)

Y≈ Ylinear ) y + ∑ici(Qi - qi) (2)

u2(y) ) ∑ici
2u2(qi) + 2∑(i<j)cicju(qi)u(qj)r(qi,qj) (3)
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approximating the expected value and the standard deviation
of a state-of-knowledge probability distribution forY.

The uncertainty may alternatively be expressed as anuncer-
tainty interVal [y ( ku(y)], for somecoVerage factor, k. By
convention, chemists express the uncertainty as an interval, [y
( ku(y)], with a supposedcoVerage probabilityof about 95%.
The coverage probability of an uncertainty interval can be stated
only under special conditions. In this study, we do not discuss
specification of uncertainty intervals [y ( ku(y)] with a stated
(supposed) coverage probability such as 95%. This is an
interesting topic for investigation in the future.

ISO Guide’s Approach To Quantify the Uncertainty
Arising from Biases.Suppose thatx0 is a preliminary estimate
such as the output of a computational model for the valueY0 of
a measurand. We use the symbolsE(‚), S(‚), andV(‚) for the
expected value, the standard deviation, and the variance,
respectively, of the variable indicated in the argument. Suppose
the expected valueE(x0) of thesampling probability distribution
of x0 is X0. That is,X0 is the hypothetical average of infinitely
repeated independent evaluations ofx0 under given conditions.
The differencex0 - X0 is the random error, and the ratiox0/X0

is the fractional random error inx0. In quantum chemistry, the
random error arises from a variety of small contributions, such
as the nonzero convergence thresholds that create dependence
upon the choice of the initial geometry and wave function. The
random error is generally negligible. Otherwise, the uncertainty
arising from the sources of random error must be quantified
and incorporated. The differenceX0 - Y0 is theadditiVe bias,
and the ratioX0/Y0 is thefractional bias(or multiplicative bias)
in x0. The bias arises from systematic (nonrandom) effects in
the process of evaluatingx0. The ISOGuiderecommends that
the estimatex0 be corrected or scaled to counter its bias, thus
providing a corrected or scaled virtual measurement,y0, for Y0.
From this viewpoint, we refer tox0 as an uncorrected or unscaled
virtual measurement forY0 with a small standard uncertainty
u(x0), mainly from random effects. A measurement equation is
required to incorporate a correction or scaling factor for the
bias. Thus,X0 andY0 are regarded as variables with probability
distributions representing the states of knowledge about the
expected valueX0 and the valueY0 of the measurand, respec-
tively. The ISOGuide identifies the expected valueE(X0) of a
state-of-knowledge distribution forX0 with the uncorrected or
unscaled virtual measurementx0 and the standard deviationS(X0)
with the standard uncertaintyu(x0).

The measurement equation that corresponds to the additive
biasX0 - Y0 is

whereC0 is a variable with a probability distribution representing
the state of knowledge about the negative of bias (Y0 - X0).
Suppose that the expected valueE(C0) and the standard deviation
S(C0) arec0 andu(c0), respectively. Then, a corrected estimate,
y0, for Y0 is determined by substitutingx0 for the variableX0

andc0 for the variableC0 in the measurement equation (eq 4).
Thus,

The combined standard uncertaintyu(y0) is determined by
propagating the variancesV(X0) ) u2(x0) and V(C0) ) u2(c0)
and the covarianceC(X0,C0) ) u(x0,c0). Because the probability
distributions forX0 (random effects) andC0 (negative of bias)
are specified independently, we haveu(x0,c0) ) 0. Thus, the

expression for propagating uncertainties based on the measure-
ment eq 4 is

The measurement equation that corresponds to the multiplica-
tive biasX0/Y0 is

whereC0 is a variable with a probability distribution representing
the state of knowledge about the reciprocal of biasY0/X0. Thus,

The expected valuec0 is a scaling factor forx0. A linear Taylor
series approximation of the measurement equation (eq 7) about
y0 simplifies to

The expression for propagating uncertainties based on the linear
approximation (eq 9) of the measurement eq 7 is

whereur(y0) ) u(y0)/y0, ur(x0) ) u(x0)/x0, andur(c0) ) u(c0)/c0

are therelatiVe standard uncertaintiesassociated withy0, x0,
and c0, respectively.20 In the case of vibrational frequencies
computed from quantum chemistry models,y0, x0, andc0 are
positive so the relative standard uncertaintiesur(y0), ur(x0), and
ur(c0) are well defined. Thus

wherey0 is defined by eq 8. Thus, the ISOGuide’s approach
to quantify the uncertainty arising from bias requires one to
specify the scaling factorc0 and its associated standard
uncertaintyu(c0) on the basis of all available knowledge and
scientific judgment. In the rest of this paper, we propose scaling
factorsc0 and their associated standard uncertaintiesu(c0) for
computational models for vibrational frequencies. The resulting
scaled estimatey0 and its associated standard uncertaintyu(y0)
are regarded as approximating the expected value and the
standard deviation of a state-of-knowledge probability distribu-
tion for Y0, the “true” fundamental vibrational frequency.

3. Methodology

Additive Bias. In an earlier paper,21 we showed how the
Computational Chemistry Comparison and Benchmark Database
(CCCBDB)17 may be used to specify the correctionc0 and the
standard uncertaintyu(c0) associated with the atomization
enthalpy of a target molecule, as obtained from a quantum
chemistry calculation. Briefly, the principal challenge is to
identify a class of molecules in the CCCBDB with the following
three characteristics: (i) The bias for the target molecule is
believed to be of the same sign and of similar magnitude as the
biases for the molecules in the class. (ii) The estimated biases
for the molecules in the class appear to have an approximately
normal distribution and do not have an excessively large spread.
(iii) The number,m, of molecules in the class is sufficiently
large. Once the class is selected, the correctionci for each
molecule in the class (i ) 1, ...,m) is estimated as the difference
between the experimental and computed values. The associated

Y0 ) X0 + C0 (4)

y0 ) x0 + c0 (5)

u2(y0) ) u2(x0) + u2(c0) (6)

Y0 ) X0C0 (7)

y0 ) x0c0 (8)

Y0 - y0

y0
≈ X0 - x0

x0
+

C0 - c0

c0
(9)

ur
2(y0) ≈ ur

2(x0) + ur
2(c0) (10)

u(y0) ) y0ur(y0) ≈ y0[ur
2(x0) + ur

2(c0)]
1/2 (11)
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standard uncertaintyu(ci) is typically approximated as the
uncertainty in the corresponding experimental value. Suppose
the mean and standard deviation ofc1, ...,cm areµ ) (1/m)∑ici

andσ ) [(1/m)∑i(ci - µ)2]1/2, respectively. Our recommendation
was to use, as the correction and its associated standard
uncertainty,c0 ) µ andu(c0) ) [(1/m)∑i u2(ci) + σ2]1/2. The
corresponding predictiony0 and uncertaintyu(y0) are determined
from eqs 5 and 6.

Fractional Bias. The calculated resultx0 is an unscaled
vibrational frequency. We will use the CCCBDB to specify a
scaling factor,c0, and its associated standard uncertainty,u(c0),
to counter fractional bias (i.e., multiplicative bias) inx0. The
corresponding scaled resulty0 and the standard uncertaintyu(y0)
are determined from eqs 8 and 11. The first task is to identify
a class of vibrational frequencies in the CCCBDB that meet
the three requirements listed in the previous paragraph. Suppose
the “true” fundamental frequencies for the identified class are
Yi (i ) 1, ...,m), the corresponding unscaled calculated results
are xi with standard uncertaintiesu(xi), and the experimental
results arezi with standard uncertaintiesu(zi). Suppose the
expected value of the sampling distribution forxi is Xi. Then,
the fractional bias inxi is Xi/Yi. The unscaled calculated result
xi is an estimate forXi, and the experimental valuezi is an
estimate forYi; so bi ) xi/zi is an estimate for the fractional
biasXi/Yi, and the estimated scaling factor isci ) 1/bi ) zi/xi.

In accordance with the ISOGuide, the unscaled calculated
resultxi and the uncertaintyu(xi) are regarded as the expected
value and the standard deviation of a state-of-knowledge
distribution forXi. Likewise, the experimental resultzi and the
uncertaintyu(zi) are regarded as the expected value and the
standard deviation of a state-of-knowledge distribution forYi.
Let Ci ) Yi/Xi be a variable representing the correction for
fractional bias inxi. In the ISOGuide, the expected value and
standard deviation of a state-of-knowledge distribution forCi

are determined from a linear approximation ofCi ) Yi/Xi about
ci ) zi/xi. Thus, the expected value of a state-of-knowledge
distribution for Ci is identified with ci ) zi/xi. Because the
probability distributions forYi andXi are determined indepen-
dently, the covariance betweenYi andXi is zero. So, the relative
standard deviation forCi, denoted byur(ci), is approximated20

asur(ci) ≈ [ur
2(zi) + ur

2(xi)]1/2, whereur(ci) ) u(ci)/ci, ur(zi) )
u(zi)/zi, andur(xi) ) u(xi)/xi. Thus,

Following our approach for an additive bias,21 the first step
is to identify a class of vibrational frequencies for which the
fractional biasesbi ) xi/zi are believed to be similar to the
unknown fractional bias in the computed resultx0. For example,
if x0 is a C-H stretching frequency, one might choose a class
of C-H stretching frequencies. However, nearly all previous
studies have treated all available frequencies as a single class.
We do the same in the present study. The distribution of thebi

values for the selected class should be examined to verify that
it is approximately normal and that the spread is not excessively
large.

According to the belief that the fractional bias inx0 is similar
to the biases for the class identified in the CCCBDB, each of
the m state-of-knowledge distributions forC1, ..., Cm may be
attributed toC0. Suppose the probability density function (PDF)
for Ci, represented byci andu(ci), is pi(‚). We propose that the
PDFp(‚), attributed toC0, be defined as the linear combination
p(y) ) ∑iκipi(‚) of the PDFspi(‚), whereκi ) ai/∑iai anda1, ...,
am are nonnegative “weights” attributed to the PDFsp1(‚), ...,

pm(‚), respectively. A combined probability distribution with
PDF p(‚) ) ∑iκipi(‚) is referred to as a mixture probability
distribution. The expected value and standard deviation of the
PDF p(‚) are ∑iκici and [∑iκiu2(ci) + ∑iκi(ci - ∑iκici)2]1/2,
respectively.22 Thus, the scaling factorc0 and its associated
standard uncertainty,u(c0), may be specified as

and

Scaling Factor Based on Least-Squares Theory.A common
approach for determining the weights,ai, and, hence, the scaling
factor c0 and its associated standard uncertaintyu(c0) is to fit
the linear model

using least-squares theory. Here,ei ) (zi - c0xi) is the difference
between the experimental resultzi and the corresponding scaled
computed resultc0xi. Accordingly, the scaling factorc0 based
on least-squares theory is that value which minimizes the least-
squares objective function

The solution of minimizing the objective function (eq 16) is

Comparison of eqs 13 and 17 shows thatc0 corresponds to the
weightsai ) xi

2 or the probabilitiesκi ) xi
2/∑ixi

2. From eq 14,
the corresponding standard uncertaintyu(c0) associated with the
scaling factorc0 of eq 17 is

whereci ) zi/xi. Then, the scaled computed vibrational frequency
is y0 ) x0c0 from eq 8, with standard uncertaintyu(y0)
determined from eq 11.

Scaling Factor and Its Associated Approximate Standard
Uncertainty. As illustrated in the following, the second term
of eq 18 is the dominant term. We consider the popular HF/6-
31G(d) quantum chemistry model. Our data set for this model
containsm ) 3508 frequencies (each degenerate frequency is
counted only once). The histogram of the corresponding
estimated biases,bi ) 1/ci, is shown in Figure 1. Because both
terms of eq 18 have the same denominator, we need only to
compare numerators. The numerator of the second term of eq
18 is

For our HF/6-31G(d) frequencies, the values of|xi(ci - c0)|
range from 0.009 to 332 cm-1, with a median value of 21 cm-1

u(ci) ) ciur(ci) ≈ ci[(u(zi)/zi)
2 + (u(xi)/xi)

2]1/2 (12)

c0 ) ∑iκici ) ∑iaici

∑iai

) ∑iai(zi/xi)

∑iai

(13)

u(c0) ) [∑iκiu
2(ci) + ∑iκi(ci - c0)

2]1/2 )

[∑iaiu
2(ci)

∑iai

+ ∑iai(ci - c0)
2

∑iai
]1/2

(14)

zi ) c0xi + ei (15)

∆2 ) ∑iei
2 ) ∑i(c0xi - zi)

2 (16)

c0 ) ∑ixizi

∑ixi
2

(17)

u(c0) ) [∑ixi
2u2(ci)

∑ixi
2

+ ∑ixi
2(ci - c0)

2

∑ixi
2 ]1/2

(18)

∑ixi
2(ci - c0)

2 (19)
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and a mean value of 30 cm-1. Using eq 12, the numerator of
the first term of eq 18 is

We consider the two pieces of eq 20 separately. The second
piece isΣici

2u2(xi), whereu(xi) is the small standard uncertainty,
mainly from random effects, associated with the calculated
frequencyxi. Using the HF/6-31G(d) model, we computed the
27 vibrational frequencies of the propane molecule 1000 times,
starting from randomized initial coordinates (Gaussian 03
software23,24). Because the optimized molecular geometry
depends weakly upon the initial coordinates and the force
constants depend on the geometry, a distribution of values was
obtained for each vibrational frequency. The standard deviation
of the distribution for the frequencyxi is an estimate of the
standard uncertaintyu(xi). The uncertaintiesu(xi) range from
0.05 to 0.7 cm-1, with a median value of 0.2 cm-1. A different
quantum chemistry software package (GAMESS23,25), with
different default convergence criteria, produced uncertainties
ranging from 0.03 to 0.4 cm-1, with a median value of 0.1 cm-1.
Mean values from the two quantum chemistry packages agreed
within the corresponding standard uncertainties and always
within 0.1 cm-1. Becauseci is not far from 1, the range of values
for ciu(xi) is not far from the range of values foru(xi). The first
piece of eq 20 isΣiu2(zi), whereu(zi) is the uncertainty associated
with the experimental valuezi of the vibrational frequency. The
uncertainties associated with the experimental values are not
always reported. However, the compilation by Shimanouchi18

does include estimated uncertainties. There are 1019 frequencies
in the CCCBDB for which we have both HF/6-31G(d) values
and the experimental uncertainties estimated by Shimanouchi.
These experimental uncertainties range from 1 to 30 cm-1, with
a median of 15 cm-1 and a mean of 10 cm-1. Thus, we conclude
that the first term of eq 18 is smaller than the second.
Henceforth, for the approximate standard uncertaintyu(c0)
associated with the scaling factorc0, we will use

To evaluate the usefulness of this approximation, we computed
u(c0) from eq 21 and from eq 18, neglecting the tiny second
pieceΣici

2u2(xi) of eq 20. Using the Shimanouchi subset of 1019
frequencies, from eq 17, we obtainc0 ) 0.8990. From eq 21,

we obtainu(c0) ) 0.0210. From eq 18, neglectingΣici
2u2(xi),

we obtainu(c0) ) 0.0222. The uncertainty values 0.0210 and
0.0222 are not appreciably different, justifying the use of eq
21.

Some previous studies report the root-mean-square (rms)
difference between experimental and scaled frequencies and use
rms as a surrogate for uncertainty. The definition is rms)
(∆2/m)1/2, where∆2 is given by eq 16 andm is the number of
frequencies in the class. Substituting into the approximation
given by eq 21 and using the definitionci ) zi/xi leads to the
relation

where〈x2〉 ) (1/m)∑ixi
2. We do not use this relation further but

include it for comparison with previous studies.
Equation 21 can be used to find a convenient approximation

to u(y0), defined by eq 11, for the uncertainty associated with
scaled computed vibrational frequencyy0. In this case, we
considerur(x0) andur(c0). For the propane molecule discussed
previously, the relative uncertaintiesur(xi) range from 0.000 03
to 0.003, with a median value of 0.0001 (Gaussian 03). A
different software package (GAMESS) produced relative un-
certainties ranging from 0.000 02 to 0.002, with a median value
of 0.000 05. In contrast,ur(c0) ≈ 0.02, using the uncertainties
estimated by Shimanouchi described previously. Assuming that
ur(x0) will be in the range found for the vibrations of propane,
ur(x0) is negligible relative tour(c0). Thus, eqs 8 and 11 can be
combined to produce the approximate standard uncertaintyu(y0),
given by eq 23.

In summary, the scaling factorc0 is given by eq 17, and its
associated approximate standard uncertaintyu(c0) is given by
eq 21. The corresponding scaled computed vibrational frequency
y0 is given by eq 8, and its associated approximate standard
uncertaintyu(y0) is given by eq 23.

4. Selection of Vibrational Frequencies in the CCCBDB

Molecules Represented in the CCCBDB.The molecules
in the CCCBDB were chosen for having well-determined
enthalpies of formation and not for well-determined vibrational
frequencies. Nonetheless, vibrational frequencies for half of the
molecules in the CCCBDB are available in evaluated compila-
tions of experimental data. Experimental frequencies are avail-
able for 80 diatomic molecules and 306 polyatomic molecules.
Of these 386 molecules, 224 are organic and 162 are inorganic.
Also, 70 are free radicals. The experimental vibrational frequen-
cies are taken from the compilations by Shimanouchi,18 by
Huber and Herzberg,26 by Jacox,27 and by Sverdlov, Kovner,
and Krainov,28 and also from some individual journal papers.

Integrity of the Data. Before an experimental frequency and
a computational frequency are compared, it must be verified
that they correspond to the same vibrational mode of the same
molecule. In experimental studies, assigning the observed
frequencies to specific vibrational modes can be challenging.
The difficulty increases with the number of vibrational frequen-
cies in the molecule. For a small molecule with a rotationally
resolved spectrum, vibrational frequencies can be measured to
a precision better than 1 cm-1 and the assignment is unambigu-
ous. Over half of the molecules in the CCCBDB with vibrational
frequencies are small (i.e., have five or fewer atoms). For larger

Figure 1. Distribution of estimated biases,bi, for HF/6-31G(d)
calculations of 3508 vibrational frequencies of 312 molecules.

∑ixi
2u2(ci) ) ∑iu

2(zi) + ∑ici
2u2(xi) (20)

u(c0) ≈ [∑ixi
2(ci - c0)

2

∑ixi
2 ]1/2

(21)

u(c0) ≈ rms

x〈x2〉
(22)

u(y0) ≈ y0ur(c0) ) (y0/c0)u(c0) ) x0u(c0) (23)
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molecules, vibrational frequencies may overlap. Moreover,
overtones (harmonics) and combination bands (cross-harmonics)
may be difficult to distinguish from the fundamental frequencies.
Such complications may lead to mistaken assignments. Another
common mistake is interchange of two assignments. This
mistake is often revealed upon comparison with the frequencies
computed using quantum chemistry models. Experimental
frequencies may also be assigned to the wrong molecule. This
is harder to detect and cannot be corrected by using computa-
tional data alone. Finally, the experimental sample may include
a mixture of conformations that may lead to incorrect assign-
ments.

Computational mistakes include an inappropriate choice of
the quantum chemistry model or incorrect execution of the
appropriate calculations. For example, a quantum chemistry
model based on Hartree-Fock theory would be inappropriate
for weakly bound van der Waals molecules because such
molecules are held together by forces that are not included in
Hartree-Fock theory. More subtly, the harmonic vibrational
model itself is inappropriate for multiple-well potentials such
as soft torsions or inversions. This is the reason that the largest
values of the correction,ci, are usually for torsional vibrations.
Examples of incorrect execution are use of the wrong conforma-
tion and the failure to converge to the electronic ground state
of the molecule.

Suitable Class of Vibrational Frequencies.As discussed
in section 3, the main task in determining a scaling factor and
its associated standard uncertainty is to identify an appropriate
class of reference vibrational frequencies within the CCCBDB.
This is challenging because the three required characteristics
are somewhat vague: (i) the biases within the class are believed
to be similar to that for the target frequency, (ii) the estimated
biases within the class comprise an approximately normal
distribution without an excessively large spread, and (iii) the
cardinality of the class is sufficiently large. Classifying vibra-
tional modes as stretch, bend, or torsion is advantageous when
individual force constants are scaled5 and would probably also
be helpful for frequency scaling. However, for the present study,
we choose to make no distinctions among frequencies; that is,
we consider all vibrational frequencies as a single class. This

is to conform to the current common practice as discussed in
section 1.

5. Results and Discussion

Choice of Quantum Chemistry Models. The CCCBDB
contains vibrational frequencies computed using over 140
quantum chemistry models.17 For this study, we have selected
40 models, listed in Table 1. The selected models are all the
combinations of the basis sets 3-21G, 6-31G(d), 6-31G(d,p),
6-31+G(d,p), and 6-311G(d,p) with the theoretical methods HF
(Hartree-Fock), MP2 (second-order Møller-Plesset perturba-
tion theory), and QCISD (quadratic configuration interaction
including single and double excitations) and the density func-
tionals BLYP (Becke exchange29 with Lee-Yang-Parr cor-
relation30), B3LYP (Becke three-parameter hybrid exchange31

with LYP correlation), B3PW91 (B3 exchange with Perdew-
Wang correlation32), mPW1PW91 (modified33 Perdew-Wang
exchange34 and PW91 correlation), and PBEPBE (Perdew-
Burke-Ernzerhof exchange and correlation35,36). The principal
quantities in Table 1 are the scaling factorsc0, computed using
eq 17, and their associated uncertaintiesu(c0), computed using
eq 21. When available, values ofc0 from the literature are shown
in Table 1 between parentheses. Because the CCCBDB remains
under continual development, the data sets for the various
models include different numbers of vibrational frequencies,
shown in Table 1 between square brackets.

Robustness of Scaling Factors and Their Associated
Uncertainties. As discussed in section 3, the class used to
determine a scaling factor should have estimated biases that
display an approximately normal distribution without an exces-
sively large spread. Consider the HF/6-31G(d) model, which is
one of the most popular models in current use. The distribution
of estimated biases,bi, in the CCCBDB for this model is shown
in Figure 1. It appears approximately normal; however, the
spread is rather large. Moreover, it is skewed by several large
values of bi. Such “outliers” are often due to mistakes, as
discussed in section 4. The skewness is conveniently character-
ized by the coefficient of skewness,η3 ) [∑(bi - µ)3/m]/σ3,
which is zero for a normal distribution.37 For the data of Figure
1, η3 ) 0.44. To investigate whether the skewness and large

TABLE 1: Scaling Factors, c0, and Their Associated Standard Uncertainties,u(c0), Expressed asc0 ( u(c0), for the Prediction
of Vibrational Fundamentals, Arranged by Theoretical Method and Basis Seta

3-21G 6-31G(d) 6-31G(d,p) 6-31+G(d,p) 6-311G(d,p)

HF 0.9043( 0.0407
[3295] (0.89,c 0.9085d)

0.8982( 0.0230
[3508] (0.8929,e 0.8881,f 0.8953g)

0.9024( 0.0241
[3419] (0.8992d)

0.9039( 0.0236
[3360]

0.9085( 0.0246
[3478] (0.9051d)

MP2 0.9527( 0.0448b

[3316]
0.9411( 0.0245

[3360];
0.9421( 0.0254b

[3252] (0.9320,f 0.9427,g 0.9427,d

0.9434b,d)

0.9356( 0.0255b

[3407] (0.9370b,d)
0.9398( 0.0285b

[3399]
0.9502( 0.0250b

[3416] (0.9496b,d)

QCISDb 0.9680( 0.0467
[2947]

0.9519( 0.0202
[2263] (0.9537d)

0.9396( 0.0205b

[3409]
0.9433( 0.0230

[3448]
0.9541( 0.0200

[3263]
BLYP 0.9923( 0.0472

[3348]
0.9903( 0.0253

[3210] (0.995,h 0.9940,i 0.9945d)
0.9910( 0.0253

[3447]
0.9933( 0.0274

[3398]
0.9962( 0.0259

[3298]
B3LYP 0.9627( 0.0403

[3325]
0.9594( 0.0200

[3310] (0.963,h 0.9613i)
0.9611( 0.0201

[3468]
0.9632( 0.0211

[3347]
0.9669( 0.0205

[3474] (0.9679j)
B3PW91 0.9595( 0.0371

[3387]
0.9557( 0.0196

[3276] (0.9573d)
0.9575( 0.0207

[3446]
0.9592( 0.0218

[2854]
0.9631( 0.0208

[3482]
mPW1PW91 0.9534( 0.0391

[3486]
0.9491( 0.0194

[3433]
0.9508( 0.0204

[3467]
0.9525( 0.0213

[3412]
0.9568( 0.0205

[3436]
PBEPBE 0.9885( 0.0431

[3299]
0.9843( 0.0237

[3377]
0.9851( 0.0238

[3317]
0.9874( 0.0254

[3327]
0.9910( 0.0248

[3447]

a The number of independent vibrational frequencies in each data set is given between square brackets. Literature values are between parentheses.
b Frozen-core approximation.c Reference 6.d Reference 11.e Reference 7.f Reference 8.g Reference 9.h References 43 and 44.i Reference 10.
j Reference 14.
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spread affect the results forc0 and u(c0), we truncate thebi

distribution at various multiples ofσ. The results are listed in
Table 2. We note that even severe truncation at(3σ has a
negligible effect on the value of the scaling factorc0 and
decreases the standard uncertaintyu(c0) by only 10%.

Trends in Scaling Factors and Their Associated Uncer-
tainties. Table 1 is the largest table of vibrational scaling factors
yet assembled, revealing some simple patterns. Some of the
results are presented graphically in Figure 2 to show the trends
more clearly. For a given theoretical method, the value of the
scaling factor,c0, depends only weakly upon the basis set. This
was noted previously for the B3LYP density functional.14

QCISD (not displayed in Figure 2) and MP2 show the strongest
basis set dependence. This is as expected, because only these
two methods make use of the virtual orbitals, which are affected
more than the occupied orbitals when the basis set is enlarged.

The uncertaintiesu(c0) are about twice as large for the 3-21G
basis set as for the other basis sets, all of which include
polarization functions. This suggests that polarization functions
are important for avoiding markedly poor predictions of
vibrational frequencies. In support of this suggestion, data from
a recent study14 show that rms drops more than 2-fold when
polarization functions are added to 6-311G basis sets. Likewise,
for B3LYP/6-31G(d), we haveu(c0) ) 0.02 (Table 1), but for
B3LYP/6-31G, we find17 u(c0) ) 0.04.

The values ofu(c0) are surprisingly insensitive to the
theoretical method employed. For example,u(c0) ) 0.023 for
HF theory andu(c0) ) 0.020 for QCISD theory (both with the
6-31G(d) basis set) despite the neglect of electron correlation
in HF theory and the high-level treatment of correlation in
QCISD theory. This suggests that poor performance for outliers

is due to inadequacy of the harmonic oscillator model, which
is common to all the computations summarized in Table 1.
Likewise, even higher-level calculations have large errors after
scaling38 but are reliable after correcting for anharmonicity.39

Application Examples.The scaling factors and their associ-
ated uncertainties proposed here are appropriate for predicting
the fundamental vibrational frequencies of molecules that are
well represented by those in the CCCBDB. They are not
intended for predicting zero-point energies or thermodynamic
quantities or for predicting frequencies of molecules such as
metal clusters or weakly bound complexes.

Consider the molecule BF2OH, which is not included in the
CCCBDB. Its vibrational frequencies have been measured
experimentally in a cryogenic neon matrix.40 The highest
frequency in the molecule (ν1) is the O-H stretching vibration.
An HF/6-31G(d) calculation yields the unscaled predictionx0

) 4135.0 cm-1. Using the scaling factorc0 ) 0.8982 and the
uncertaintyu(c0) ) 0.0230 from Table 1, we obtain a virtual
measurement ofy0 ) 3714 cm-1 with a standard uncertainty of
u(y0) ) 95 cm-1. For comparison, the corresponding experi-
mental measurement isz0 ) 3712.5 cm-1 with a standard
uncertainty ofu(z0) ) 0.1 cm-1. The lowest frequency in the
molecule (ν7) is the in-plane BOH bend. The HF/6-31G(d)
calculation yields the unscaled predictionx0 ) 470.7 cm-1,
which becomes the virtual measurement of 423 cm-1 with a
standard uncertainty of 11 cm-1. This is compared with the
experimental measurement of 447.5 cm-1 with a standard
uncertainty of 0.1 cm-1.

6. Conclusions

The uncertainties presented in Table 1 reveal that the scaling
factors are accurate to only two significant figures. The common
practice of reporting four significant figures overstates the
precision of vibrational scaling factors.

Table 1 and Figure 2 show that the scaling factors depend
only weakly upon the basis set. Including d-functions reduces
the uncertainty,u(c0), but the scaling factor,c0, is essentially
unchanged. Thus, these scaling factors may be used for basis
sets not included in Table 1. For example, the scaling factor
for HF calculations using the cc-pVTZ basis sets41,42 can be
assumed equal to that for the closest calculation in Table 1,
HF/6-311G(d,p):c0 ) 0.91 ( 0.02. As a check, explicit HF/
cc-pVTZ calculations yield the scaling factorc0 ) 0.9099 and
the standard uncertaintyu(c0) ) 0.0250,17 in agreement with
this estimate.

The uncertainties,u(c0), in scaling factors represent the
standard deviations of their respective state-of-knowledge
probability distributions. For a predicted vibrational frequency,
the estimated uncertaintyu(y0) (eq 23) likewise represents a
standard deviation. However, until the underlying probability
distributions have been characterized, it is not possible to obtain
probabilistic uncertainty intervals. Improved methods for clas-
sifying vibrational frequencies will probably lead to distributions
that are more nearly normal and to smaller uncertainties.

The thorough study by Scott and Radom included scaling
factors not only for vibrational fundamentals but also for
molecular properties that depend on the vibrational partition
function.11 The present study of uncertainties is currently being
extended to include such properties.
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