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Abstract

We derive new integral representations for constituents of the classical theory of elliptic functions:
the Eisenstein series, and Weierstrgssind¢ functions. The derivations proceed from the Laplace—
Mellin representation of multipoles, and an elementary lemma on the summation of 2D geometric
series. In addition, we present results concerning the analytic continuation of the Eisenstein series to
an entire function in the complex plane, and the value of the conditionally convergent series, denoted
by Ez below, as a function of summation over increasingly large rectangles with arbitrary fixed aspect
ratiol
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1. Introduction

In this paper we revisit the classical theory of elliptic functions as developed by Eisen-
stein and Weierstrass. Both of these researchers represented the meromorphic functions
appearing in their theories as summations over a given lattice of elementary pole functions
of a prescribed order. Our fundamental observation is that pole functions may be repre-
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sented by exponentially-damped, oscillatory integrals. These representations depend on
the complex half-planes in which the singularities lie, and are natural variants of the classi-
cal Mellin, or Laplace—Mellin, formulas which are valid for isolated poles lying in the right
half plane. More recently, such integral representations have resurfaced in the development
of fast multipole methods where they are referred to as “plane-wave” representations [4,7].
A key feature of these representations is that the pole centers appear in the exponents of
the integrands. As a consequence the lattice summations are transformed into geometric
series which may be summed explicitly underneath the integral. The result is a new class
of integral representations for the Eisenstein series and other meromorphic functions of
Weierstrass’ theory.

A brief summary of the paper follows. In the first section we review the definitions of the
Eisenstein serieg,, and the Weierstrass functiopsand¢. We will analyze a generaliza-
tion of Eisenstein’s series which we denotelﬁy the differences being: first, we consider
s =0 +it € C, and second, we defing, as a limit over lattice squares of increasing size,
a significant point whefii(s) < 2 and the sums are not absolutely convergent. In addition,
in this preliminary section we provide elementary derivations of the requisite plane-wave
formulas for general pole functions of the forfiiw) = w™*, and a summation identity for
a two-dimensional geometric series.

In the next section we derive an integral representatiorfjdor the caséi(s) > 2. In-
tegral representations for Eisensteif;snaturally follow fors = n > 3. We interpret these
formulas as the natural lattice analogues to the well-known representation for Riemann’s
zeta function (denoted with the subscriptso as to distinguish it from Weierstrass’ func-
tion of the same name)

1 17 1
— - s—1 —A n
R()=) == ) /A T R >1 )
n=1 0
For example, in the case of a square lattice we derive the following integral expression

o0 o0 1
Er() = Z Z CETI
n=—00 Mm=—00
o
__ 8 /Ak_l cog(1/2)
(k — 1)! 1—2e*cogqr) +e 2
0

for k divisible by 4, E, (i) = 0 otherwise. The similarity between (1) and (2) is clear. For
more general lattices, we replace i byk € N by s € C, and the single trigopnometric ratio
in (2) by a sum of analogous ratios denoted fayr, 1) and f>(z, A) defined in (15) and
(17). The general expression is given in Theorem 5.

Subsequently, we derive an alternative representatioﬁ;cas a contour integral from
which we deduce that the sumNS, admit an analytic continuation as amtire function
in the complex plane. As a corollary, we prove the existence of a finite limi£forwe
discussE, and its relation to Eisenstein’gy. As the limiting processes defining these two
conditionally convergent series are distinct, so too are the limiting values. More generally,
we derive a closed form expression relatiﬁg to a sum over a rectangular box of fixed

et da, 2
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aspect ratio. In addition to providing the connectiorlg this result is a generalization of
similar formulas appearing, for example, in [6,13].

In the following section we derive analogous integral formulas for Weierstgaasid¢
functions. We conclude the paper with a brief discussion of these integral representations
in relation to previous research in the theories of lattice sums, and elliptic functions.

We note that a subset of the results presented below appeared previously in a slightly
different form [8].

2. Preliminaries

We review the definitions of the Eisenstein series and the Weiergirasd¢ functions.
Furthermore, we derive elementary lemmas concerning plane-wave representations and a
geometric series identity, both of which we will use repeatedly in the subsequent sections.

2.1. The Eisenstein series and elliptic functions

We are given a general latticé C C defined byA ={m - u +n-v | m,n € Z} where
the generatorg, v are complex humbers such that the lattice ratie; v/u, is not real.
We define the classical Eisenstein series (see, for example, [14] and [11])

N M 1

E,= lim lim _ >1; 3
" NS Z M—00 Z m-u+n-v)r " 3
n=—N m=—M

the elimination of the ternm = n = 0 is implicit here and below. From elementary esti-
mates one finds that the series (3) are absolutely convergemtf®, and are absolutely
divergent forn = 1 or 2. The later implies that the limiting operation specified in (3) plays
a non-trivial role in the definition of these two sums. Eisenstein proved that the proce-
dure (3) yields finite values aof,, for these cases. AB; = 0 trivially, from the point of
view of convergence, the only interesting sunkis

Eisenstein was cognizant of this and he derived many identities which connect his sum-
mation process foE2 to others [14]. We choose yet a different summation convention
and defineE; as the limit of partial sums over “lattice-squares” of increasing size. We
generalize further in considering complex exponents. Specifically, we défibg

E;= lm Y _r 4)

K—00 (m-p+n-v)s’
mlnl<k M

which we consider, initially, fobi(s) > 2. For non-integes we situate the branch of the
function¢® along the “negative diagonal” of the latticle,= —¢(u« + v) | t > 0}. For allz
in the closure of this cut plane we have

0 <argz) <6 +2rx, whered =Arg(—u —v). (5)

(For the principal branch we fikArg(z)| < =.) We further enforce the convention that
points of the lattice lying along the diagonal are considered symmetrically,
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1 B 1 1, 1
(—mp —mv)$ - 2(m|M+V|)S e|0x g0+21)s )°

We return to this point later. _

We will derive integral representations fff. Restrictings to the positive integers, our
formula yields an integral representation for the classical Eisenstein $&riesE,, for
n > 3. As for the conditionally convergent series, it is straightforward to verifyﬁaat; 0
directly from (4). Fors = 2 that the limit (4) exists follows as a consequence of the integral
representations foEs, NR(s) > 2. In addition, we derive a formula which connects our
limiting value to Eisenstein’s. Even more, we prove tHamdmits an analytic continuation
to s € C as an entire function. For an alternative treatment of extending the sense of the
sums (3) see, for example, [10].

Some fifteen years after Eisenstein, in 1862 Weierstrass commenced his study of
doubly-periodic functions. Following Weierstrass, we define the ysudahction

1
o x, A)= Z < ~ )2 F) (6)
weA\{0}

In addition, Weierstrass defined ligunction as an indefinite integral @f and developed
the following summation representation:

X

1 1 1 «x
{(x,A):—/go(s,A)ds:;—i- Z ((x—w)—i_;—l—ﬁ)' (7

weA\{0}

The absolutely convergent sums (6) and (7) will serve as the starting points for the deriva-
tion of the integral representations fprand¢ below.

We conclude with a comment on the choice of generatorsAfoNote thatEy, 0, ¢
satisfy simple rescalings with respectitop

Es(u,v) = L E@1, 1),
@(.x | /’Lv U) i2 (ﬁ | 17 T), (8)
¢<x|u,v>=§ ((%]17),

wheret = v/u is the lattice ratio. It is known that up to rescaling and unimodular sub-
stitution, any lattice ratio may be represented by a uniguwhosen from the following
fundamental region [1]:

L
m

—3<R(D<3

J(t) >0, (9)
7| > 1,
if || =1, then®(z) >0

In summary, without loss of generality, we restrict our analysis to the “inhomogeneous”
functions, which are obtained from (4), (6) and (7) by fixing= 1, v = 7, and consider

A = A(r) with t satisfying (9). For convenience we omit the variahles below and
write, for examplep = o (z, 7).
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2.2. Plane-wave representations and a 2D geometric series

To facilitate our derivations we define the truncated lattitet = {wmn =m +nt |
|m|, |n| < K} \ {0}. We further group lattice points into four overlapping “quadrants”

K _ 4K K K K
AT =AG GgUAG VAL HUAG

defined by
Aﬁ.)z{wmn’]-gmgl(, |n|<m},
Ay = {omn | 1<n <K, Im| <n},
A(K_,.) = {wmn | —K<m< -1 |n| < _m},
A(liy_):{wmn |_K<n<_l» |m|<_n} (10)

We recall from the discussion following (4) that for non-integethe shared boundary
betweenA’ | andAf _, isidentical to the branch cut (see Fig. 1).
We have the following elementary lemma.

Lemma 1. Assume a complex latticeé(r) and the quadrants defined as (h0). An iso-

lated singularity of complex order, %(s) > 0 with branch cut defined as i(b) may be
represented by the following plane-wave integrals, each of which is valid in the appropriate
guadrant determined by the location of the paint

. K .
A(.’_)

Fig. 1. Partition ofAX into subregions. The generatats ) are shown in red. The central dotted region is the
boundary of the fundamental domain. The dashed lines show the divisiom@gg). The solid black line is
the branch cut.



A. Dienstfrey, J. Huang / J. Math. Anal. Appl. 316 (2006) 142—-160 147

1 0 4 5—14—A K
mfo ATre wd)\,, weA

(o)’
1 Fo o weed,  weaf ),
— =] _ ’ (11)
o | &R [l d, weak ),
Tl e o, weak .

Proof. We have the representation of thefunction:

oo
I'(s) =/AS_1e"\ dix,  9i(s) > 0.
0

Assumew = it, t > 0. As t satisfies (9), we observe thatmr < 6 < —n/2 hence
argw®) = ms/2. With this in mind, rescale the integration variable tyactor the—1
in the exponential, and multiply and divide by &kps/2) to obtain

00 00
I(s)= 5 f )\s—le—)hr di = e—iﬂs/Za)s / )Ls—lei)nw di.
0 0

Dividing both sides by (s)w® gives the desired result faey = iz. In a similar manner we
prove the formula fot lying on any of the principal coordinate rays emanating from the
origin, € £R*, iR ™. The full expressions (11) then follow by analytic continuation
into the appropriate quadrantso

Remark 2. Note that for integes, the integral expressions may be continued further and
are valid in the appropriate half-plangsi(w) > 0 and+3J(w) > 0.

Next we turn to our summation convention (4). From Lemma 1, it is apparent that no
single plane-wave expansion formula will be valid for all terms in the summands (4), (6),
and (7); terms must be grouped with respect to quadrant. As with the convention of splitting
contributions from points_,, _,, lying on the cut in (4) equally between branches, we
wish to treat each quadrant as symmetrically as possible. We define the symbfolr
m,n € Z by

1
5, m==n
Fos = 27 ’ 12

" { 1, otherwise (12)

By convention, we sum over the terms in thér .)-quadrant as

K m
Yo f@=>" " emnf (@man). (13)

wEA(Iir o m=1n=—m

The sum over the lattice squareX is the sum of the quadrant sums as in (13); hence
the reason for the factor of/2—to avoid double-counting of the contributions from the
diagonal terms—is clear. We note that foe N, s > 2 the numerical values of the sums
are independent of any manner of grouping terms. Even so, the forms of the integrands
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in our integral representations reflect this choice. We have found that the convention (13)
yields the most symmetric expressions in appearance (a different grouping for integer
was employed in [8]).

In sums of the form (13) we will substitute the appropriate plane-wave expansion (11)
to represent the poles containedfin This transforms the quadrant sums into geometric
series. Concerning the later, we derive the following lemma.

Lemma 3. For any p, g € C andK ¢ N, the following is an identity
K i -1
> Y eypfal = S P20
2A-plg+qH+p?
B }<1+q>[(pql)’”l B (pq)’(“]
1-q)L 1-pg7t 1-pq |

i=1j=—i

(14)

2

Proof. The formula follows from iteration of the usual single variable geometric sum, and
algebra. O

We record the following corollary for reference.

Corollary 4. We have the following specializations of LemBna

K m
Z Z Emin (e‘x)m(e—“)” _ 26_)‘f1(‘l:, 2) — 2e—A(K+1)f:EK)(T’ 2

m=1n=—m

and

K n
YN (€M) (€M) =26 fa(r, 1) — 2dTHEHD (B (7 ),

n=1m=—n

where the functiongi, fl(K), fo, . Z(K) are:

costf(tAr/2
A= 1-2e* cos(r(r{\))+ e 2’ (19)
f{K)(.L-’ - }(1 et ) |: et (K+D) B e Mt (K+D) i|’ (16)
A\ 1_ et 1— e *1-1) 1— e 21+7)
co(r/2
Pt W) = 75w ccgs(f\))Jr i’ (7
) 1/1+ eik e—i)u(K—&-l) ei)»(K+l)
f2 (T’)‘):Z<1_eik)|:1_eik(r—l) _1_eik(r+l)j|' (18)

We assume is in the fundamental region (9) and make several observations. Con-
cerning real singularities, all of the functions given by (15)—(18) have double poles at the
origin, » = 0. Since3(t) > 0, neither f1(z, 1) nor f2(t, ») have other poles fok > 0.

For 7 strictly imaginary, the denominatot — exp(—At)) of fl(K)(r, A) will have isolated
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simple zeros. However, these are balanced by simple zeros of the difference of bracketed
terms in (16). Thus‘l(K) has no other singularities far> 0. A similar argument shows
thatf2(K> is also finite forr > 0. With regards to decay, one has the bounds

e fa(z, 1) < C2e*POD and |7 fo(r, 1)| < C2€™

for large . As | (1)] < 1/2 and3(r) > 0, both quantities are exponentially decreasing
in . Similar reasoning shows that&X 9 % (z, 1) and &*K+D £ (7 1) are expo-
nentially decreasing in and K .

3. Eisenstein series

As mentioned previously, the summatiﬁm for N(s) > 2 is absolutely convergent. We
begin by proving our first integral representation for this case in Theorem 5. As a corollary,
the restrictions = n, n > 3, gives integral representations 6. Further inspection of the
integral representation demonstrates the existencléoElaborating on Theorem 5, we
derive an alternative representatiorLﬁr as a contour integral. As a consequence of this
second representation, we prove tligatadmits an analytic continuation inas an entire
function. Returning to the analysis @b, we consider a more general limiting procedure
and defineﬁé"‘) as the limit over increasing “lattice rectangles” with a fixed aspect ratio

defined bya. We write E;“)(r) = Ez(t) + A(a, T) and derive a closed form expression
for A. As a corollary, we derive the relationship betwdenand the sun¥, as defined by
Eisenstein.

3.1. Integral representations

For the sumsE, defined by (4) we prove

Theorem 5. Given a latticeA(r) with ratio = chosen from the fundamental regi(9), we
have the following integral representation fég, R(s) > 2:

- T 4 i — —isT/2 \— it
E(1) =Cos(§s> D) /AS Ye m2e™ f1(T, 0) + €™ fa(t, 1)) dA, (19)
0

where f1(z, A) and f2(t, A) are given by(15) and (17).

Proof. Due to the placement of branch cut (5) and the summation conventions (13), we
have the following relations between sums oxgf, , andAf . :

1 g 1 1 . 1
Z J:elsn’ Z E’ Z J:e|s7r Z J

K K K K
weA(_y.) a)eA(_*_y.) wEA(o,—) wEA(o,+)

Therefore, we consider the positive quadrants only and scale the results by an exponential
factor. Turning to the quadrarz’[f(+ o in place of the isolated singularity of degreewve
substitute the appropriate plane-wave expression from (11) to obtain
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1 fisn o 1
Z m:(1+e Z Z 8mn(m+n‘[)Y

=1 n=—m

— (1_;? )”ﬂ) A~ 12 Z Em A(m—i—nr)dA
N

m=1n=—m

—ISJ'[
= 2(1;:2) ) / (&7 fu(z, n) — e K+ £ (7 3)) dr
where the last line follows from Corollary 4. From the statements following this same
corollary, we observe that the two integrands are singulara0, and are otherwise finite
and exponentially decreasing & and € R*. In addition, ash(s) > 2, the singularity

at the origin is absolutely integrable. Therefore, one may take the Kdjait inside the
integral and compute

H 1 _ i A= l—IwT/Z — )\
Jm, 2 m“”( )mf e fi(r, 1) dh.
0

K
we (+,0)

By a similar analysis, we prove that

; 1 _ T 4 | s—14th
Klinoo Z m = COS(Z.S‘) F(S) /)\ el fz(l’,)\) dx.
0

K
we (o, %)

Adding these two contributions gives the theorenm

By inspection of (19), we see that the absolute convergence of the EisensteirEseries
R (s) > 2 manifests itself in the behavior of the integrand of (19) near the origin; the factor
15~1 balances the double poles ¢f and f» so as to ensure the product is integrable at
A = 0. More careful analysis reveals that the formula (19) is finite even for the conditionally
convergent casé,. The Laurent expansions of the integrands about the origin are

. . costf(tA/2) 1 @a=2t)) 3
x“rjo)‘e 1—2e*coshtr)+e 2 A(l—12) 121-12) +0(%),
jim gt —__COS(EA/2) 1 Q= | 563

A—0 1-— zefkcos(m)Jre'm AMl—12) 12(1—12)

At s = 2 the expansions are subtracted hence the integrand of (19) is finite at the origin
even in this case. By a similar analysis, one may show thaktiteependent terms also
cancel at the origin. We have proved:

Corollary 6. The summatio¥) converges in the conditionally convergent case 2, and
its value,E>, is given by the integra[19).
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In fact, a great deal more may be said. The function

coslt(rz/2) - cos(z/2) 20)
1—2ezcosh(rz) + e % 1— 2€7zcogz) + ez
appearing as a factor in the integrand (19) has a singularity at the arigid, and addi-
tional simple poles in the complex plane at the points
2ri 2

m, +
1+t 1+

We denote the minimum magnitude of ale P by p. Next, define the contout which
begins atbo + iy, y > 0; runs parallel to real axis until it intersects the circle centered at
the origin with radius-, wherey < r < p; follows this circle counterclockwise around the
origin; and runs back out tso — iy, parallel to the real axis. We assume that 0 is small
enough such that encloses only the pole at= 0. Finally, for the function:* 2, s ¢ Z,
situate the branch cut along the positive real axis such thatK)

limy o0 +iy)* "t =171,
Iimy_>0(k _ iy)s—l — g2ri(s—=1))s-1
With these preliminaries established we prove the following theorem.

F(S, Z) — e—iST[/Ze—Z

ZEP:{i n

rmneN}

(21)

Theorem 7. Given a latticeA(r) with ratio = chosen from the fundamental regi(8), we
have the following contour integral representation #y, %i(s) > 2:

o —isTT
E, = 2cos<%s>m.7s)e/zS1F(s,z) dz, (22)
c

i
whereF (s, z) is given by(20).
Proof. Consider the contour integral

/z‘_lF(s,z) dz.
c

As the integrand is analytic except for the singularity at the origin, we apply contour de-
formation to shrink the radius of the circle—~ 0, and take the limit ag — 0 for the two
components running parallel to the real axis. @) = 2+ ¢, we estimate the contribution
from the circular arc

/zs_lF(s,z)dz <M|im0 f e |dz| = 0.
r—

lz|=r lz|=r

Turning to the components parallel to the real axis, from the definition of the branch
cut (21), we compute

lim
r—0

er+iy 00
lim 27 (G, 7)dz = —/A-‘—lF(s,x) dx,
y—0
oco+iy 0
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oco—iy [
lim 27 (s, ) dz = eZ”‘@—l)/AS—lF(s,)\) da.
y—0

& —iy 0

We recognize the integrals of Theorem 5, make use of the identity

Ferd-«= sin(rrs)’
and obtain
_ o o 2ie"5 sin(rrs) I (s) ~
s—1 _ i(s—1) _ s—1 —
/z F(s,2)dz = (€2 1)/x F(s, 1) dA Toot%) E,
C 0

"~ 2cogZs)e T (1—s)

The result (22) follows from algebra.c
Several corollaries follow from Theorem 7. We note here only the most immediate

Corollary 8. The sumsﬁs, defined by(4) for N(s) > 2, admit an analytic continuation to
s € C as an entire function. This continuation is given by the contour integral representa-
tion (22).

Proof. The contour integral appearing in (22) defines an analytic functionvalfiich is

never singular. The same may be said for the cosine factor. Thus the only candidate singu-
larities arise from the factaf (1 — s) which has simple poles fare N. From the definition

(4) we know thatZ is finite for %(s) > 2 (the apparent singularities in (22) in this case

are balanced by zeros of the cosine term, the contour integral, or both). Therefore, we need
only verify the finite existence of; andE,. Fors =n = 1, the pole in the Gamma func-

tion is balanced by the simple zero of the cosine factor. Finally, we have argued above that
Ezisfinite. O

By inspection of (22), we find tha, has simple zeros for=1—2j, j > 1. Thus the
continuation respects the symmetric limiting process (4). Preliminary residue computations
suggest thak, is also zero fos = —2j although we have not carried out this investigation
at the time of this writing. For reassurance on this point, however, see [10]. We anticipate
further results concerning the evaluation of the contour integral (22) via residue methods
and will report on this at a later date. Finally, as mentioned previously, the exact form of
the integrands (19) and (22) reflect our summation convention with respect to grouping of
summands and placement of the branch-cut. Regarding the latter, similar formulas arise
if the branch-cut is situated along any of the lattice diagonals; the effect is to redistribute
factors of exinrs/2) between the two functiong and f>. There are, perhaps, additional
treatments of the branch-cut that could yield relatively simple expressions. However, a sim-
ple integral expression valid for placement of the cut along an arbitrary ray in the complex
plane appears to be intractable.
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3.2. Aspect ratio correction

In this section we make an explicit connection betwéerand Eisenstein’s definition
of the series.
Givena € (0, 00), we define the summation over lattice rectangles with aspectaatio

by
) _ g § : § :
E _Klinoo +nf)2 (23)

Im|< @K | |n|<K

where| x| denotes greatest integer less than or equal #gain, although expected, the
existence of the limit (23) is not a priori guaranteed but will follow in the course of our
analysis.

Clearly, E5” = E, defined in (4). More generally, we write

EY = Ey+ A, 1), (24)

where the value oft, may be computed via the integral expression (19). Proceeding as
above we compute a closed form expressionfax, 7).

Theorem 9. For a fixed aspect ratia € (0, c0), the I|m|tE(°‘) specified in(23) exists.
Furthermore, when written in the for(@4), thea dependence is given by

Ala, 1) = —%i (arctar(ir) — arctar(%)). (25)

Proof. Assumex > 1. We write the limit (23)

EY = Ey+ A, ),

leK] n=K 1
Ala, 1) =2 IIm Z Z —.
m=K+1 n=—K (m +nr)

The contribution from the sum over lattice pointge - K| <m < —K — 1 is accounted
for by the factor of two multiplying the sum in the final line. We represent the poles using

theA(Iﬁr o plane-wave expansion (11):

leK| n=K

Ao, 1) =2 lim > /Ae‘“’””")dk

m K+1n=—K 0

T K _ gt(K+D)\ /e MK+D) _ g-hlaK]
=2 lim A dA
K%oo/ ( 1—e )( l—e* )
0
o0

A /e — e—kr(1+l/K) e—k(l—&—l/K) _ a—AaK]|/K

K—oo ] K2 1—e /K 1—e /K
0
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oo

2 é\,f _ e—)ﬂ: e—A _ e—ka
_2 / ( X ), (26)

T A

0

where the argument which justifies taking the lakgdimit inside the integral runs along
the same lines as in the proof of Theorem 5. This last integral (26) may be evaluated in
closed form using the formula

/ e P sin(éx)} dr = arctar<§>, (27)
x B
0

which holds fofi(8) > |3(8)] (see [5, 3.944.5]). Taking care to write (26) as the difference
of two integrals of the form (27), and performing algebra gives the expressiat(arr),
a > 1in (25).

For a < 1 the lattice rectangle is such that the longer side is inttuirection. As
written, Eqgs. (23) and (24) suggest that this rectangle is inscribed in a lattice square of
sizeK, and to computer(«, t), one should subtract the extra contributions exterior to the
rectangle but interior to the square. The problem with this approach is that, for arbitrary
ande, it is burdensome to keep track of the quadrants in which these points lie. In lieu of
this, fora < 1 we rescale the limits in (23),

5@ _ i 1

E57 = lim —_—.

2 K—o00 Z Z (m+nt)?2
ImI<K |n|<LK /o]

Informally, this is equivalent to inscribing the square in the rectangle and motivates com-
puting the contributions from the points in the difference using the plane-wave formulas
appropriate fom(’i 1) Arguing as above and using the integral identity (27), we compute

|K/a] m=K P

A7) =2 lim JHmED) o,
(@) Kl—>oo Z Z /

n=K+1m=—K 0

A

__4 (arctar(—i) - arctar(— ﬁ)) (28)
T 1T IT

Although perhaps not obvious, the formula (28) is the same as the formuls(dorr)
in (25). Using standard trig identities, we have

. 1 . "+1
lim (arctar{z) — arctar(——/)) = lim arctar(zz/ + ) —+Z (29)
7=z Z 7=z 7=z 2

Furthermore, for =it orz =it /a with t satisfying (9) andr > 0, we find that we should
choose the minus sign in (29). Using this identity and algebra, we observe that (28) is equal
to (25), thus (25) holds foralt > 0. O

R amih iy At dirt/a
:E/ (e G e )d)\
T
0
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We use this theorem to find the connection between our summation and Eisenstein’s.
Starting from Eisenstein’s summation convention we obtain

N M 1
Ba=fim, 2 MM, X Griwe?
. N me=cleN) 1
=Jm o 2L Jdmo D e

n=—N m=—|a-N|

m=|a-N ] 1

N
= lim lim —
a—00 N—00 Z Z (m +nt)?

n=—N m=—|a-N|
~ 4i .
= E, — — arctar(it). (30)
T

Standard estimates justify commuting tNeand « limits between the second and third
lines, and we used (25) to compute this limit. As# 0, (30) shows that, for finite, the
value of our sum is always different from Eisenstein’s. In the limit- ico, [R(7)| < 1/2,
both summations are equal and presumably convergegt®p= 72/3.

In a similar vein, we compute the difference between taking Eisenstein’s limit and “its
reverse.” Arguing as above, we have that

M N

1 ~
lim lim ——=F lim A(a,
M—oo Z N—o0 n;N (m+ n‘L')2 2+ a—0 (@)

=Ey— 4 <arctar(i—) + Z)_ (31)
T T 2

Taking the difference between (30) and (31) and, we obtain

al A A al 1 2ri
li li — i li — ="
(Ninoo Z M Z M Z RANS Z )(m +n1)2 T
n=— m=—M m=—M n=—N
For a different proof of this fact see Walker [13].
Finally, in the case of the square lattice £ i) we observe thatf1(i, 1) = f2(i, A).
Collecting factors in (19) and performing algebra, we find that

T (i) — a—lisT/4 z z i/ s—1—A £ (i
E;()=¢€ cos(zs) cos<4s> o) ATre (i, ) da.
0

Corresponding to the added/2-symmetry of the square lattice, the product of cosines
causes the sum to vanish femot a multiple of four. In particulaf, (i) = 0. Substituting
this value into (24), and taking the largg(small«) limits, we obtain

N M

1

lim lim 5 =T,

N—o00 Z M—o0 ZM (m+|n)2
m=—
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M N

1

lim lim —— =T,

M— o0 Z N—o0 Z (m+in)2 i
m=—M n=—N

well-known identities in the fast multipole community (see, for example, [6]).

4. Weierstrass dliptic functions

Our derivations of integral formulas for Weierstrass’ elliptic functions proceed in much
the same manner as above. As a preliminary note, the integral representatipiis,foy
and¢(z, t) which we derive in Theorem 10 are not valid for ale C, but rather have a
finite domain of validity. This is a consequence of the way in which we group terms. More
precisely, we require thate D(t) defined by

D(t) = {z [M(=1£zx7) <0, J(t+2)> O}. (32)

As 7 is in the region (9), one may verify thd(z) is an open set containing the origin.
However,D(t) may not contain the fundamental period parallelogram of the lattiges
{a+B7 ||l <1/2, |8] < 1/2}. Forexample, the standard hexagonal lattice has generators
(1,7) = (1,1/2 +i+/3/2). Thus a corner ofAq is given by the pointg = 1/2+ t/2 =
3/4+i/3/4. Howeverfi(—1+ zo + 1) = 1/4 > 0, violating the first inequality in (32).

With this aside, we prove the following.

Theorem 10. AssumeA = A(u, v) is an arbitrary complex lattice with generators chosen
such thatr = v/u is in the fundamental regiof®), and that the complex numbers in the
domainD(t) defined by the inequalitig82). We have the following integral expressions
for the inhomogeneous elliptic functiopdz, ), andZ (z, 7):

0z, 17)= iz + 8/,\[e—A sinl"?(%)fl(k, )+ €™ siﬁ(%)fz(x, r):| dr (33)
Z
0

and
o0

{(z, 1) = % + /[e**(zx —sinh(z1)) fi(k, T) — €7 (21 — sin(zA)) f2(x, T)] di,

0
(34)

where the functiongi, f> are defined by(15) and (17). We evaluate the homogeneous
functions,p (x | u, v) and¢(x | i, v), via the appropriate scaling relation®) and (33),
(34) with the proviso thak /u =z € D(1).

Proof. In computing the integral representation for ghdunction we will group terms of
the sum (6) as in (13). As in the computation of the Eisenstein sums, we wish to combine

the contributions from the sums OVﬂI{i .)- We compute
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1 1 K& 1 1
Z ((Z—w)z_;>:Z Z 6m"<(z+m+nr)2_(m~l—nr)2>’

K
WAL )

1 1\ - o 1 1
Z((z—w>2_3>_z 8’""(<—z+m+nr)2_(m+nr)2)'

K
WEAL o

Therefore, the contributions from both quadrants may be expressed as a single sum over
AK of a modified summand. Furthermore, under the assumpt@om, all of the poles
in th|s sum may be expressed using #h@) > 0 plane-wave expansion from (11):

L (e
(Z_w)Z wz
U 1 2 1
=3 3 em( )
(—z+m+nt)2  (m +nr)2 (z+m+nt)?

m=1n=—m

m
/)\ 2+e—kz (Z Z Emne—k(m+i1r)) da
0

m=1n=—m

=8fksinf‘?<%>( e fi(r. 1) — e MK £ 7 ) d (35)
0

Arguing as before, we find the larg€ limit of the K-dependent term to be zero. We
compute the contribution from the terms in the quadrarr@i) in an analogous manner.
Adding this result to (35) gives (33).

The derivation of the expression for tlgefunction is similar. In brief, the sum over
the quadrantm{;.) may again be expressed as a sum over the single quazd@m in
which we substitute the appropriate plane-wave expansion. Thus,

S ie

z—-w) o

_i is ~ 1 Loz 1
B "\ —z4m4nt  m+nt)?  z4+m+nr

o0
Z/( ‘42—t (Z > emn ”“"“”)dx
0

1n=—m

= 4f(z/\ — sinhiz1)) (€7 f1(h, 7) — e KD £E 1)) da. (36)
0

As before theK -dependent term goes to zero in the limit. The analogous sums«f&gr)
give the other half of the expression (34)a '
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Remark 11. As an alternative to the above derivation of Theorem 10, we recall that the
Eisenstein series appear as coefficients in the Laurent expansion for Weiegstfags*

tion,
1
pR=5+ Y. ((z—w)z E)

weA\{0}

__ n—2_—
DS Z(n ne" =

wEA\{O} n=3
_1 Z(n — 1) E,7" 2
= Zz 'nZ
n=3

Substituting the integral representations (19) for Bhethe Taylor series may be summed
explicitly inside the integrand. The formula (33) above follows after algebraic simplifica-
tion. Furthermore, the expression (34) for théunction follows from anti-differentiation

of (33).

Remark 12. As with the seriest», and its dependence on aspect ratios derived in The-
orem 9, the slowly decaying terms of the sums definingnd ¢ manifest themselves at

the origin in the integral representations (Egs. (6), (7), and (33), (34), respectively). In the
integral representations, we observe that Weierstrass’ “correction” terms are arranged in
such a way as to create third order zeros at0, which appropriately balance the second
order poles fromf; and f>.

5. Conclusion

We conclude with a brief discussion of our results in relation to previous research in
this field. To the best of our knowledge, there is no analog to the integral expressions for
the o and ¢ functions (33) and (34). The possibility of developing numerical routines
for evaluation of these functions based on these representations deserves further study. We
observe that the integrands are not extremely oscillatory, and decay exponentially¥ -Thus
point Gauss—Laguerre quadrature rules will converge rapidh.iAs one drawback, there
is the perhaps awkward domain of validityanHowever, it may be that symmetries of the
g and¢ functions imply that it is sufficient to evaluate them over domains that are smaller
than the fundamental period parallelogram. Furthermore, at least fgr thection, there
exists the following closed-form Fourier expansion [12]:

1 & 1
= —2 — _—
p 1) (6+n§lsin2(nnt)>

2 © e271irn
T 2 n
_ E = : 7
+ St (i) 8 (n_ll_ o COS(Znnz)) (37)

Both summands in (37) are exponentially decreasing and the sums converge rapidly—stiff
competition from a numerical perspective. Nevertheless, we have not fully explored the
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relative merits of this approach over the plane-wave representation (33). In addition, the
integral representations may have further analytic implications.

Turning to the representations for the Eisenstein series, the existeﬁgé(ﬁi)rollary 6)
is not unexpected. In addition to the original finiteness proofs given by Eisenstein, many
years prior to this present work, Walker derived the remarkable formula for the condition-
ally convergent series (see [12])

1 -2 !
Klim > =1 7 _4niw,
—00 OemP P <K (m+nt) —IT n(t)

where the Dedeking(z)-function withJ(z) > 0 is defined by

oo
n(r) = eﬂir/lZ l_[(l _ e271irn)'
n=1
We also note that a different treatment, initiated by Hecke, has become a standard approach
to resolving convergence and transformation propertigs,dfii].

As indicated by Theorem 7, our expressions are quite general, and have broad impli-
cations. Riemann demonstrated both the functional equation satisfieg(by and the
evaluation of g (—2n + 1) (and, via the functional equatiotg (2n)) in terms of Bernoulli
numbers using the “version” of Theorem 7 appropriate for his zeta function. Similarly, we
anticipate that a residue argument will give the evaluatioB,of E, in terms of multiple
Bernoulli numbers, see [2] and [9] for related results pertaining to multiple zeta-functions.
For an alternative treatment of Eisenstein series for negative even integers using Hecke
convergence factors see the recent work of Pribitkin [10]. The functional equation satisfied
by the continuation of, is more elusive. We are currently pursuing this and hope to report
our results in the future.

Finally, there is a possibility that representations of the form (19) may exist for certain
Dirichlet series

Gs. )= T(afr;) x (@) = exp(i(mua + nvp))
weA\{0}
for a, B € R. (These are called “Kronecker series” in [14, Chapter VIII].) A detailed dis-
cussion of the convergence of these series is given in [3]. We note that Laplace—Mellin
techniques have been employed frequently in the analysis of such series. The approach up
until now has been to think of

|wm|? = Imp 4 nv2 = Q(m, n)

as defining a positive definite quadratic form takingandn as arguments. Treating this
form as “indivisible,” one may use th#(w) > 0 plane-wave formula in Lemma 1 and
obtain the integral representation

x 1 i s—1 —1Q(m.n)
2 |w|2v_r(s)/ DL xlee >
0

weA\{0} weA\{0}

The analysis then proceeds vidunctions.
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Our approach would be different. “Plane-wave-like” representations exist for the func-
tion f(x,y) = +/x2+ y2. Formally, one may take the true plane-wave expressions for
f(x,y,2) = Vx2+ y2 + z2 derived in [4], and set = 0. The result is a 2D integral as
opposed to the Eisenstein case analyzed above where one complex dimension (two real)
collapses into a 1D integral. However, the critical element of this representation is that the
exponential function in the “plane-wave” representation is linean iandn. As a conse-
guence, again the summation under the integrand becomes a 2D geometric series. We are
considering this as a possible direction for future research.
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