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Abstract

Compact, time-harmonic, acoustic sources produce waves that decay too slowly

to be square-integrable on a line away from the sources. We introduce an inner

product, arising directly from Green’s second theorem, to form a Hilbert space

of these waves and present examples of its computation.1 c© 2005 Wiley Peri-

odicals, Inc.

1 Introduction

Consider the scattering problem governed by the Helmholtz equation

(1.1) �ϕ + k2(1 + q)ϕ = 0

in two dimensions for a scatterer q ∈ L2(D) supported in a compact domain D in

the half-plane above the x-axis. A function u : R
2 → C is referred to as a scattered

wave, or an outgoing wave, from D if it has the form

(1.2) u(r) =
∫
D

H0(k|r − r′|)η(r′)dr′

for some η ∈ L2(D). As is well known, u satisfies the radiation condition

(1.3)
∂u

∂r
− iku = o(r−1/2), r = |r|,

and when restricted to a line such as the x-axis (see Figure 2.1), u decays at the rate

of O(r−1/2). Therefore u is not an L2 function, and we cannot apply the standard

inner product

(1.4) ( f, g) =
∫ ∞

−∞
f (x)ḡ(x)dx .

1 Contribution of U.S. government not subject to copyright in the United States.
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FIGURE 2.1. The scatterer D above the x-axis.

There are several applications for which an outgoing wave may need to be sam-

pled and processed on a line. First, for wave scattering or propagation problems in

a stratified host medium or in a wave guide, we may have to process wave functions

on a line in two dimensions or a plane in three dimensions. Second, for a scatterer

in a homogeneous host medium, it may be more convenient, efficient, and stable to

process its scattered waves on a line as opposed to a closed curve containing D.

The lack of compact support of such functions makes their sampling and pro-

cessing seem difficult. We introduce in this paper an inner product and use it to

construct an orthogonal basis for all outgoing waves from D. In other words, we

will present a method to efficiently sample the outgoing wave functions on the line.

2 The Inner Product

For simplicity, we will assume that the domain D is a positive distance from, as

well as above, the x-axis; see Figure 2.1 and Remark 2.4. Denote by W the linear

space of functions that are restrictions to the x-axis of the outgoing waves u(x, y)

from D. In other words, let A : L2(D) → C∞(R) be defined by

(2.1) u(x) = (Aη)(x) :=
∫
D

H0(kρ) η(x ′, y′) dx ′ dy′

with

ρ = [
(x − x ′)2 + y′2]1/2

.

Then W is the range space of A. With the negative y-direction as the outward

normal, we will denote by un(x) the normal derivative of u on the x-axis:

un(x) = −
∫
D

∂ H0

(
k
√

(x − x ′)2 + (y − y′)2
)

∂y

∣∣∣∣∣
y=0

η(x ′, y′) dx ′ dy′

= −
∫
D

k H1(kρ)
y′

ρ
η(x ′, y′) dx ′ dy′.

Therefore, for any u ∈ W ,

(2.2) u(x) = O(|x |−1/2), un(x) = O(|x |−3/2).
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FIGURE 2.2. The scatterer D, semicircle Cr , and half-disk Br .

THEOREM 2.1 For u, v ∈ W , the bilinear form

(2.3) (u, v) = i

4

∫
R

[u(x) v̄n(x) − v̄(x) un(x)] dx

is bounded and defines an inner product for W .

PROOF: The existence of the integral for (u, v) follows immediately from (2.2).

The bilinearity and symmetry of (u, v) are straightforward to verify. Now, we

establish the positivity (u, u) > 0 for a nonvanishing u ∈ W . In the lower half-

plane, consider the semicircle

(2.4) Cr = {(x, y) : x2 + y2 = r2, y ≤ 0}
and the half-disk Br bounded by Cr and the interval [−r, r ] on the x-axis; see

Figure 2.2. Let v = ū in Green’s second theorem

(2.5)

∫
Br

[u · (� + k2)v − v · (� + k2)u]dx dy =
∫

∂ Br

(
u

∂v

∂n
− v

∂u

∂n

)
ds,

where u(x, y) on Br is the continuation of u(x) on the line to the lower half-plane;

see (1.2) and (2.1). It follows from (� + k2)ū = 0 in Br that

(2.6)

∫ r

−r

[uūn − ūun]dx =
∫
Cr

[
u
∂ ū

∂n
− ū

∂ ū

∂n

]
ds.
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The last integral we denote by I (r). Integrating the radiation condition (1.3) over

Cr yields

(2.7)

∫
Cr

∣∣∣∣∂u

∂n
− iku

∣∣∣∣
2

ds =
∫
Cr

[∣∣∣∣∂u

∂n

∣∣∣∣
2

+ k2|u|2
]

ds − ik I (r) → 0, r → ∞.

It follows from (2.3), (2.6), and (2.7) that

(2.8) (u, u) = 1

4k
lim

r→∞

∫
Cr

[∣∣∣∣∂u

∂n

∣∣∣∣
2

+ k2|u|2
]

ds.

Therefore, (u, u) = 0 implies that the 2-norm over [π, 2π] of the far field u∞(θ)

is 0. It follows from the analyticity of u∞ that u∞ is 0; therefore, u vanishes outside

D; in particular, u ∈ W is 0. �

Remark 2.2. For the time-harmonic outgoing wave u, (u, u) is a constant multiple

of its energy flux over a period and through the x-axis. The naturally induced norm

‖u‖ = (u, u)1/2 makes W a pre-Hilbert space.

The next lemma is a direct consequence of the boundedness of the linear map A

and completeness of its domain L2(D).

LEMMA 2.3 The linear space W is complete, and therefore is a Hilbert space, with

the inner product (2.3).

Remark 2.4. It follows from the boundedness of the kernel H0(kρ) of the integral

operator A defined in (2.1) that the bounded linear map A is compact and has a

singular value decomposition (SVD). It is not difficult to show that A is compact

when D and the x-axis are not separated.

Remark 2.5. An orthogonal basis for W can be computed via the SVD of A. In

practice, the SVD will not be performed on A for fear of inefficiency, but on a map

related to standard-layer potentials, such as the combined-layer potential (see, e.g.,

[2, p. 47]), whose domain is a set of functions defined on the boundary ∂ D.

3 The Inner Product for Two Point Sources

In this section, we calculate the inner product for wave functions, each gen-

erated by a point source in D. On one hand, this calculation will be useful for

computing the SVD of A or its equivalent layer potential representation (see Re-

mark 2.5); on the other hand, it will demonstrate how an outgoing wave function

from D should be finitely sampled on R.
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3.1 Inner Product for Two Monopoles

We refer to the function u(r) = H0(k|r − r′|) as the wave generated by a

monopole at r′ ∈ R
2.

THEOREM 3.1 Suppose that u and v are generated by two monopoles at b, c ∈ D.

Then the inner product (u, v) depends only on the vector

(3.1) a = b − c = (xa, ya).

More precisely, let a = |a| and let φ = arctan(ya/xa) be the angle formed by the

x-axis and a. Then

(3.2) (u, v) = 1

π

∫ π/2

−π/2

e−ika sin(θ−φ) dθ.

Thus Re(u, v) = J0(ka) is independent of φ. Furthermore, when b = c ∈ D,

(3.3) (u, u) = 1.

PROOF: As shown in Figure 3.1, we replace the integral over [−r, r ] with one

along the semicircle,

(u, v) = lim
r→∞

i

4

∫ r

−r

[uv̄n − v̄un]dx

= lim
r→∞

i

4

∫ 2π

π

[
u(r, θ)

∂v̄(r, θ)

∂r
− v̄(r, θ)

∂u(r, θ)

∂r

]
r dθ,(3.4)

where the integrand of (3.4) is simplified by the far-field asymptotics of wave func-

tions u and v due to the two monopoles. The following two steps furnish the details

of the proof.

(i) GEOMETRY OF THE TWO SOURCES. We suppose that in polar coordinates

r = (r, θ) with θ ∈ [π, 2π] and b = (b, β), c = (c, γ ), with β, γ ∈ (0, π); see

Figure 3.1. The cosine law gives the distances ρ = |r − b| and σ = |r − c|:
ρ2 = b2 + r2 − 2br cos(θ − β),(3.5)

σ 2 = c2 + r2 − 2cr cos(θ − γ ).(3.6)

From the pair of vertical sides and pair of horizontal sides of the dashed-line rec-

tangle in Figure 3.1, we observe

−a sin φ = c sin γ − b sin β,

−a cos φ = c cos γ − b cos β.

We multiply the first equation by − cos θ , multiply the second by sin θ , and add to

obtain

(3.7) −a sin(θ − φ) = c sin(θ − γ ) − b sin(θ − β).
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FIGURE 3.1. The source points b and c and field point r in polar coordinates.

(ii) FAR-FIELD ASYMPTOTICS. The monopoles are given by

(3.8) u(r) = H0(kρ), v(r) = H0(kσ),

with their normal derivatives given by

(3.9)
∂u(r)

∂r
= −k H1(kρ)

∂ρ

∂r
,

∂v(r)

∂r
= −k H1(kσ)

∂σ

∂r
.

The derivatives ∂ρ/∂r and ∂σ/∂r both approach 1 as r → ∞; since both terms of

the integrand are bounded, these derivatives can be ignored. The large-argument

asymptotic expansion for the Hankel functions (see, e.g., [1, 9.2.3])

(3.10) Hν(r) ∼
√

2

πr
ei(r−νπ/2−π/4) + O(r−3/2)

and the asymptotic expansion of ρ and σ from (3.5) and (3.6),

(3.11) ρ ∼ r − b cos(θ − β) + O(r−1), σ ∼ r − c cos(θ − γ ) + O(r−1),

as r → ∞, combined with (3.4), (3.8), and (3.9), yield

(3.12) (u, v) = 1

π

∫ 2π

π

eik(c cos(θ−γ )−b cos(θ−β)) dθ.
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We shift the integration to [−π
2
, π

2
] and employ (3.7) to obtain (3.2).

�

3.2 Inner Product for a Monopole and a Dipole

Suppose that ur′(r) is the wave function generated by a monopole at r′ ∈ R
2,

and d ∈ R
2 is a unit vector, with polar coordinates (1, ν). Then the wave function

generated by a dipole at r′ in orientation ν is defined as

v(r) = lim
t→0

ur′(r + td) − ur′(r)

t

= − lim
t→0

ur′+td(r) − ur′(r)

t
.(3.13)

THEOREM 3.2 Suppose that u and v are generated by a monopole at b ∈ D and

a dipole at c ∈ D with orientation ν. Then the inner product (u, v) depends on ν

and the vector

(3.14) a = b − c = (xa, ya).

More precisely, let a = |a| and let φ = arctan(ya/xa) be the angle formed by the

x-axis and a. Then

(3.15) (u, v) = − ik

π

∫ π/2

−π/2

e−ika sin(θ−φ) sin(θ − ν)dθ.

In particular, when b = c and for arbitrary orientation ν,

(3.16) (u, v) = − ik

π

∫ π/2

−π/2

sin(θ − ν)dθ = 2ik

π
sin(ν).

PROOF: The proof exploits the definition of a dipole, the bilinearity of the inner

product, and the inner product of two monopoles as derived above.

We define ct = c + td, at = b − ct , at = |at |, and φt to be the angle formed by

the x-axis and at . Referring to Figure 3.2, we observe

at = a − t cos(ν − φ),

φt = φ − arcsin
t sin(ν − φ)

at

,

from which

lim
t→0

at sin(θ − φt) − a sin(θ − φ)

t
= d

dt
at sin(θ − φt)

∣∣∣∣
t=0

= − sin(θ − ν).(3.17)

Let vt denote a monopole located at ct . Then

(3.18) (u, v) = − lim
t→0

(u, vt) − (u, v0)

t
.

Combining (3.2) and (3.17) with (3.18) yields the desired result (3.15). �



REPRESENT WAVES IN UNBOUNDED DOMAIN 1365

φ

c

a

µ

b

ν − φ

x

FIGURE 3.2. Two dipoles b and c with orientations µ and ν.

3.3 Inner Product for Two Dipoles

The computation of the inner product of two dipoles closely follows that of a

monopole and dipole given above, yielding the following theorem:

THEOREM 3.3 Suppose that u and v are generated by two dipoles at b, c ∈ D with

orientations µ and ν. Then the inner product (u, v) depends on the orientations

and the vector

(3.19) a = b − c = (xa, ya).

More precisely, let a = |a| and let φ = arctan(ya/xa) be the angle formed by the

x-axis and a. Then

(3.20) (u, v) = k2

π

∫ π/2

−π/2

e−ika sin(θ−φ) sin(θ − µ) sin(θ − ν)dθ,

where the unit vectors µ and ν are regarded as the angles they form with the x-axis;

see Figure 3.2. In particular, when b = c ∈ D,

(3.21) (u, v) = k2

π

∫ π/2

−π/2

sin(θ − µ) sin(θ − ν)dθ = k2

2
cos(µ − ν).

3.4 Inner Product for Two Multipoles

We refer to the function u(r) = Hm(kr)eimθ as the wave generated by a multi-

pole of order m centered at r′ ∈ R
2, where r − r′ has polar coordinates (r, θ),

(3.22) r = [(x − x ′)2 + (y − y′)2]1/2, θ = arctan
y − y′

x − x ′ .

The inner product of two multipoles centered at r′ has a very simple form.
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THEOREM 3.4 Suppose that u and v are generated by two multipoles of order m

and n, respectively, centered at some point r′ above the x-axis. Then

(3.23) (u, v) =




1, m = n,

2(−1)(1+|m−n|)/2/(|m − n|π), m − n odd,

0, otherwise.

PROOF: The proof follows that of Theorem 3.1 except that the circular arc of

radius r below the x-axis is centered at r′ = (x ′, y′). The multipoles are then given

by

(3.24) u(r) = Hm(kr)eimθ , v(r) = Hn(kr)einθ ,

their normal derivatives (see, e.g., [1, 9.1.27]) computed from

(3.25)
∂ Hm(kr)

∂r
= k

2
(Hm−1(kr) − Hm+1(kr)),

and the asymptotic forms of the Hankel functions given by (3.10). Now we obtain

(u, v) = lim
r→∞

i

4

∫ 2π−arcsin(y′/r)

π+arcsin(y′/r)

[
u(r)

∂v̄(r)

∂r
− v̄(r)

∂u(r)

∂r

]
r dθ

= lim
r→∞

i

4

∫ 2π

π

[
u(r)

∂v̄(r)

∂r
− v̄(r)

∂u(r)

∂r

]
r dθ

= 1

π

∫ 2π

π

ei(m−n)(θ−π/2) dθ,

from which the theorem is established. �

4 Other Unbounded Curves

The foregoing discussion has been limited to representation of the field of com-

pact sources on a line. A review of the discussion reveals, however, that none of the

argument is limited to a line: each fact applies equally to other curves that divide

the plane into two unbounded regions, one of which contains the sources.

Let C ⊂ R
2 be a curve with parametrization λ : R → R

2, so that λ(t) ∈ C for

t ∈ R. We suppose that C is simple (λ is a one-to-one map), that C is unbounded

(|λ(t)| → ∞ as t → ±∞), and C carves out a sector of the plane,

(4.1) lim
t→−∞

λ(t)

|λ(t)| = d−, lim
t→∞

λ(t)

|λ(t)| = d+,

for some d− and d+. Under these assumptions, C divides the plane into two re-

gions. If u and v are waves whose sources lie entirely in the same region, the

bilinear form

(4.2) (u, v) = i

4

∫
C

[uv̄n − v̄un]d|C |
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is independent of C other than the unit vectors b and c. Furthermore, (u, u) is

positive for u 
= 0 provided that the direction of the normal to C is chosen to

point away from the source region, the integration is taken in the counterclockwise

direction relative to the sources, and b 
= c. Hence, under these conditions, the

bilinear form is an inner product. We remark that the plane could alternatively be

divided into regions by a curve C satisfying (4.1) with b = c, giving an infinite

enclosed strip. In this case, if the sources are in the strip, the bilinear form is an

inner product, whereas if the sources are outside, (u, u) = 0 for all waves u.

The following theorem restates the results of the previous section for the inner

products of point sources for a simple, unbounded curve of the type just presented.

Its proof exactly follows that for the line and is omitted.

THEOREM 4.1 Suppose that C is an unbounded curve dividing the plane into two

regions and (u, v) is the inner product defined by (4.2), where u and v are point

sources located at b and c lying in one of the regions. Suppose β and γ are the

orientations of the unit vectors d− and d+ given in (4.1), where λ(t) traverses C

counterclockwise, for increasing t relative to b and c. Finally, suppose a = b−c =
(xa, ya), a = |a|, and φ = arctan(ya/xa).

(1) INNER PRODUCT OF TWO MONOPOLES. If u and v are monopoles, then

(4.3) (u, v) = 1

π

∫ γ

β

e−ika cos(θ−φ) dθ.

(2) INNER PRODUCT OF A MONOPOLE AND A DIPOLE. If u is a monopole

and v is a dipole with orientation ν, then

(4.4) (u, v) = k

π

∫ γ

β

e−ika cos(θ−φ) cos(θ − ν)dθ.

(3) INNER PRODUCT OF TWO DIPOLES. If u and v are dipoles with orienta-

tions µ and ν, respectively, then

(4.5) (u, v) = k2

π

∫ γ

β

e−ika cos(θ−φ) cos(θ − ν) cos(θ − µ)dθ.

(4) INNER PRODUCT OF TWO MULTIPOLES. If b = c and u and v are multi-

poles of order m and n, respectively, then

(4.6) (u, v) = 1

π

∫ γ

β

ei(m−n)(θ−π/2) dθ.

5 Analytical and Numerical Examples

In this section, we present examples illustrating how the inner product can be

used to construct an orthonormal basis of W .

As is well known, the SVD of the operator A : L2(D) → W can be obtained

from the eigendecomposition of a truncated N × N Gram matrix of inner products

B = {(um, un)}, where un = Aen and {en : n ∈ Z} is an orthonormal basis
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for L2(D). (This procedure “squares the system,” so is not advisable in some

applications.) In particular, suppose B = W DW h , where W is unitary and D

is diagonal. If wi and wj are two columns of W , with wi = 〈w1i , . . . , wNi 〉T

and wj = 〈w1 j , . . . , wN j 〉T, then we define wave functions si = ∑
k wki uk for

i = 1, . . . , n, and obtain

(si , sj ) =
n∑

k=1

n∑
l=1

wki w̄l j (uk, ul)(5.1)

= wj
h Bwi

= δi j di ,

where di is the i th element on the diagonal of D. Thus {s1, . . . , sN } is an orthogonal

set in W with (si , si ) = di .

In the examples, we replace the map A from the source region (to the field

region) by a map Ã from the boundary of the source region, which is sufficient and

simplifies the analysis. In the domain we will have Dirichlet data (Examples 1 and

2) or a single-layer density (Examples 3 and 4), and, in a slight abuse of notation,

we use Ã to denote the operator in each case.

Example 1. Suppose all sources are contained within a disk D of radius r0 centered

at r′ = (0, y0) with y0 > r0. Complex exponentials {en(θ) = einθ : n ∈ Z}
form an orthonormal basis for L2(∂ D) under the usual inner product. The map

Ã : L2(∂ D) → W is given by

(5.2) un(x) = ( Ãen)(x) = Hn(kr)

Hn(kr0)
einθ , n ∈ Z,

where r =
√

x2 + y0
2 and θ = arctan(−y0/x). From Theorem 3.4,

(um, un) = 1

Hm(kr0)H̄n(kr0)




1, m = n,

2(−1)(1+|m−n|)/2/(|m − n|π), m − n odd,

0, otherwise.

For r0 = 1, y = 3
2
, and k = 10, we truncate the matrix B = {(um, un)} at

|n| ≤ nmax = 25 (N = 51), for which all eigenvalues d1 > · · · > dN agree

with other truncations with nmax > 25 to within 5 · 10−15. Here d1 = 31.3 and

d35 = 9.97 · 10−15; the singular values
√

d1, . . . ,
√

d35 are shown in Figure 5.2.

The singular functions vi = si/
√

di ∈ W , i = 1, . . . , 8, are plotted in Figure 5.1.

The analogous computation was done for k = 100, for which nmax = 135

suffices. Singular values
√

d1, . . . ,
√

d145 are shown with those for k = 10 in

Figure 5.2, and the singular functions v1, . . . , v8 are plotted in Figure 5.3.

Example 2. We suppose again that all sources are contained within a disk D of ra-

dius r0 and ask about the singular functions on two horizontal lines, one above and
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FIGURE 5.1. Singular functions v1, . . . , v8 from Example 1 for k = 10

are shown, each divided by monopole u0 to normalize scale and os-

cillations. They are plotted along the entire x-axis as a function of

θ ∈ [−π
2
, π

2
] with x = y0 tan θ . Real and imaginary parts are shown.
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FIGURE 5.2. The singular values of the operator A in Example 1 are

shown on a log scale, in decreasing order, for k = 10 (shorter sequence)

and k = 100.
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FIGURE 5.3. Singular functions as in Figure 5.1 but for k = 100.

one below D. This is the limiting case of an enclosing rectangle of fixed height and

increasing width. Reasoning from Green’s second theorem (as in Theorem 2.1), we

observe that two wave functions u and v from sources inside D have inner product

(u, v) that is invariant through the limiting process; in fact, it can be computed

most simply on the boundary ∂ D. For multipole sources

(5.3) un(r) = Hn(k|r − r′|)einθ , n ∈ Z,

at the center r′ of D, we obtain

(5.4) (um, un) = 2δmn.

(On ∂ D the integrand of the inner product is a constant times ei(m−n)θ , so (um, un) =
cnδmn . Now employ Theorem 3.4 or, more directly, the Wronskian for Hn .) Thus

the multipoles, scaled by 1/
√

2, form an orthonormal basis on the two parallel

lines.

Although the multipole un “radiates energy” that is invariant with n, its field

values grow exponentially in n on ∂ D for |n| > kr0. The exponential growth

typically makes multipoles an unsuitable basis for a source region very different

from a disk.
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FIGURE 5.4. The singular values of the operator A in Example 3.

Example 3. Next we consider monopole sources on the boundary of the rectangle

(5.5) M = {(x, y) : |x | ≤ a, |y − y0| ≤ b}, y0 > b;
namely, we represent the waves on R with a single-layer potential arising from a

density η on the boundary ∂ M . The density is discretized on each edge of the rec-

tangle with Gauss-Legendre quadrature, yielding a set of monopoles as sources. As

in Example 1, the eigendecomposition of the Gram matrix yields an orthonormal

basis for W .

For a = 10, b = 1, y0 = 4, and k = 10, we choose 150 nodes on the hori-

zontal edges and 20 nodes on the vertical edges, so N = 340. The integral (3.2)

for the inner product of monopoles is discretized here with Gauss-Legendre quad-

rature containing 250 nodes. The singular values
√

d1, . . . ,
√

d98 of the operator

Ã : L2(∂ M) → W are plotted in Figure 5.4. Figure 5.5 shows the first two sin-

gular functions v1, v2 ∈ W and the integrands of the corresponding inner products

(v1, v1) and (v2, v2).

Example 4. In our final example, we examine the possibility of a source being fo-

cused to maximize or minimize the radiated energy that passes through a particular

segment in the finite plane. We consider a double-layer density η on the segment

M ,

(5.6) M = {(x, 4) : |x | ≤ 10}
as the source, and the segment

(5.7) T = {(x, 0) : |x | ≤ 1}
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FIGURE 5.5. Top: Singular functions v1 and v2 divided by the potential

of a monopole centered at (0, y0) from Example 3 are shown. As for Fig-

ure 5.1, they are plotted as functions of θ ∈ [−π
2
, π

2
] with x = y0 tan θ .

Bottom: Integrands of the corresponding inner products (vi , vi ) multi-

plied by dx
dθ

.

on the x-axis as the target. The inner product presented above lacks positivity

on finite curves, and in this setting is merely a bilinear form. No analytical for-

mula for its value is available in this case; both M and T must be discretized.

Again we choose k = 10, discretize the source region as for Example 3, and apply

Gauss-Legendre quadrature (with 20 nodes) on the target segment. As in previous

examples, we obtain the eigendecomposition of the Gram matrix {(um, un)}, where

um is the wave on T due to a dipole on M .

For fixed 2-norm of the source density on M , Figure 5.6 shows the waveforms

and the integrands of the bilinear form with the maximum and minimum radiation

through the target segment in the direction (0,−1).

6 Generalizations and Conclusions

We have described a method to represent the acoustic wave functions — the

Helmholtz potentials — in an unbounded domain over which they oscillate an in-

finite number of cycles and decay too slowly to be sampled by standard methods

with a finite number of points. Let u and v be two wave functions on R arising
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FIGURE 5.6. Top: Wave functions v1 and v2 on T having maximum

positive and maximum negative flux through T . Bottom: The corre-

sponding integrand of (vi , vi ) in Example 4.

from two point sources in D (see Figure 2.1) separated by a distance a. It follows

from the far-field asymptotics for the Hankel functions (3.10) that the main oscil-

lation eikr of u and v vanishes in uv̄ and u
v
. A careful examination of them shows

the following:

(1) For a prescribed precision, it appears that the functions uv̄ and u
v

oscil-

late only a finite number of cycles over R, with the number of cycles of the main

oscillation being about ka.

(2) Similarly, the integrand of the inner product (u, v) oscillates about ka

cycles.

(3) For the domain D, separated from the x-axis and centered at (x0, y0), the

coordinate transformation x : [−π
2
, π

2
] → R,

(6.1) x = x(θ) = x0 + y0 tan θ,

reduces the integral (2.3) to

(6.2) (u, v) = i

4

∫ π/2

−π/2

[u(x)v̄n(x) − v̄(x)un(x)]dx

dθ
dθ.
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Let d be the diameter of D. The number of cycles of the main oscillation in the

integrand of (6.2) is thus no more than kd , and the main oscillation is more or less

evenly spread over [−π
2
, π

2
] if the aspect ratio of D is close to 1.

(4) If the aspect ratio of D is large and if D is well separated from the x-axis,

y0 > d (as in the case of Example 3 if the box M is vertically erected with y0 > a),

the transformation (6.1) is still reasonably efficient. Otherwise, as in the case of

Example 3, other transformations perform better, for example,

(6.3)
dx

dθ
= 2a + πb

f (x)

where

f (x) = f1(x) + f1(−x) and f1(x) =
(a + x)

√
(a + x)2 + y2

0 − b2 + by0

(a + x)2 + y2
0

works well for Example 3.

Given a prescribed precision, the finite number of orthonormal basis functions

we have constructed for the linear space W give rise to a method to sample W with

a finite number of points.

OBSERVATION 6.1 If the quadrature nodes {xj } are sufficient for the inner product

(2.3) of W , then they are also sufficient to sample W . In other words, a wave

function u ∈ W can be uniquely determined, up to the prescribed precision, at the

points {xj }, because u is uniquely determined by its Fourier coefficients {(u, ui )}.
The inner product (2.3) extends immediately to three dimensions; a paper re-

porting its analytical and computational tools is in preparation. A similar inner

product also exists for the vector case, for example, of electromagnetic waves.
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