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Abstract

We derive new integral representations for constituents of the classical theory of elliptic func
the Eisenstein series, and Weierstrass’℘ andζ functions. The derivations proceed from the Laplac
Mellin representation of multipoles, and an elementary lemma on the summation of 2D geo
series. In addition, we present results concerning the analytic continuation of the Eisenstein s
an entire function in the complex plane, and the value of the conditionally convergent series, d
by Ẽ2 below, as a function of summation over increasingly large rectangles with arbitrary fixed
ratio.1
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1. Introduction

In this paper we revisit the classical theory of elliptic functions as developed by E
stein and Weierstrass. Both of these researchers represented the meromorphic fu
appearing in their theories as summations over a given lattice of elementary pole fun
of a prescribed order. Our fundamental observation is that pole functions may be
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the complex half-planes in which the singularities lie, and are natural variants of the
cal Mellin, or Laplace–Mellin, formulas which are valid for isolated poles lying in the r
half plane. More recently, such integral representations have resurfaced in the devel
of fast multipole methods where they are referred to as “plane-wave” representation
A key feature of these representations is that the pole centers appear in the expon
the integrands. As a consequence the lattice summations are transformed into ge
series which may be summed explicitly underneath the integral. The result is a new
of integral representations for the Eisenstein series and other meromorphic funct
Weierstrass’ theory.

A brief summary of the paper follows. In the first section we review the definitions o
Eisenstein seriesEn and the Weierstrass functions℘ andζ . We will analyze a generaliza
tion of Eisenstein’s series which we denote byẼs , the differences being: first, we consid
s = σ + it ∈ C, and second, we definẽEs as a limit over lattice squares of increasing si
a significant point when�(s) � 2 and the sums are not absolutely convergent. In addi
in this preliminary section we provide elementary derivations of the requisite plane
formulas for general pole functions of the formf (ω) = ω−s , and a summation identity fo
a two-dimensional geometric series.

In the next section we derive an integral representation forẼs for the case�(s) > 2. In-
tegral representations for Eisenstein’sEn naturally follow fors = n � 3. We interpret thes
formulas as the natural lattice analogues to the well-known representation for Riem
zeta function (denoted with the subscriptζR so as to distinguish it from Weierstrass’ fun
tion of the same name)

ζR(s) =
∞∑

n=1

1

ns
= 1

Γ (s)

∞∫
0

λs−1 1

1− e−λ
e−λ dλ, �(s) > 1. (1)

For example, in the case of a square lattice we derive the following integral express

Ek(i) =
∞∑

n=−∞

∞∑
m=−∞

1

(m + ni)k

= 8

(k − 1)!
∞∫

0

λk−1 cos2(λ/2)

1− 2e−λ cos(λ) + e−2λ
e−λ dλ, (2)

for k divisible by 4,Ek(i) = 0 otherwise. The similarity between (1) and (2) is clear.
more general lattices, we replace i byτ , k ∈ N by s ∈ C, and the single trigonometric rat
in (2) by a sum of analogous ratios denoted byf1(τ, λ) andf2(τ, λ) defined in (15) and
(17). The general expression is given in Theorem 5.

Subsequently, we derive an alternative representation forẼs as a contour integral from
which we deduce that the sums̃Es admit an analytic continuation as anentire function
in the complex plane. As a corollary, we prove the existence of a finite limit forẼ2. We
discuss̃E2 and its relation to Eisenstein’s,E2. As the limiting processes defining these t
conditionally convergent series are distinct, so too are the limiting values. More gen
we derive a closed form expression relating̃E2 to a sum over a rectangular box of fix
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aspect ratio. In addition to providing the connection toE2, this result is a generalization o
similar formulas appearing, for example, in [6,13].

In the following section we derive analogous integral formulas for Weierstrass’℘ andζ

functions. We conclude the paper with a brief discussion of these integral represen
in relation to previous research in the theories of lattice sums, and elliptic functions.

We note that a subset of the results presented below appeared previously in a
different form [8].

2. Preliminaries

We review the definitions of the Eisenstein series and the Weierstrass℘ andζ functions.
Furthermore, we derive elementary lemmas concerning plane-wave representation
geometric series identity, both of which we will use repeatedly in the subsequent se

2.1. The Eisenstein series and elliptic functions

We are given a general latticeΛ ⊂ C defined byΛ = {m · µ + n · ν | m,n ∈ Z} where
the generatorsµ,ν are complex numbers such that the lattice ratio,τ = ν/µ, is not real.
We define the classical Eisenstein series (see, for example, [14] and [11])

En = lim
N→∞

N∑
n=−N

lim
M→∞

M∑
m=−M

1

(m · µ + n · ν)n
, n � 1; (3)

the elimination of the termm = n = 0 is implicit here and below. From elementary es
mates one finds that the series (3) are absolutely convergent forn � 3, and are absolutel
divergent forn = 1 or 2. The later implies that the limiting operation specified in (3) pl
a non-trivial role in the definition of these two sums. Eisenstein proved that the p
dure (3) yields finite values ofEn for these cases. AsE1 = 0 trivially, from the point of
view of convergence, the only interesting sum isE2.

Eisenstein was cognizant of this and he derived many identities which connect his
mation process forE2 to others [14]. We choose yet a different summation conven
and defineẼs as the limit of partial sums over “lattice-squares” of increasing size.
generalize further in considering complex exponents. Specifically, we defineẼs by

Ẽs = lim
K→∞

∑
|m|,|n|�K

1

(m · µ + n · ν)s
, (4)

which we consider, initially, for�(s) > 2. For non-integers we situate the branch of th
functionζ s along the “negative diagonal” of the lattice,{z = −t (µ + ν) | t > 0}. For all z
in the closure of this cut plane we have

θ � arg(z) � θ + 2π, whereθ = Arg(−µ − ν). (5)

(For the principal branch we fix|Arg(z)| < π .) We further enforce the convention th
points of the lattice lying along the diagonal are considered symmetrically,
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(−mµ − mν)s
= 1

2(m|µ + ν|)s
(

1

eiθs
+ 1

ei(θ+2π)s

)
.

We return to this point later.
We will derive integral representations for̃Es . Restrictings to the positive integers, ou

formula yields an integral representation for the classical Eisenstein seriesẼn = En, for
n � 3. As for the conditionally convergent series, it is straightforward to verify thatẼ1 = 0
directly from (4). Fors = 2 that the limit (4) exists follows as a consequence of the inte
representations for̃Es , �(s) > 2. In addition, we derive a formula which connects o
limiting value to Eisenstein’s. Even more, we prove thatẼs admits an analytic continuatio
to s ∈ C as an entire function. For an alternative treatment of extending the sense
sums (3) see, for example, [10].

Some fifteen years after Eisenstein, in 1862 Weierstrass commenced his st
doubly-periodic functions. Following Weierstrass, we define the usual℘ function

℘(x,Λ) = 1

x2
+

∑
ω∈Λ\{0}

(
1

(x − ω)2
− 1

ω2

)
. (6)

In addition, Weierstrass defined hisζ function as an indefinite integral of℘ and developed
the following summation representation:

ζ(x,Λ) = −
x∫
℘(s,Λ)ds = 1

x
+

∑
ω∈Λ\{0}

(
1

(x − ω)
+ 1

ω
+ x

ω2

)
. (7)

The absolutely convergent sums (6) and (7) will serve as the starting points for the d
tion of the integral representations for℘ andζ below.

We conclude with a comment on the choice of generators forΛ. Note thatẼs , ℘, ζ

satisfy simple rescalings with respect toµ,
Ẽs(µ, ν) = 1

µs Ẽs(1, τ ),

℘ (x | µ,ν) = 1
µ2 ℘

(
x
µ

∣∣ 1, τ
)
,

ζ(x | µ,ν) = 1
µ
ζ
(

x
µ

∣∣ 1, τ
)
,

(8)

whereτ = ν/µ is the lattice ratio. It is known that up to rescaling and unimodular
stitution, any lattice ratio may be represented by a uniqueτ chosen from the following
fundamental region [1]:

−1
2 < �(τ ) � 1

2,

�(τ ) > 0,

|τ | � 1,

if |τ | = 1, then�(τ ) � 0.

(9)

In summary, without loss of generality, we restrict our analysis to the “inhomogene
functions, which are obtained from (4), (6) and (7) by fixingµ = 1, ν = τ , and conside
Λ = Λ(τ) with τ satisfying (9). For convenience we omit the variablesµ,ν below and
write, for example,℘ = ℘(z, τ ).
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To facilitate our derivations we define the truncated latticeΛK = {ωm,n = m + nτ |
|m|, |n| < K} \ {0}. We further group lattice points into four overlapping “quadrants”

ΛK = ΛK
(+,•) ∪ ΛK

(•,+) ∪ ΛK
(−,•) ∪ ΛK

(•,−)

defined by

ΛK
(+,•) = {

ωm,n

∣∣ 1� m � K, |n| � m
}
,

ΛK
(•,+) = {

ωm,n

∣∣ 1� n � K, |m| � n
}
,

ΛK
(−,•) = {

ωm,n

∣∣ −K � m � −1, |n| � −m
}
,

ΛK
(•,−) = {

ωm,n

∣∣ −K � n � −1, |m| � −n
}
. (10)

We recall from the discussion following (4) that for non-integers the shared boundar
betweenΛK

(−,•) andΛK
(•,−)

is identical to the branch cut (see Fig. 1).
We have the following elementary lemma.

Lemma 1. Assume a complex latticeΛ(τ) and the quadrants defined as in(10). An iso-
lated singularity of complex orders, �(s) > 0 with branch cut defined as in(5) may be
represented by the following plane-wave integrals, each of which is valid in the appro
quadrant determined by the location of the pointω:

Fig. 1. Partition ofΛK into subregions. The generators(1, τ ) are shown in red. The central dotted region is
boundary of the fundamental domain. The dashed lines show the divisions intoΛK

(±,±)
. The solid black line is

the branch cut.
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1
Γ (s)

∫ ∞
0 λs−1e−λω dλ, ω ∈ ΛK

(+,•),
e−iπs

Γ (s)

∫ ∞
0 λs−1eλω dλ, ω ∈ ΛK

(−,•),
e−iπs/2

Γ (s)

∫ ∞
0 λs−1eiλω dλ, ω ∈ ΛK

(•,+)
,

eiπs/2

Γ (s)

∫ ∞
0 λs−1e−iλω dλ, ω ∈ ΛK

(•,−).

(11)

Proof. We have the representation of theΓ function:

Γ (s) =
∞∫

0

λs−1e−λ dλ, �(s) > 0.

Assumeω = it , t > 0. As τ satisfies (9), we observe that−π < θ < −π/2 hence
arg(ωs) = πs/2. With this in mind, rescale the integration variable byt , factor the−1
in the exponential, and multiply and divide by exp(iπs/2) to obtain

Γ (s) = t s

∞∫
0

λs−1e−λt dλ = e−iπs/2ωs

∞∫
0

λs−1eiλω dλ.

Dividing both sides byΓ (s)ωs gives the desired result forω = it . In a similar manner we
prove the formula forω lying on any of the principal coordinate rays emanating from
origin, ω ∈ ±R

+,±iR+. The full expressions (11) then follow by analytic continuat
into the appropriate quadrants.�
Remark 2. Note that for integers, the integral expressions may be continued further
are valid in the appropriate half-planes±�(ω) > 0 and±�(ω) > 0.

Next we turn to our summation convention (4). From Lemma 1, it is apparent th
single plane-wave expansion formula will be valid for all terms in the summands (4
and (7); terms must be grouped with respect to quadrant. As with the convention of sp
contributions from pointsω−m,−m lying on the cut in (4) equally between branches,
wish to treat each quadrant as symmetrically as possible. We define the symbolεmn for
m,n ∈ Z by

εmn =
{

1
2, m = ±n,

1, otherwise.
(12)

By convention, we sum over the terms in theΛK
(+,•)-quadrant as

∑
ω∈ΛK

(+,•)

f (ω) =
K∑

m=1

m∑
n=−m

εmnf (ωm,n). (13)

The sum over the lattice squareΛK is the sum of the quadrant sums as in (13); he
the reason for the factor of 1/2—to avoid double-counting of the contributions from t
diagonal terms—is clear. We note that fors ∈ N, s > 2 the numerical values of the sum
are independent of any manner of grouping terms. Even so, the forms of the inte
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yields the most symmetric expressions in appearance (a different grouping for ints

was employed in [8]).
In sums of the form (13) we will substitute the appropriate plane-wave expansion

to represent the poles contained inf . This transforms the quadrant sums into geome
series. Concerning the later, we derive the following lemma.

Lemma 3. For anyp,q ∈ C andK ∈ N, the following is an identity:

K∑
i=1

i∑
j=−i

εijp
iqj = 1

2

p(q−1 + 2+ q)

(1− p(q + q−1) + p2)

− 1

2

(
1+ q

1− q

)[
(pq−1)K+1

1− pq−1
− (pq)K+1

1− pq

]
. (14)

Proof. The formula follows from iteration of the usual single variable geometric sum
algebra. �

We record the following corollary for reference.

Corollary 4. We have the following specializations of Lemma3:

K∑
m=1

m∑
n=−m

εmn

(
e−λ

)m(
e−λτ

)n = 2e−λf1(τ, λ) − 2e−λ(K+1)f
(K)
1 (τ, λ)

and
K∑

n=1

n∑
m=−n

εnm

(
eiτλ

)n(eiλ)m = 2eiτλf2(τ, λ) − 2eiτλ(K+1)f
(K)
2 (τ, λ),

where the functionsf1, f
(K)
1 , f2, f

(K)
2 are:

f1(τ, λ) = cosh2(τλ/2)

1− 2e−λ cosh(τλ) + e−2λ
, (15)

f
(K)
1 (τ, λ) = 1

4

(
1+ e−λτ

1− e−λτ

)[
eλτ(K+1)

1− e−λ(1−τ)
− e−λτ(K+1)

1− e−λ(1+τ)

]
, (16)

f2(τ, λ) = cos2(λ/2)

1− 2eiτλ cos(λ) + e2iτλ
, (17)

f
(K)
2 (τ, λ) = 1

4

(
1+ eiλ

1− eiλ

)[
e−iλ(K+1)

1− eiλ(τ−1)
− eiλ(K+1)

1− eiλ(τ+1)

]
. (18)

We assumeτ is in the fundamental region (9) and make several observations.
cerning real singularities, all of the functions given by (15)–(18) have double poles
origin, λ = 0. Since�(τ ) > 0, neitherf1(τ, λ) nor f2(τ, λ) have other poles forλ > 0.
For τ strictly imaginary, the denominator(1− exp(−λτ)) of f

(K)
(τ, λ) will have isolated
1
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simple zeros. However, these are balanced by simple zeros of the difference of bra
terms in (16). Thusf (K)

1 has no other singularities forλ > 0. A similar argument show

thatf (K)
2 is also finite forλ > 0. With regards to decay, one has the bounds∣∣e−λf1(τ, λ)

∣∣ < C1e−λ(1−|�(τ )|) and
∣∣eiτλf2(τ, λ)

∣∣ < C2eiτλ

for largeλ. As |�(τ )| � 1/2 and�(τ ) > 0, both quantities are exponentially decreas
in λ. Similar reasoning shows that e−λ(K+1)f

(K)
1 (τ, λ) and eiτλ(K+1)f

(K)
2 (τ, λ) are expo-

nentially decreasing inλ andK .

3. Eisenstein series

As mentioned previously, the summatioñEs for �(s) > 2 is absolutely convergent. W
begin by proving our first integral representation for this case in Theorem 5. As a cor
the restrictions = n, n � 3, gives integral representations forEn. Further inspection of th
integral representation demonstrates the existence ofẼ2. Elaborating on Theorem 5, w
derive an alternative representation forẼs as a contour integral. As a consequence of
second representation, we prove thatẼs admits an analytic continuation ins as an entire
function. Returning to the analysis of̃E2, we consider a more general limiting procedu
and defineẼ(α)

2 as the limit over increasing “lattice rectangles” with a fixed aspect r

defined byα. We write Ẽ
(α)
2 (τ ) = Ẽ2(τ ) + ∆(α, τ) and derive a closed form expressi

for ∆. As a corollary, we derive the relationship betweenẼ2 and the sumE2 as defined by
Eisenstein.

3.1. Integral representations

For the sums̃Es defined by (4) we prove

Theorem 5. Given a latticeΛ(τ) with ratio τ chosen from the fundamental region(9), we
have the following integral representation for̃Es , �(s) > 2:

Ẽs(τ ) = cos

(
π

2
s

)
4

Γ (s)

∞∫
0

λs−1(e−isπ/2e−λf1(τ, λ) + eiτλf2(τ, λ)
)
dλ, (19)

wheref1(τ, λ) andf2(τ, λ) are given by(15)and (17).

Proof. Due to the placement of branch cut (5) and the summation conventions (13
have the following relations between sums overΛK

(±,•) andΛK
(•,±):∑

ω∈ΛK
(−,•)

1

ωs
= e−isπ

∑
ω∈ΛK

(+,•)

1

ωs
,

∑
ω∈ΛK

(•,−)

1

ωs
= eisπ

∑
ω∈ΛK

(•,+)

1

ωs
.

Therefore, we consider the positive quadrants only and scale the results by an expo
factor. Turning to the quadrantΛK

(+,•), in place of the isolated singularity of degrees, we
substitute the appropriate plane-wave expression from (11) to obtain
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∑
ω∈ΛK

(±,•)

1

(m + nτ)s
= (

1+ e−isπ ) K∑
m=1

m∑
n=−m

εmn

1

(m + nτ)s

= (1+ e−isπ )

Γ (s)

∞∫
0

λs−1
K∑

m=1

m∑
n=−m

εmne−λ(m+nτ) dλ

= 2(1+ e−isπ )

Γ (s)

∞∫
0

λs−1(e−λf1(τ, λ) − e−λ(K+1)f
(K)
1 (τ, λ)

)
dλ,

where the last line follows from Corollary 4. From the statements following this s
corollary, we observe that the two integrands are singular atλ = 0, and are otherwise finit
and exponentially decreasing inK andλ ∈ R

+. In addition, as�(s) > 2, the singularity
at the origin is absolutely integrable. Therefore, one may take the largeK limit inside the
integral and compute

lim
K→∞

∑
ω∈ΛK

(±,•)

1

(m + nτ)s
= cos

(
π

2
s

)
4

Γ (s)

∞∫
0

λs−1e−isπ/2e−λf1(τ, λ)dλ.

By a similar analysis, we prove that

lim
K→∞

∑
ω∈ΛK

(•,±)

1

(m + nτ)s
= cos

(
π

2
s

)
4

Γ (s)

∞∫
0

λs−1eiτλf2(τ, λ)dλ.

Adding these two contributions gives the theorem.�
By inspection of (19), we see that the absolute convergence of the Eisenstein serẼs ,

�(s) > 2 manifests itself in the behavior of the integrand of (19) near the origin; the f
λs−1 balances the double poles off1 andf2 so as to ensure the product is integrable
λ = 0. More careful analysis reveals that the formula (19) is finite even for the conditio
convergent casẽE2. The Laurent expansions of the integrands about the origin are

lim
λ→0

λe−λ cosh2(τλ/2)

1− 2e−λ cosh(τλ) + e−2λ
= 1

λ(1− τ2)
− (1− 2τ2)λ

12(1− τ2)
+ O

(
λ3),

lim
λ→0

λeiλτ cos2(τλ/2)

1− 2eiτλ cos(τλ) + ei2τλ
= 1

λ(1− τ2)
− (2− τ2)λ

12(1− τ2)
+ O

(
λ3).

At s = 2 the expansions are subtracted hence the integrand of (19) is finite at the
even in this case. By a similar analysis, one may show that theK-dependent terms als
cancel at the origin. We have proved:

Corollary 6. The summation(4) converges in the conditionally convergent cases = 2, and
its value,Ẽ2, is given by the integral(19).
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In fact, a great deal more may be said. The function

F(s, z) = e−isπ/2e−z cosh2(τz/2)

1− 2e−z cosh(τz) + e−2z
+ eiτz cos2(z/2)

1− 2eiτz cos(z) + e2iτz
(20)

appearing as a factor in the integrand (19) has a singularity at the originz = 0, and addi-
tional simple poles in the complex plane at the points

z ∈ P =
{
± 2π i

1± τ
m, ± 2π

1± τ
n

∣∣∣∣ m,n ∈ N

}
.

We denote the minimum magnitude of allz ∈ P by ρ. Next, define the contourC which
begins at∞ + iy, y > 0; runs parallel to real axis until it intersects the circle centere
the origin with radiusr , wherey < r < ρ; follows this circle counterclockwise around t
origin; and runs back out to∞− iy, parallel to the real axis. We assume thaty > 0 is small
enough such thatC encloses only the pole atz = 0. Finally, for the functionzs−1, s /∈ Z,
situate the branch cut along the positive real axis such that (λ ∈ R){

limy→0(λ + iy)s−1 = λs−1,

limy→0(λ − iy)s−1 = e2π i(s−1)λs−1.
(21)

With these preliminaries established we prove the following theorem.

Theorem 7. Given a latticeΛ(τ) with ratio τ chosen from the fundamental region(9), we
have the following contour integral representation forẼs , �(s) > 2:

Ẽs = 2 cos

(
π

2
s

)
Γ (1− s)e−isπ

iπ

∫
C

zs−1F(s, z)dz, (22)

whereF(s, z) is given by(20).

Proof. Consider the contour integral∫
C

zs−1F(s, z)dz.

As the integrand is analytic except for the singularity at the origin, we apply contou
formation to shrink the radius of the circle,r → 0, and take the limit asy → 0 for the two
components running parallel to the real axis. For�(s) = 2+ε, we estimate the contributio
from the circular arc

lim
r→0

∣∣∣∣ ∫
|z|=r

zs−1F(s, z)dz

∣∣∣∣ � M lim
r→0

∫
|z|=r

rε−1 |dz| = 0.

Turning to the components parallel to the real axis, from the definition of the br
cut (21), we compute

lim
y→0

εr+iy∫
zs−1F(s, z)dz = −

∞∫
λs−1F(s,λ)dλ,
∞+iy 0
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lim
y→0

∞−iy∫
εr−iy

zs−1F(s, z)dz = e2π i(s−1)

∞∫
0

λs−1F(s,λ)dλ.

We recognize the integrals of Theorem 5, make use of the identity

Γ (s)Γ (1− s) = π

sin(πs)
,

and obtain∫
C

zs−1F(s, z)dz = (
e2π i(s−1) − 1

) ∞∫
0

λs−1F(s,λ)dλ = 2ieπ is sin(πs)Γ (s)

4 cos(π
2 s)

Ẽs

= iπ

2 cos(π
2 s)e−isπΓ (1− s)

Ẽs .

The result (22) follows from algebra.�
Several corollaries follow from Theorem 7. We note here only the most immediate

Corollary 8. The sums̃Es , defined by(4) for �(s) > 2, admit an analytic continuation t
s ∈ C as an entire function. This continuation is given by the contour integral repres
tion (22).

Proof. The contour integral appearing in (22) defines an analytic function ofs which is
never singular. The same may be said for the cosine factor. Thus the only candidate
larities arise from the factorΓ (1− s) which has simple poles fors ∈ N. From the definition
(4) we know thatẼs is finite for �(s) > 2 (the apparent singularities in (22) in this ca
are balanced by zeros of the cosine term, the contour integral, or both). Therefore, w
only verify the finite existence of̃E1 andẼ2. For s = n = 1, the pole in the Gamma func
tion is balanced by the simple zero of the cosine factor. Finally, we have argued abo
Ẽ2 is finite. �

By inspection of (22), we find that̃Es has simple zeros fors = 1− 2j , j � 1. Thus the
continuation respects the symmetric limiting process (4). Preliminary residue comput
suggest that̃Es is also zero fors = −2j although we have not carried out this investigat
at the time of this writing. For reassurance on this point, however, see [10]. We anti
further results concerning the evaluation of the contour integral (22) via residue me
and will report on this at a later date. Finally, as mentioned previously, the exact fo
the integrands (19) and (22) reflect our summation convention with respect to group
summands and placement of the branch-cut. Regarding the latter, similar formula
if the branch-cut is situated along any of the lattice diagonals; the effect is to redist
factors of exp(iπs/2) between the two functionsf1 andf2. There are, perhaps, addition
treatments of the branch-cut that could yield relatively simple expressions. However,
ple integral expression valid for placement of the cut along an arbitrary ray in the com
plane appears to be intractable.
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3.2. Aspect ratio correction

In this section we make an explicit connection betweenẼ2 and Eisenstein’s definitio
of the series.

Givenα ∈ (0,∞), we define the summation over lattice rectangles with aspect raα

by

Ẽ
(α)
2 = lim

K→∞
∑

|m|�	αK


∑
|n|�K

1

(m + nτ)2
, (23)

where	x
 denotes greatest integer less than or equal tox. Again, although expected, th
existence of the limit (23) is not a priori guaranteed but will follow in the course of
analysis.

Clearly,Ẽ(1)
2 = Ẽ2 defined in (4). More generally, we write

Ẽ
(α)
2 = Ẽ2 + ∆(α, τ), (24)

where the value of̃E2 may be computed via the integral expression (19). Proceedin
above we compute a closed form expression for∆(α, τ).

Theorem 9. For a fixed aspect ratioα ∈ (0,∞), the limit Ẽ
(α)
2 specified in(23) exists.

Furthermore, when written in the form(24), theα dependence is given by

∆(α, τ) = −4i

τ

(
arctan(iτ) − arctan

(
iτ

α

))
. (25)

Proof. Assumeα � 1. We write the limit (23)

Ẽ
(α)
2 = Ẽ2 + ∆(α, τ),

∆(α, τ) = 2 lim
K→∞

	αK
∑
m=K+1

n=K∑
n=−K

1

(m + nτ)2
.

The contribution from the sum over lattice points−	α · K
 � m � −K − 1 is accounted
for by the factor of two multiplying the sum in the final line. We represent the poles u
theΛK

(+,•) plane-wave expansion (11):

∆(α, τ) = 2 lim
K→∞

	αK
∑
m=K+1

n=K∑
n=−K

∞∫
0

λe−λ(m+nτ) dλ

= 2 lim
K→∞

∞∫
0

λ

(
eλτK − e−λτ(K+1)

1− e−λτ

)(
e−λ(K+1) − e−λ	αK


1− e−λ

)
dλ

= 2 lim
K→∞

∞∫
λ

K2

(
eλτ − e−λτ(1+1/K)

1− e−λτ/K

)(
e−λ(1+1/K) − e−λ	αK
/K

1− e−λ/K

)
dλ
0
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τ

∞∫
0

(eλτ − e−λτ )(e−λ − e−λα)

λ
dλ, (26)

where the argument which justifies taking the largeK limit inside the integral runs alon
the same lines as in the proof of Theorem 5. This last integral (26) may be evalua
closed form using the formula

∞∫
0

e−βx sin(δx)
1

x
dx = arctan

(
δ

β

)
, (27)

which holds for�(β) > |�(δ)| (see [5, 3.944.5]). Taking care to write (26) as the differe
of two integrals of the form (27), and performing algebra gives the expression for∆(α, τ),
α � 1 in (25).

For α < 1 the lattice rectangle is such that the longer side is in theτ -direction. As
written, Eqs. (23) and (24) suggest that this rectangle is inscribed in a lattice squ
sizeK , and to compute∆(α, τ), one should subtract the extra contributions exterior to
rectangle but interior to the square. The problem with this approach is that, for arbitτ

andα, it is burdensome to keep track of the quadrants in which these points lie. In l
this, forα < 1 we rescale the limits in (23),

Ẽ
(α)
2 = lim

K→∞
∑

|m|�K

∑
|n|�	K/α


1

(m + nτ)2
.

Informally, this is equivalent to inscribing the square in the rectangle and motivates
puting the contributions from the points in the difference using the plane-wave form
appropriate forΛK

(•,±). Arguing as above and using the integral identity (27), we comp

∆(α, τ) = −2 lim
K→∞

	K/α
∑
n=K+1

m=K∑
m=−K

∞∫
0

λeiλ(m+nτ) dλ

= 2

τ

∞∫
0

(e−iλ − eiλ)(eiλτ − eiλτ/α)

λ
dλ

= −4i

τ

(
arctan

(
− 1

iτ

)
− arctan

(
− α

iτ

))
. (28)

Although perhaps not obvious, the formula (28) is the same as the formula for∆(α, τ)

in (25). Using standard trig identities, we have

lim
z′→z

(
arctan(z) − arctan

(
− 1

z′

))
= lim

z′→z
arctan

(
zz′ + 1

z′ − z

)
= ±π

2
. (29)

Furthermore, forz = iτ or z = iτ/α with τ satisfying (9) andα > 0, we find that we should
choose the minus sign in (29). Using this identity and algebra, we observe that (28) is
to (25), thus (25) holds for allα > 0. �
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We use this theorem to find the connection between our summation and Eisen
Starting from Eisenstein’s summation convention we obtain

E2 = lim
N→∞

N∑
n=−N

lim
M→∞

M∑
m=−M

1

(m + nτ)2

= lim
N→∞

N∑
n=−N

lim
α→∞

m=−	α·N
∑
m=−	α·N


1

(m + nτ)2

= lim
α→∞ lim

N→∞

N∑
n=−N

m=	α·N
∑
m=−	α·N


1

(m + nτ)2

= Ẽ2 − 4i

τ
arctan(iτ). (30)

Standard estimates justify commuting theN andα limits between the second and thi
lines, and we used (25) to compute this limit. Asτ �= 0, (30) shows that, for finiteτ , the
value of our sum is always different from Eisenstein’s. In the limitτ → i∞, |�(τ )| � 1/2,
both summations are equal and presumably converge to 2ζR(2) = π2/3.

In a similar vein, we compute the difference between taking Eisenstein’s limit an
reverse.” Arguing as above, we have that

lim
M→∞

M∑
m=−M

lim
N→∞

N∑
n=−N

1

(m + nτ)2
= Ẽ2 + lim

α→0
∆(α, τ)

= Ẽ2 − 4i

τ

(
arctan

(
i

τ

)
+ π

2

)
. (31)

Taking the difference between (30) and (31) and, we obtain(
lim

N→∞

N∑
n=−N

lim
M→∞

M∑
m=−M

− lim
M→∞

M∑
m=−M

lim
N→∞

N∑
n=−N

)
1

(m + nτ)2
= 2π i

τ
.

For a different proof of this fact see Walker [13].
Finally, in the case of the square lattice (τ = i) we observe thatf1(i, λ) = f2(i, λ).

Collecting factors in (19) and performing algebra, we find that

Ẽs(i) = e−isπ/4 cos

(
π

2
s

)
cos

(
π

4
s

)
8

Γ (s)

∞∫
0

λs−1e−λf1(i, λ)dλ.

Corresponding to the addedπ/2-symmetry of the square lattice, the product of cosi
causes the sum to vanish forn not a multiple of four. In particular̃E2(i) = 0. Substituting
this value into (24), and taking the largeα (smallα) limits, we obtain

lim
N→∞

N∑
lim

M→∞

M∑ 1

(m + in)2
= π,
n=−N m=−M
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lim
M→∞

M∑
m=−M

lim
N→∞

N∑
n=−N

1

(m + in)2
= −π,

well-known identities in the fast multipole community (see, for example, [6]).

4. Weierstrass elliptic functions

Our derivations of integral formulas for Weierstrass’ elliptic functions proceed in m
the same manner as above. As a preliminary note, the integral representations for℘(z, τ )

andζ(z, τ ) which we derive in Theorem 10 are not valid for allz ∈ C, but rather have a
finite domain of validity. This is a consequence of the way in which we group terms.
precisely, we require thatz ∈ D(τ) defined by

D(τ) = {
z | �(−1± z ± τ) < 0, �(τ ± z) > 0

}
. (32)

As τ is in the region (9), one may verify thatD(τ) is an open set containing the origi
However,D(τ) may not contain the fundamental period parallelogram of the lattice,Λ0 =
{α+βτ | |α| � 1/2, |β| � 1/2}. For example, the standard hexagonal lattice has gener
(1, τ ) = (1,1/2 + i

√
3/2). Thus a corner ofΛ0 is given by the pointz0 = 1/2 + τ/2 =

3/4+ i
√

3/4. However,�(−1+ z0 + τ) = 1/4> 0, violating the first inequality in (32).
With this aside, we prove the following.

Theorem 10. AssumeΛ = Λ(µ,ν) is an arbitrary complex lattice with generators chos
such thatτ = ν/µ is in the fundamental region(9), and that the complex numberz is in the
domainD(τ) defined by the inequalities(32). We have the following integral expressio
for the inhomogeneous elliptic functions℘(z, τ ), andζ(z, τ ):

℘(z, τ ) = 1

z2
+ 8

∞∫
0

λ

[
e−λ sinh2

(
zλ

2

)
f1(λ, τ ) + eiτλ sin2

(
zλ

2

)
f2(λ, τ )

]
dλ (33)

and

ζ(z, τ ) = 1

z
+

∞∫
0

[
e−λ

(
zλ − sinh(zλ)

)
f1(λ, τ ) − eiτλ

(
zλ − sin(zλ)

)
f2(λ, τ )

]
dλ,

(34)

where the functionsf1, f2 are defined by(15) and (17). We evaluate the homogeneo
functions,℘(x | µ,ν) and ζ(x | µ,ν), via the appropriate scaling relations(8) and (33),
(34)with the proviso thatx/µ = z ∈ D(τ).

Proof. In computing the integral representation for the℘ function we will group terms o
the sum (6) as in (13). As in the computation of the Eisenstein sums, we wish to co
the contributions from the sums overΛK . We compute
(±,•)
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m over

e
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r

∑
ω∈ΛK

(−,•)

(
1

(z − ω)2
− 1

ω2

)
=

K∑
m=1

m∑
n=−m

εmn

(
1

(z + m + nτ)2
− 1

(m + nτ)2

)
,

∑
ω∈ΛK

(+,•)

(
1

(z − ω)2
− 1

ω2

)
=

K∑
m=1

m∑
n=−m

εmn

(
1

(−z + m + nτ)2
− 1

(m + nτ)2

)
.

Therefore, the contributions from both quadrants may be expressed as a single su
ΛK

(+,•) of a modified summand. Furthermore, under the assumptionz ∈ D, all of the poles
in this sum may be expressed using the�(ω) > 0 plane-wave expansion from (11):∑

ω∈ΛK
(±,•)

(
1

(z − ω)2
− 1

ω2

)

=
K∑

m=1

m∑
n=−m

εmn

(
1

(−z + m + nτ)2
− 2

(m + nτ)2
+ 1

(z + m + nτ)2

)

=
∞∫

0

λ
(
eλz − 2+ e−λz

)( K∑
m=1

m∑
n=−m

εmne−λ(m+nτ)

)
dλ

= 8

∞∫
0

λsinh2
(

zλ

2

)(
e−λf1(τ, λ) − e−λ(K+1)f

(K)
1 (τ, λ)

)
dλ. (35)

Arguing as before, we find the largeK limit of the K-dependent term to be zero. W
compute the contribution from the terms in the quadrantsΛK

(•,±) in an analogous manne
Adding this result to (35) gives (33).

The derivation of the expression for theζ function is similar. In brief, the sum ove
the quadrantsΛK

(±,•) may again be expressed as a sum over the single quadrantΛK
(+,•) in

which we substitute the appropriate plane-wave expansion. Thus,∑
ΛK

(±,•)

(
1

(z − ω)
+ 1

ω
+ z

ω2

)

=
K∑

m=1

m∑
n=−m

εmn

(
− 1

−z + m + nτ
+ 2z

(m + nτ)2
+ 1

z + m + nτ

)

=
∞∫

0

(
eλz + 2zλ − e−λz

)( K∑
m=1

m∑
n=−m

εmne−λ(m+nτ)

)
dλ

= 4

∞∫
0

(
zλ − sinh(zλ)

)(
e−λf1(λ, τ ) − e−λ(K+1)f

(K)
1 (λ, τ )

)
dλ. (36)

As before theK-dependent term goes to zero in the limit. The analogous sums overΛK
(•,±)

give the other half of the expression (34).�



158 A. Dienstfrey, J. Huang / J. Math. Anal. Appl. 316 (2006) 142–160

t the

ed
fica-

he-
t
In the
ged in
nd

ch in
ns for

ines
udy. We
hus
e
he
aller

—stiff
d the
Remark 11. As an alternative to the above derivation of Theorem 10, we recall tha
Eisenstein series appear as coefficients in the Laurent expansion for Weierstrass’℘ func-
tion,

℘(z) = 1

z2
+

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)

= 1

z2
+

∑
ω∈Λ\{0}

∞∑
n=3

(n − 1)zn−2 1

ωn

= 1

z2
+

∞∑
n=3

(n − 1)Enz
n−2.

Substituting the integral representations (19) for theEn, the Taylor series may be summ
explicitly inside the integrand. The formula (33) above follows after algebraic simpli
tion. Furthermore, the expression (34) for theζ function follows from anti-differentiation
of (33).

Remark 12. As with the series̃E2, and its dependence on aspect ratios derived in T
orem 9, the slowly decaying terms of the sums defining℘ andζ manifest themselves a
the origin in the integral representations (Eqs. (6), (7), and (33), (34), respectively).
integral representations, we observe that Weierstrass’ “correction” terms are arran
such a way as to create third order zeros atλ = 0, which appropriately balance the seco
order poles fromf1 andf2.

5. Conclusion

We conclude with a brief discussion of our results in relation to previous resear
this field. To the best of our knowledge, there is no analog to the integral expressio
the ℘ and ζ functions (33) and (34). The possibility of developing numerical rout
for evaluation of these functions based on these representations deserves further st
observe that the integrands are not extremely oscillatory, and decay exponentially. TN -
point Gauss–Laguerre quadrature rules will converge rapidly inN . As one drawback, ther
is the perhaps awkward domain of validity inz. However, it may be that symmetries of t
℘ andζ functions imply that it is sufficient to evaluate them over domains that are sm
than the fundamental period parallelogram. Furthermore, at least for the℘ function, there
exists the following closed-form Fourier expansion [12]:

℘(z, τ ) = −2

(
1

6
+

∞∑
n=1

1

sin2(nπτ)

)

+ π2

sin2(πz)
− 8π2

( ∞∑
n=1

ne2π iτn

1− e2π iτn
cos(2πnz)

)
. (37)

Both summands in (37) are exponentially decreasing and the sums converge rapidly
competition from a numerical perspective. Nevertheless, we have not fully explore
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relative merits of this approach over the plane-wave representation (33). In additio
integral representations may have further analytic implications.

Turning to the representations for the Eisenstein series, the existence ofẼ2 (Corollary 6)
is not unexpected. In addition to the original finiteness proofs given by Eisenstein,
years prior to this present work, Walker derived the remarkable formula for the cond
ally convergent series (see [12])

lim
K→∞

∑
0<m2+n2�K2

1

(m + nτ)2
= −2π

1− iτ
− 4π i

η′(τ )

η(τ )
,

where the Dedekindη(τ)-function with�(τ ) > 0 is defined by

η(τ) = eπ iτ/12
∞∏

n=1

(
1− e2π iτn

)
.

We also note that a different treatment, initiated by Hecke, has become a standard ap
to resolving convergence and transformation properties ofE2 [11].

As indicated by Theorem 7, our expressions are quite general, and have broad
cations. Riemann demonstrated both the functional equation satisfied byζR(s), and the
evaluation ofζR(−2n+ 1) (and, via the functional equation,ζR(2n)) in terms of Bernoulli
numbers using the “version” of Theorem 7 appropriate for his zeta function. Similarl
anticipate that a residue argument will give the evaluation ofẼn = En in terms of multiple
Bernoulli numbers, see [2] and [9] for related results pertaining to multiple zeta-func
For an alternative treatment of Eisenstein series for negative even integers using
convergence factors see the recent work of Pribitkin [10]. The functional equation sa
by the continuation of̃Es is more elusive. We are currently pursuing this and hope to re
our results in the future.

Finally, there is a possibility that representations of the form (19) may exist for ce
Dirichlet series

G(s,χ) =
∑

ω∈Λ\{0}

χ(ω)

|ω|2s
, χ(ω) = exp

(
i(mµα + nνβ)

)
for α,β ∈ R. (These are called “Kronecker series” in [14, Chapter VIII].) A detailed
cussion of the convergence of these series is given in [3]. We note that Laplace–
techniques have been employed frequently in the analysis of such series. The appr
until now has been to think of

|ωm,n|2 = |mµ + nν|2 = Q(m,n)

as defining a positive definite quadratic form takingm andn as arguments. Treating th
form as “indivisible,” one may use the�(ω) > 0 plane-wave formula in Lemma 1 an
obtain the integral representation

∑
ω∈Λ\{0}

χ(ω)

|ω|2s
= 1

Γ (s)

∞∫
0

λs−1
∑

ω∈Λ\{0}
χ(ω)e−λQ(m,n) dλ.

The analysis then proceeds viaθ functions.
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Our approach would be different. “Plane-wave-like” representations exist for the
tion f (x, y) = √

x2 + y2. Formally, one may take the true plane-wave expressions
f (x, y, z) = √

x2 + y2 + z2 derived in [4], and setz = 0. The result is a 2D integral a
opposed to the Eisenstein case analyzed above where one complex dimension (tw
collapses into a 1D integral. However, the critical element of this representation is th
exponential function in the “plane-wave” representation is linear inm andn. As a conse-
quence, again the summation under the integrand becomes a 2D geometric series
considering this as a possible direction for future research.
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