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We describe criteria for implementation of quantum computation in qudits. A quditdsdianensional
system whose Hilbert space is spanned by staetl), ..., |[d—1). An important earlier workA. Muthukrish-
nan and C.R. Stroud, Jr., Phys. Rev.6%, 052309(2000] describes how to exactly simulate an arbitrary
unitary on multiple qudits using ad2 1 parameter family of single qudit and two qudit gates. That technique
is based on the spectral decomposition of unitaries. Here we generalize this argument to show that exact
universality follows given a discrete set of single qudit Hamiltonians and one two-qudit Hamiltonian. The
technique is related to th®R-matrix decomposition of numerical linear algebra. We consider a generic
physical system in which the single qudit Hamiltonians are a small collectidafhQ([k)(j|+[j)(k|) and
H =AQ(i[k)(j[-i|})k)). A coupling graph results taking nodes.Q, d—-1 and edges— k iff H}Y are allowed
Hamiltonians. One qudit exact universality follows iff this graph is connected, and complete universality
results if the two-qudit Hamiltoniakl =A4Q|d-1,d-1)(d-1,d-1] is also allowed. We discuss implementation
in the eight dimensional ground electronic state&’&b and construct an optimal gate sequence using Raman

laser pulses.
DOI: 10.1103/PhysRevA.71.052318 PACS nuniber03.67.Lx
I. INTRODUCTION [4], and ground electronic states of alkali atofs$ Using

Ani cant th i truct used in the field of higher dimensional subspaces already endowed in these sys-
nimportant theoretic construct usedin the field ot quan-y ¢ may be more efficient in terms of the number of inter-
tum information is the qubit. Its utility follows from the

imple but sianificant ition that all two-di . Iacting gates needed during a computation. This is critical for
simpi€ but significant recognition that a 0-aimensional o " control because interactions between qudits tend to

subspaces, regaydless O.f the under!ying physipal system, C@llen channels for interactions with the decohering environ-
be regarded as informationally equwalgnt. 'Th|s has que ent. By contrast, in many physical systems, single qudit
possible to discuss quantum computation in terms of Slngl%ontrol is a well-developed technology that can be done with

qubit and two qubit gates without the need to analyze th igh precision. Second, there is some evidence that the error

specific interactions that realize operations within a physicajy, o opq(4s for fault tolerant computation improve when the
system or between subsystems. An important issue in th'éncoding is done with qudits wheds>2 and prime[6]

regard is that a necessary condition fefficient quantum Previous work has established conditions for simulating

computation is the existence of an underlying tensor produgt .- ioc on many qudits. Viasd¥] shows that any unitary

structure on the Hilbert spack!. If all computation were —; _ U(d") can be simulated with arbitrary precision using
performed on a singl@=dim(?) level system then some o . . . o
wo specific noncommuting single qudit Hamiltonians

physical resource such as space or energy would grow wit omplemented by a two qudit interaction Hamiltonian. Bry-

the dimension of th? SE/SteEtLr]]' In cli)ntra_?rt], ttT]e ag_alogogs linski and Brylinski[8] prove the necessary and sufficient
re;ourtches gr?w poly-logari c;mcfa y wi b et 'mené"ot';']criteriafor exact qudit universality. Exact universality means
when he System 1S composed of many Subsystems. by at any unitary and, by unitary extension to a larger Hilbert

argument, a computation perform.ed_ on q“?“"s 2) is in space, anyuantum procesan be simulated with zero er-
some sense the most compact foliation of Hilbert space. 4 The result is that arbitrary single qudit gates comple-

Nevertheless, there are compelling reasons to considefanied by one entangling two qudit gate is needed. Neither
computation on qudits witd> 2. First, most candidate Sys- ¢ yhese methods is constructive. Muthukrishnan and Stroud
tems for a quantum computer encode the qubit in a SubSpagg; give a constructive procedure for an exact simulation of
of a larger accessible Hilbert space. Examples of syste n arbitrary unitary om qudits using single qudit and two
equdit gates. Their approach uses the spectral decomposition
of unitaries and involves a gate library consisting of a family
of continuous parameter gates.

Here we describe an approach that usesgRedecompo-
sitions on unitaries to achieve exact universal computation

charge-position states in quantum di&§ rotational and vi-
brational states of a molecul&], harmonic oscillator states

*Electronic address: gavin.brennen@nist.gov on qudits. The analysis is done at the Hamiltonian level, i.e.,
"Electronic address: oleary@cs.umd.edu we describe a minimal set of Hamiltonians needed to per-
*Electronic address: stephen.bullock@nist.gov form computation on qudits. Our primary motivation is to
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find a construction which requires a small number of controlare{\§, =|j)j| = [K)(k|, M= =i[])<K| +i[k)(j [, N =[] )<K]+ K [}
resources and the fewest number of control pulses. By small Any such unitary can be generated by only two members
we mean that using a sequence of control pulses kftee  of the subalgebra. This follows by the Euler decomposition
parameters each, the number of control pulses tk@®uld  of SU(2) into a product of three rotations about two orthogo-
be close to the number of parameters in the unitary groupal axes on the Bloch sphere. In this paper we focus on the
U(d), namely,d?. Our construction has the advantage that theset of Hamiltonians

single qudit gates are generated by a fixed set of Hamilto-

nians that couple pairs of states in the single qudit logical Hj = QN  Hj =hQA. (1)
basis. The gates perform rotations, parametrlze_d by tW(ﬁor convenience of notation, we assume the strength of each
alngles,. about orthogonal axes within the associated twog upling is equal t¢) and allow the time durationthat each
dimensional subspace. For the example of two states coupl

o amiltonian is left on to be a free parameter. In some cases,
by a electromagnetic field, the two angles correspond to thﬁ1e two Hamiltonians in Eq(1) can be turned on simulta-

pulsde area and the mlegh ar(wjg_le_ off_thlg :dg_hase"and Irﬁeously. By adjusting the relative strengths of the couplings,
gggoa?;%ﬁt%onmfeoqnueigz % r;{lyea ”s\?nngleleoné pa:g(r)r?:te)? gxggne can then realize any rotation about_an axis on the equator
: ) i : . oé the Bloch spherd=1/2). For brevity, we write such

qudit gate: the controlled-phase gate. This gate is generated | —ilcot ) H~sin ) HL T O) o

by a two-qudit HamiltoniarH,, that generates a phase on afotations asU;(y, ¢)=e I I, where it is

single product state of two qudits. Such interactions can b&nderstood that if the couplinds;, Hjj, cannot be turned on

engineered in many atom optical systems. together therl; (v, ¢) requires three elementary gates. The
In this paper, the general results are developed with clos@atrix form of the unitaryJ; (v, ¢) in the logical basis is

contact to the example of computation in tthe8 qudit en-

coded in the ground hyperfine states®@Rb. In Sec. Il we Ui(7. )

describe the construction of single qudit unitaries using the l;

QR decomposition. We introduce a coupling graph to de- cog) —iei? sin(y)

scribe how states are connected to each other by physical

Hamiltonians. The set of rotation planes may be incomplete, = le-j-1 '
i.e., each state may not be connected to every other state. —ie? sin(y) cogy)
However, provided the graph is connected, an efficient de- ot

composition can be found. Multiqudit computation is ad-
dressed in Sec. lll. Using a construction of a singly- (2

controlled Householder gate demonstrated in the Appendixyherel, denotes the-dimensional identity operator and we
we show thatO(d") elementary single- and two-qudit gates agsymeg < k. In linear algebra applications these operations
from our library suffice to generate arbitrary two qudit uni- are named “Givens rotations.” They define a coordinate axis
taries. This construction completes the requirements for extation in the plane spanned by the vectfjs, |k)} and are
act universality. We conclude with a summary of the results, 15| ysed to zero elements of a matrix.
in Sec. IV. Realization of an arbitrary unitary evolutiod e U(d")
follows in two steps. The first corresponds t@Q& decom-
position[10,11] of the matrixU.
Il. ONE-QUDIT UNITARIES Using the allowed set of Hamiltonians, we may realize
We show how to construct an arbitrary single qudit uni-matrices of Givens rotations physically. Generically, @R
tary with exact precision. The idea relies on applying controld€composition writes an _invertibleG=UT, where U
fields that couple only two basis states at a time. Using th& G1G2" -G is a product of Givens rotations and hence uni-
fields to generate an arbitrary unitary on a two-dimensionafary andT is upper triangular. Note that 5=V is unitary,
subspace of the qudit, one can then use a sequence of suien so likewise iST=U'G, whenceT is in this case a diag-
operations on different pairs of states to construct a unitar@n@l matrix which applies relative phases to computational
on the entired-dimensional space. We show that this can bePasis states. L .
done efficiently, meaning in as few gates as possible, pro- Using techniques for realizing diagonal computations

vided there exists a pathway between any two states via pait}2]: @ sequence of Hamiltonians realizifigs constructed.
wise couplings. We illustrate the idea using a Givens rotation in QR

Recall that any determinant one unitary operator orf€duction of a unitary e U(d) as above. We may choose
a two-dimensional Hilbert space can be described by & Givens rotation so as to zero the matrix elenjeh¢]q; o
Bloch sphere rotation. In the subspagg, spanned by (where the indices rug,1,... d-1). An appropriate choice
the orthonormal basig|j),|k)} such a rotation is written IS Ug-24-1(7, ) where the angley, ¢ are chosen to satisfy

Ui(y.0,¢)=e7 K, where the vector y=1y(sin(6) tany = Vg1 o[Vlg2d.
xcoq ¢),sin(f)sin(¢),cog ) is parametrized by its length ' '
|7/=7y and its polar coordinate&, ¢) on the Bloch sphere. b= 2 +ard[Vlg .0 - arg[Vlg1 o). 3)

The chosen basis for the subalgebra is both unitary and Her-
mitian and its components along the axes of the Bloch spher&hen letting[V].. denote a changed entry, we obtain
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RA Measurement

and F,=2 split in energy by the hyperfine interactic;.
Each manifold consists of 21 degenerate magnetic sub-
levels Mg for a total of eight distinguishable states. The de-
generacy can be lifted by applying a longitudinal magnetic
field B,. For small fields, the resultant Zeeman interaction is
linear in the magnetic quantum numbklz=g:B,Mg, where
the Landeg factors satisf)gpf—gFT [13].

§ two ground state hyperfine manifolds with total sfip=1

By kg} F Control figlds that act on groupd—state hyperfine Ie\{els can
B o couple to either the nuclear spin or to the electronic spin.
‘ » These two mechnisms are distinguished by the strength of
grB; 1 the coupling with respect to the hyperfine interaction. We
0y 4 consider coupling that is weak relative Eq; using a pair of
e ) . 0 L 0 laser beams on Raman resonance between two sublevels at a
= — -

time. The effective atom-laser Hamiltoniad, in the sub-

FIG. 1. A singled=8 qudit encoded in the ground-state hyper- spaceft is then
fine levels of87_Rb. A pair of lasers can couple states in different Hajk = co @) H} — sin(@)HY,, (5)
hyperfine manifolds according to the selection rAlM=0,+1.
Projective measurements of population in stiteare made by ~Where Q=|Q,Q,|/A is the product of the individual laser
observing resonant fluorescence on a cycling transition to the exRabi frequencies divided by the detuningrom the excited
cited state. Any pair of states can be coupled by swapping neighbostate, andp= ¢, - ¢- is the relative phase of the two beams.
together pairwise and similarly any state can be measured by swags Raman coupling will also introduce ac stark shifts on all
ping to 7). the basis states. Generally, in the subsgd#oelk)} this will
introduce an effectivel—lfk coupling term. However, if the
Voo [Vos -+ [Vl laser Rabi frequencies are chosen such {fa=|(,|, then
- T Hj=0. Therefore, the Raman coupling between the two

Ugep g1V = . (8 states does indeed generate the Givens rotatignup to
: Vg20 V21 " [Vlg2g1 diagonal phases accumulated on the other basis states. Such
0 Vg * [Mi1gs phases can then be accounted for in the subsequent step of
' ’ the QR algorithm.
In the next step, one chooses a unitéhy 3 4-; to zero the In order to selectively couple two states only it is neces-

matrix elemen{Ug_;4-1V]s-20 Continuing in this way, the  sary that their energy difference be unique. In the linear Zee-
prodUCtH?ZZUd_j,d_l zeros all the elements below the upper man regime, this can only be accommodated when the two
left diagonal entry. By unitarity, this sequence also zeros allevels reside in different hyperfine manifolds. The allowed
but the diagonal element in the top row. Iterating the secouplings are constrained by angular momentum selection
quence over all columns to zero elements below the diagonaliles which dictate the change in magnetic spin quantum
then brings the unitary to diagonal form. The maximum number during a single pulse sequence. It will be important
number of Givens rotations needed déd-1)/2. The re-  to minimize spontaneous emission during the pulse sequence
sidual diagonal unitaryl hasd parameters. As each Givens by choosing a large detuninyof each laser from the excited
rotation has two parameters the total number of free paramstates. For a detuning much greater than the excited state
eters in the algorithm is dift/(d)]=d?. We note that the hyperfine structure, but less than than the fine structure split-
above choice of Givens rotations assumes that one can physing, the angular momentum selection rules dictatel:
cally couple any two logical basis states. In fact this particu=0, £1. Using two-laser pulses of the appropriate frequency
lar sequence is not necessary. One can achig9® eeduc-  and polarization, the state§ ,Mg) and |F;,Mg+AMg),
tion usingd(d-1)/2 Givens rotations with a restricted set of where AMg=0,+1 can then be coupled together. This is
couplings. This is proven in Sec. Il C. shown schematically in Fig. 1 where stat@s and |5) are
coupled by ar, — 7 polarized laser pair. As a further resource
constraint, we assume that one laser coupled td-th@ani-
fold has fixed = polarization so that the transition
Generically, control over a quantum system involves a\||:l,0>H|FT,o> is disallowed.
tradeoff in the number of resources used and the complexity At this point we pause to comment on the resources nec-
of the control algorithm. In the language of single qudit com-essary for single qudit compution using Raman pulses. For a
putation, the goal is to realize an arbitrary unitary on thefixed Zeeman splitting, it will be necessary to have lasers
qudit with as few gates and control fields as possible. Weuned to Raman resonance for eight allowed couplings. This
analyze this complexity for the example of controlling may be achievable using two phase locked lasers that are
ground electronic states of a single atom. Specifically, weérequency modulated appropriately. Another recourse is to
describe the coupling graph alluded to in the introduction inchange the magnetic field strength for each pairwise state
this case before defining it in general. coupling so that only one laser pair with a fixed frequency
Consider the atomic speci€éRb per Fig. 1. There are difference is necessary. The phase shifts accumulated on the

A. Example: One-qudit Unitaries in 8’Rb
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0——7 diagonal by a sequence of Givens rotatidhg acting on the
/ \\ two-dimensional subspadé;,. The complete sequence is as
6 5 follows: Column 7 reductionU, ;U; JU, 3Us 2Ug sUg U7 0,
| | column 0 reductionU, ;U, 4U; 3Us ;Ug sUg 6, COluMn 6 re-
1 5 3 duction: U, sU; 53Uy U; U g, (_:olumn 5 reduction:
Uy Uz 4U; 3Us 5, column 3 reductionUy 4U, 4U3 5, column
\ 4/ 2 reduction:Uy 13U, 4, column 4 reductiont, ;.

Note that in general, constructing;, requires 2(j,k)

FIG. 2. This is the coupling graph for the coupled hyperfine._1 basic Hamiltonians, whewkj k) is the distance between

states of®’Rb (see Fig. 1. As it is connected, the collection of J andkin the graph corresponding to the pairing relation. For

atom-laser couplings allows for universal one-qudit computation. qu.'t 'computatlon irf’Rb using Ramr?m pulse§, the graph is
sufficiently connected so that the distance is never greater

, ) ) , ) than one in th&@R decomposition above. There are a total of
basis states during the change in Zeeman interaction can kg, 7,5 -»g gates in the reduction to diagonal form. Each
accounted for in the gate sequence. . gateU; , € SU(2) has two parameters so this gives 56 param-

We wish 'to show that the above'set of a'tom-laser Ham|l- ters. An arbitraryu e SU(d) requiresd®-~1 parameters so
tonians sufflc_es to construct an arbitrary unitary evolution o he additional seven parameters correspond to seven relative
eight dimensional state spa¢¢,=C|0)® --- & (|7). TakeV hases left on the diagonal
e U(8) as the target one-qudit evolution. The goal then is top '
decomposeV/ into a sequence of evolutions by these atom
laser Hamiltonians B. Relative phases

V=exp- iH,%\Ltl/h) - exp— iHlALtl/ﬁ)_ (6) The goal of this section is to show that should the Hamil-

- o N . tonian graph be connected aiﬁdzf;olé‘f’i|j)(j| be a diagonal
Add|t|onally, we prefer efficient decompositions, .., W& glement ofU(d), then we may realizd with the allowed
wish to use as few laser pulséas small arl) as possible. HamiltoniansHY, HY,. In fact, we only need to construgt
e&p to a global phase so we can provide the construction for
the unitary T' e SU(d), T'=3SE3%j)|, where ¢qq=
->12j. We first note that although it is not explicitly an
allowed Hamiltonian, we may for angj,k) edge within the

87 R 87 R :
Rb coupling graphThe °'Rb coupling graph has verti- . .
ces Iabelledpbygogl p7 In addition Eonzugljtinz Fig. 1, we coupImg graph simulate the effect ka:ﬁm‘izk‘ Indeed, for
T ' o any fixed angley we have

also allow in the following edges, corresponding to the atom-
laser coupled hyperfine states: e Hi(Q) = Uj (= w4, 712U, (= 7,0)U; (/4 712)..

{(0,5,(0,6),(0,7),(1,4),(1,6),(2,3),(2,4.,(2,9}. (7) (8)

In particular, the edges encode the selection rule for the hyfhe goal then is to find an efficient sequencezabtations
perfine states. The graph is reproduced in Fig. 2. We note fahat simulatesT’:
future use that it is connected. Provided the sthbesk) are
coupled, we may produce any determinant-one unitary evo-
lution of ij.

Now note thatsince the coupling graph is conneciete
may in fact sequentially construct a Givens rotation on anyGiven that the coupling graph is connected, choose a subset
Hj. Indeed, even ifj) and|k) are not paired, there exists a S of d-1 edgesif,=j)j|-[k)(k| that leave the graph con-
sequencdjo)=|j),[j1).li2), ... .[in=|k) such that each con- nected. We can represent the elementSafs vectors in a
secutive pair admits atom-laser Hamiltonians. Moreover, take-dimensional real vector space spanned by the orthonormal
ing p=m/2, 6=m/2 in Eq.(2) shows that we may use these vectors{e}, i.e., \j,=¢;—e. We then construct &d-1) X d
pairings to swap states up to relative phase. Hence, since Wgatrix M out of the row vectors in S M
may physically construct some sequence of Hamiltonians fo&{)\zko,)\z , é—de 2}_ The appropriate timingg in Eq.

: . hat the fi ¢ Okg? Ml v -
any Givens rotation, we see that the first step of @& (g) pecessary to simulat® are given by solutions to the
decomposition is possible.

. . TQ— - *__ -
This leaves open the question of efficiency. For example',ﬂatr'x equationM’ 6= ¢, where §=—-0(ty, ... ty-p) and ¢

one might hope that in a graph as highly connected as that(®o: - +$a-2, ¢g-1)"- Straightforward Gaussian elimination

for 8Rb few or no swaps might be required. This is indeedSnOWs that the dimension of the row spacévbis d—-1, thus
possible as we now show. It is convenient to reorder théhere is a unique solution to the vectar

unitary in a logical basis labeldd,0,6,5,3,2,4,1 By succes- The result is that any diagonal unitary can be simulated up
sive Givens rotations, one may bring a unitatyo diagonal  to a global phase using>8(d-1) gates from the gate library.
form column by column where the sequence is chosen so aghis sequence can be reduced by a factor of threerdta-

to not void zeroes created in earlier steps. Each of the cokions can be implemented directly without conjugation. Fur-
umns can be reduced to a single unimodular entry on théher, all the Hamiltonianslﬂjzk are diagonal and hence com-

i), |ky are coupled by aitl, . In order to classify when the
QR step is possible, we introduce the notion of a “coupling
graph,” by example.

d-2
11 exp- Hf /) =T (9)

1=0 !
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mute, soz rotations that act on disjoint subspaces can be a1
implemented in parallel using additional control resources. Hi. = > AQmdm,nym;n|. (12
m,n=0
C. One-qudit universality for generic coupling graphs In this case the evolution generated Hy; over a timet is

o _entangling if the following is tru¢8]:
We found that for computation in the ground electronic

states of2’Rb, a single qudit unitary could be brought to H(Qmn+ Qpg) # t(Qmg+ Qpy)  mod 27 for somem,n,p,q.

diagonal form using the fewest possible Givens rotations. (13)
This is not peculiar to that system but is in fact possible for
any system with a connected coupling grdfH]. When the interactioi;, is entangling, it is always possible

Lemma 1.1 Given ad-node coupling graply of allowed  to map it toH;, using multiple applications o, conju-
Givens rotations, then any e SU(d) can be brought to di- gated by single qudit gates. In practice, some multiqudit op-
agonal form usingl(d—1)/2 allowed rotations if and only if erations may be done more efficiently usidg, directly.

G is connected. There are several proposals for realizing diagonal cou-

Proof. Supposeg is connected. Form any spanning tree pling gates in real physical systems. For example, in trapped
for it, and renumber the nodes so that the path from ribde atoms possible coupling mechanisms include pairwise inter-
(the root of the treeto any nodej passes through no node actions via dipole-dipole interactiof&6,17], and controlled
numbered lower thaji such a numbering can be constructedground state-ground state collisiofis8]. The later proposal
by successively deleting leaf nodes and numbering in ordelias been realized recently between atoms trapped in an op-
of deletion. (For 8’Rb, we formed the tree by breaking the tical lattice[19]. These proposals were originally made with
edge between nodes 6 and 1 and used the logical basis dhe goal of engineering two qubit controlled-phase gates. As
dering{7,0,6,5,3,2,4 1) At the jth step(j=1, ... d-1), cre- such, a naive adaptation to encoding over all magnetic hy-
ate the tree7;, rooted at nodg, from the portion of the perfine levels would fail due to off diagonal couplings be-
spanning tree defined by nodgs .. ,d. (Note that7; is con- ~ tween basis states. However, it should be possible to modify
nected due to the way we numbered the ngdBsen, untii  one or more proposals to realize a differential shift on a
only the root of7; remains, choose a le&f use a rotation single product state. For instance, in RE0] it was pro-
defined by its edge to eliminate elemektj) of U, and posed to realize a quantum gate using the ground state-
delete nodé from 7;. The result of applying these steps is an ground state collisional shift in a trap induced shape reso-
upper triangular matrixand therefore, sinc¥ is unitary, a  nance. Here one can tune a magnetic field such that a single
diagonal matrix computed by usingi(d—1)/2 allowed rota- molecular state is on resonance with a bound motional state
tions. of an external trap for both atoms. Because the resonance is

Supposeg is not connected and consider a mattix ~ dependent on the internal states, a unique phase is accumu-
e SU(d) that has no zero elements. Choose an arbitrary nod@ted on a single product state. Provided the atoms are suffi-
to call node 1. Then we can at best eliminate all but one ofi€ntly separated, the other basis state pairs do not interact
the nonzeros in column 1 of the disconnected piece, but ther@d @ Hamiltonian of the fornk;, is realized(up to local
is no allowed rotation that will eliminate the last nonzero, Unitaries. . _ . .
Repeating the argument for each choice of node 1, we con- We describe a bootstrap technique using the interaction

clude that we cannot reducs to diagonal form using only Hint @nd one-qudit unitaries which allows for universal quan-
allowed rotations. m tum computation. Before presenting the generic discussion,

we describe a particular example of a two-qubit operation.
First, label ag®1) the map which carriek— (k+1)modd.
1. MULTIQUDIT UNIVERSAILITY Then the controlled-increment gate, denofgd(iNC), is de-

Suppose in addition to being allowed local Hamiltoniansﬁned by extending the following rule finearly:

{H}‘l'(y} with a connected coupling graph, the physical system A " li,k), j#Fd-1,
_audi iltoni INC)|j,K) =1’ i 14
also allows for a two-qudit phase Hamiltonian 1(INC)j, k) k&1, jed-1. (14)
Hip=-AQ|d-1,d-1xd-1,d-1], (100  The controlled-increment gate has been used in the literature

for building a generik-controlled computatior\ (V) [9] as
where |m,ny=|m)®|n). This interaction generates the well as for constructing quantum error correction colds.

singly-controlled one qudit phase gate We may explicitly realizeA; (INC) from the Hamiltonian
H,,; as follows. We write(jj,---j;) for the cyclic permuta-
A(P(¢)) = exd - iH ol (A Q)]. (11) tion of the single qudit basis states witli;— js,
jo—1Js,  iea— 1 i1, and all other set elements fixed.

For qubits, the controlled-phase gatg(P(7)) together with  The permutation will also be identified implicitly with the
arbitrary single qubit rotations is sufficient for exactly uni- associated permutation matri; ;....;, € U(d). Hence, given
versal quantum computatiofi5]. In many situations, the (01)(12)---(d-2d-1)=@1, we see thatA;(INC)=A4[(01)
interaction between qudits will contain more than one termx(12)---(d-2d-1)]. The construction ofA; (INC) then
on the diagonal. For instance, the actual Hamiltonian may békes place in the following steps:
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Using Givens rotations, the gat®(l;.1® @141 is
constructed as
Al(lj—l ® o” ® ld—l—j) = ld & Uj+1‘d_1(7T/2,O)A1(P(7T))
X 1g® Ujyg-1(= 72,0, (15
then

Aq[(jj + D] =1g® Ujsq juo(= 74, 7112) Ay (1; @ 07 @ lg_p))

de ® Uj+1‘j+2(7T/4,7T/2). (16)
This leads to the realization of\; (INC) using d-1
controlled operations, given that A;(INC)

PHYSICAL REVIEW A 71, 052318(2005

the worst case gate count ks=3d(d+1)/2-3. In thecase
that HY, and HY, can be turned on at the same time for a
fixed pair of stategj,k) [as in Eq.(5)], the gate count ik
=d(d-1)/2+3(d-1). If, in addition, one is allowed the set
of diagonal generator{aijzk}, the gate count is optimal &t
=d(d+1)/2-1. Thetechnique for computation is exempli-
fied with ad=8 qudit using the Raman coupled magnetic
sublevels of'Rb. It is shown that arbitary single qudit com-
putation is possible with at most 49 laser pulse sequences. A
construction of an arbitrary two-qudit unitary is given using
O(d* controlled-phase gates and Givens rotations. Arbitrary
computation om qudits can then be done usi@d?") two-
qudit gateq 22].

We note that while the results herein have focused on the

Finally, we count the number of gates needed to implexonstruction of unitaries, the ideas can be extended to simu-
ment an arbitrary two-qudit unitary using one-qudit Givensjating nonunitary processes such as generalized measure-

rotations U;, and the controlled-phase gate,(P(¢)). A

ments. Generalized measurements on a systecan be

helpful tool is the controlled one-qudit Householder gatethought of as orthogonal measurements on an extended sys-
A1(X(|¢))) defined as a unitary extension of the mappingtem Hs® Hg, which may not be orthogonal is alone. Ap-

|d-1y— e X|¢) conditioned on the control qudit in staje

plications including precision measuremdiad], quantum

-1). In the Appendix we show that this gate can be con-communication in the context of entanglement purification

structed with 2d-1) controlled-phase gate&;(P(¢)) and

[25], and quantum error correctid@6]. To realize a positive

2(d-1) one-qudit Givens rotations. Using the techniques inCPerator valued measuremefOVM), one can perform a

Ref.[22], d-1 singly controlled Householder gates suffice to

synthesize an arbitrary two-qudit sta e Cdz, i.e., to real-
ize the mappingd-1,d-1)—|B).

Any two-qudit unitaryU e U(d?) can be written in a spec-

tral decompositionU:E?:zgle“/’ip\j)()\ﬂ, where {€%} and
{|)\j>} are the sets of eigenvalues and eigenvectotd.ofhe
unitary can then be decomposed into the prodiaat

-1

U= 1 WA(Pi(¢))W],
j=0

(17)

whereW, is any unitary extension of the two-qudit mapping

liy—[\), and the diagonal gateAy(P;(¢)=Ig4+ (e’

-1)|j)j| is locally equivalent to the singly controlled
phase gate\y(¢;). Using controlled-Householders to con-

struct the gatedV;, the total gate count for simulating

e U(d?) is then 4°(d-1)2+d? controlled-phase gates and

O(d* one-qudit Givens rotations. In Reg22] we derive a
construction of an arbitrany qudit unitary usingd(d?") two-
qudit gates. That construction useQ®& decomposition and
is asymptotically optimal.

IV. CONCLUSIONS

unitary operation omHs® H_ followed by a projective mea-
surement orHSL alone. For example, nonorthogonal mea-
surements on a qubit can be realized by appending ancillary
qubits, performing unitary operations on the joint system,
and measuring the ancillae. The requirement of using two
qubit gates can be obviated if the ancillary degrees of free-
dom come from orthogonal states within the same system.
For example, one can use tlle 2 states of a qudit to imple-
ment POVMs on a qubit subspace. These ideas are explored
in the context of quantum optical systems in Ré¢f7,2§.

The techniques reported here indicate that the requisite
operations on the appended Hilbert space can be done
efficiently.
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APPENDIX: THE CONTROLLED HOUSEHOLDER GATE

We describe the construction of the singly controlled
Householder gate using one-qudit Givens rotations and the
controlled-phase gate. The Householder gate is a unitary ex-
tension of the mapping of an arbitrary one-qubit superposi-
tion state| ¢>:E}’;§cj|j> to the logical basis statd—1) (up to

We have identified the criteria for exact quantum compu-a global phasey). For our convenience we describe the in-
tation in qudits. Our method is constructive and relies on thgerse controlled operation definedl;(X(|#))) that maps

QR decomposition of unitaries on qudits using a gate librar
generated by a fixed set of single qudit Hamiltonians and

5}8—1}—@*4 ) on the target qudit iff the control is in state

-1) and appliesl to the target otherwise

one parameter singly controlled phase gate. Using the con-

cept of a coupling graph we are able to show that universal

computation is possible if the nodéequivalently logical

basis statesare connected. Further we give a prescription for
efficient single qudit computation by demanding that at each
stage of theQR decomposition the graph remains connected.

Using the gate library generated by the couplings in @g.

MX(p)= X

k#d-1 k'

® (e“*lwxd ~1)+

KK KK’ | +|d - 1(d - 1|

> |Bk><k|), (A1)

k#d-1

where (| B9=0 and (B;| Bo=6;«. The singly controlled
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Householder is then just\;(X(|#)))". Because the gate Cg-3=(d = 3|Ug-34-1Ug-24-1/d = 1) =(d = 3Ugy-34-4/d - 1)
A1(X(|¢))) is allowed to implement any unitary extension of

- — - = —je%d-3 gj
lyH(d—-1|, it only depends on thed>2 parameters of the (d=1Ug-2g-4/d ~ 1) =~ ie?2sin y4-3C0Syg-s, -

state|) (two parameters are fixed by the notg )=1 and 42
setting the global phase to zérdhis gate plays prominently — _inidk i k<d-2 A3
in the contruction of universal computation in qudits by < 'C o %‘,:1;{1 cosy )- (A3)

Muthukrishnan and Stroy®]. They give an example of how ) .

such a gate could be designed using a specific HamiltoniaMoW it only remains to demonstrate that each controlled ro-

in an ion trap. Our construction is general for any systenfation Ay(Ujq 1) can be simulated with just the controlled-

encoding qudits with a connected coupling graph. phase gate and rotations on the target qudit. Four elementary
First, expand the statgl) in the single qudit basisy)  9gates suffice:

=eX=%c)|j), where the global phasg is chosen so that o P

al’quj_l):O. The conditional mappini}:i—l)ee‘ixh//), can Al(U],d—l(yjl¢J) =A(P(m)[1® U],d—l( 7]/2y¢])]

be realized as a sequence @f1 controlled unitaries that XA (P(m)[1® Uj 41(%/2,4))].
couple two target qudit basis states at a time (A4)
d-2 Following this construction, @-1) controlled-phase gates
AX()) =TT AU g1 (y;, ). (A2)  and 2d-1) single qudit Givens rotations suffice to exactly
1=0 simulate A;(X(|¢))). The mapping of an arbitrary single
The argumentg6;, ¢;) for each controlled unitary must qudit basis staték) — e X[ is realized by substituting the
satisfy the following relations: Givens rotationsJ;  in the product Eq(A2) and conjugating
the controlled-phase gates by the one-qudit state swap
Cao=(d—2/Uq 54 4/d— 1) = —i€e'o-2sin y4_,, [®(d-1-j)], where® denotes addition moduld.
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