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Abstract

Exchange energy is especially sensitive to the numerical representation selected. We compare three discretized

exchange energy formulations for 3D numerical micromagnetics on rectangular grids. Explicit formulae are provided

for both Neumann and Dirichlet boundary conditions. Results illustrate the convergence order of these methods as a

function of discretization cell size and the effect of cell size on vortex pinning.
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1. Introduction

In the continuum theory that underlies micro-
magnetics, the term representing the quantum
mechanical exchange interaction can be written as

Eex ¼
Z

V

Aðjrmxj2 þ jrmyj2 þ jrmzj2Þ dV ; ð1Þ

where A is the exchange coefficient and m ¼
ðmx;my;mzÞ represents the reduced magnetization,
M=Ms: It follows from the constraint jjmjj2 ¼ 1
that m � @m=@x ¼ 0; and similarly for @=@y and
@=@z: This combines with the general relation
jrf j2 ¼ r � ðfrf Þ � fr2f to show that Eq. (1) can
be rewritten as

Eex ¼ �
Z

V

Am �
@2m

@x2
þ

@2m

@y2
þ

@2m

@z2

� �
dV : ð2Þ
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A numerical implementation of micromagnetics
must utilize a discretized form of Eq. (1) or (2).
The order of a numerical method is defined as the
rate at which the error decreases as the discretiza-
tion cell size h tends to 0. For example, if there is a
constant B such that the error is smaller than Bh2

as h-0; we say the error is Oðh2Þ; or that the
method is second order. There are many factors to
consider when selecting a numerical implementa-
tion, such as method order, boundary conditions,
and seriousness of discretization-induced artifacts
like vortex pinning [1]. In this work we analyze
three discretization methods on rectangular lat-
tices, involving 6, 12, and 26 neighbors, with two
types of boundary conditions.
2. Theory

Evaluating either Eq. (1) or (2) numerically
involves evaluating both the integral and the
enclosed derivative. Additionally, special handling
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of the derivative is required at the boundary of the
simulation region. In order to obtain a specified
method order, say Oðh4Þ; each step must retain at
least that accuracy.

2.1. Integration techniques

A one-dimensional integral can be approxi-
mated by the discrete sum

Z b

a

f ðxÞ dx ¼ h
Xn

k¼1

wkfk þ OðhaÞ;

where fk ¼ f ðxkÞ at sample points xk ¼ a þ ðk �
1
2
Þh; h ¼ ðb � aÞ=n is the distance between succes-
sive samples, ðwkÞ is a collection of weights, and a
is the method order. In this discretization the
sample points are all interior to the interval ½a; b
:
It is easy to show [2] that the simple sum with all
wk ¼ 1 is Oðh2Þ provided that f is twice continu-
ously differentiable, i.e., fAC2½a; b
:
In general, to obtain a higher-order method one

must vary the weights wk: Simpson’s rule, with
weights 1; 4; 2; 4;y; 2; 4; 1; is a well-known Oðh4Þ
method for the case where the samples xk include
the endpoints a and b: There are also methods
where the wk’s are identically 1 in the interior, and
vary only at the ends [3]. Using the methods in
Refs. [2,3], one can show that the weights

ðwkÞ ¼
26

24
;
21

24
;
25

24
; 1; 1;y; 1;

25

24
;
21

24
;
26

24
ð3Þ

yield an Oðh4Þ integration method for fAC4½a; b
:
A three-dimensional integral can be obtained by

iterating the above method,

Z
V

f dV ¼ Vh

X
ijk

wx
i w

y
j wz

kfijk þ Oðh4Þ; ð4Þ

where Vh ¼ hxhyhz is an individual cell volume,
with hx; hy; hz the sample periods along the x-, y-
and z axis, respectively, wx

i ;w
y
j ;w

z
k are the weights

(3) extended to fit the sample sequences along the
corresponding axes, fijk is the value of f at point
ðxi; yj ; zkÞ; and h ¼ maxðhx; hy; hzÞ:
2.2. Six- and 12-neighbor methods

If we consider one term in Eq. (2), say

F ¼ �
Z

V

Am �
@2m

@x2
dV ; ð5Þ

then F can be represented numerically as

Fd ¼ �Vh

X
jk

w
y
j wz

k

X
ii0

Aijkwx
i dii0mijk �mi0jk; ð6Þ

where ðdii0 Þ is a discrete representation for the
operator @2=@x2:
The most common representation for the

exchange energy involves a three-term approxima-
tion to the second derivative in Eq. (5), namely

f 00ðxkÞ ¼
1

h2
ðfk�1 � 2fk þ fkþ1Þ þ Oðh2Þ ð7Þ

for fAC4½xk � h;xk þ h
: This expression involves
the center point xk and its two nearest neighbors.
Including the @2=@y2 and @2=@z2 terms expands the
sum to three dimensions, and triples the neighbor
count. Hence we call this the ‘six-neighbor
method’.
At any point x where feC4½x � h;x þ h
; and in

particular at the boundaries of the simulation
region (outside of which we assume m ¼ 0),
relation (7) cannot be used. We consider explicitly
the case x ¼ x1 near the boundary x ¼ a; but the
general case is completely analogous.
Considering first the case with Neumann

boundary conditions, where f 0ðaÞ is given, Taylor
series expansions about x1 for f and f 0 yield

f 00ðx1Þ ¼
f2 � f1 � hf 0ðaÞ

h2
þ OðhÞ: ð8Þ

At equilibrium, in the absence of surface aniso-
tropy or other boundary fields, the normal
derivative of the magnetization at the boundary
satisfies @m=@#n ¼ 0 [4], which here means f 0ðaÞ ¼ 0:
Compared to Eq. (7), the accuracy in Eq. (8) is

OðhÞ instead of Oðh2Þ: The symmetry of the
samples about xk in Eq. (7) results in cancellation
of the ðx � xkÞ

3 terms in the Taylor expansion,
which does not happen here. However, regardless
of the number of samples n; there is only one edge
term near x ¼ a where Eq. (8) is applied, and this
term will be multiplied by the sample length h

during the integration process. Thus the
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approximation in toto is Oðh2Þ: The approxima-
tion error in the interior, using Eq. (7), is Oðh3Þ
locally when considered part of the integration
process, but the number of such terms is n �
2Eðb � aÞ=h; so the total approximation error in
the interior is Oðh2Þ:
For Dirichlet boundary conditions, f ðaÞ is

specified instead of f 0ðaÞ: Working as before, we
obtain

f 00ðx1Þ ¼
4f2 � 12f1 þ 8f ðaÞ

3h2
þ OðhÞ: ð9Þ

The 8f ðaÞ=ð3h2Þ term can be treated as an applied
field concentrated in the x1 discretization cell.
We can proceed similarly for an Oðh4Þ method.

A sixth-order Taylor series expansion shows [5]

f 00ðxkÞ ¼
�fk�2 þ 16fk�1 � 30fk þ 16fkþ1 � fkþ2

12h2

þ Oðh4Þ ð10Þ

for fAC6½xk � 2h;xk þ 2h
: Expanding to three
dimensions requires 12 neighboring samples of f ;
so we call this the ‘12-neighbor method’. Although
less common than the 6-neighbor approach, this
method has been considered before [6–8]. In this
work, we supply additional details and some new
approaches to handling the boundary conditions.
The sampling requirements imply that Eq. (10)

cannot be applied within two cells of a boundary.
For Neumann boundary conditions, we find

f 00ðx1Þ ¼
�59f1 þ 64f2 � 5f3 � 32hf 0ðaÞ

38h2

�
11f 0ðx1Þ
19h

þ Oðh3Þ: ð11Þ

Analogous to the 6-neighbor setting, Oðh3Þ accu-
racy here suffices to yield a fourth-order method
overall.
The f 0ðx1Þ quantity in Eq. (11) is an unknown

value. However, f represents one component of m
in Eq. (5), and m � @m=@x ¼ 0 at all points because
of the constraint jjmjj ¼ 1: Thus, in Eq. (5) we can
use

m � @2m=@x2jx1 ¼m1 �
�59m1 þ 64m2 � 5m3

38h2

�
16

19h2
@m=@#nja þ Oðh3Þ;
where typically @m=@#nja ¼ 0: An alternative to
using f 0ðx1Þ in (11) is to include an additional
sample of f ; say f ðx4Þ:
At cell x2 we find

f 00ðx2Þ ¼
335f1 � 669f2 þ 357f3 � 23f4

264h2

þ
1

11h
f 0ðaÞ þ Oðh3Þ; ð12Þ

which makes explicit use of f 0ðaÞ: Solving for
f 0ðx2Þ=h and adding the result to Eq. (12) yields

f 00ðx2Þ ¼
4f1 � 15f2 þ 12f3 � f4

6h2

�
1

h
f 0ðx2Þ þ Oðh3Þ: ð13Þ

As before, the f 0ðx2Þ term can be dropped when
considering the total integrand. Either Eq. (12) or
(13) may be used to estimate f 00ðx2Þ: In the
simulation results below we used Eq. (12).
For Dirichlet boundary conditions,

f 00ðx1Þ ¼
�165f1 þ 40f2 � 3f3 þ 128f ðaÞ

30h2

þ
1

h
f 0ðx1Þ þ Oðh3Þ ð14Þ

and

f 00ðx2Þ ¼
175f1 � 280f2 þ 147f3 � 10f4 � 32f ðaÞ

105h2

þ Oðh3Þ: ð15Þ

The f 0ðx1Þ term in the first equation can be
ignored. The f ðaÞ terms can be treated as applied
fields. In place of Eq. (15), one can use relation
(13), which is more convenient because then an
applied field term arising from f ðaÞ is not required
at x2:
In a practical energy minimization scheme, e.g.,

conjugate-gradient, the energy is differentiated
with respect to the discretized magnetization.
From Eq. (6),

@Fd
@mijk

¼ �2Vh

X
jk

w
y
j wz

k

X
ii0

cii0jkmi0jk; ð16Þ

where

cii0jk ¼ 1
2
ðAijkwx

i dii0 þ Ai0jkwx
i0di0iÞ: ð17Þ

Here cii0jk is a symmetric bilinear form in i and i0: It
is a general property of bilinear forms that
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Table 1

Corner coefficients for Oðh4Þ interaction matrices, for @m=@#n ¼ 0
Neumann and Dirichlet boundary conditions with constant

exchange coefficient A

cij Neumann Dirichlet

c11 �325 703=240 768 �2639=2880
c12 39 257/26 752 73/72

c13 �1255=10 944 �281=2880
c22 �643 747=240 768 �79=32
c23 16 297=12 672 113/72

c24 �337=4224 �11=96
c33 �196 421=80 256 �1319=480
c34 49/36 49/36

c35 �49=576 �49=576
c44 �32 077=12 672 �719=288
c55 �1439=576 �1439=576
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mTBm ¼ mTðB þ BTÞm=2; so Eq. (6) can be
rewritten as

Fd ¼ �Vh

X
jk

w
y
j wz

k

X
ii0

cii0jkmijk �mi0jk: ð18Þ

In the remainder of this section we consider the
case where A is constant. If we factor A out of
integral (2), so cii0jk ¼ cii0 ; we can rewrite the inner
sum in Eq. (18) as mTCm; where C ¼ ðcii0 Þ: The
norm constraint, jjmjj ¼ 1; implies that any mod-
ifications along the diagonal of the matrix C only
change the computed energy by a constant offset.
Since we are interested in energy differences and
minima, such a change is not significant; more-
over, adjusting the diagonal values so the rows
sum to zero yields better numerics because there is
less roundoff error when the neighbor-to-neighbor
magnetization variation is small [9].
For the 6-neighbor method with Neumann

boundary, the C resulting from Eq. (11) auto-
matically satisfies these conditions. However, for
Dirichlet boundary conditions the matrix arising
from Eq. (9) is asymmetric; making the above
adjustments yields

C ¼

�7=6 7=6

7=6 �13=6 1

1 �2 1

&

2
6664

3
7775; ð19Þ

where the bottom right-hand corner of the matrix
is symmetric about the cross diagonal with the
upper left-hand corner, i.e., the matrix is centro-
symmetric [10]. There is in addition an effective
boundary cell applied field, from Eq. (9).
For the 12-neighbor methods, the boundary

corrections, including the wx
i terms for the Oðh4Þ

integration method (3), affect the first five rows of
C: Table 1 presents the coefficients of C: These are
pentadiagonal matrices; non-zero entries are found
by symmetry of the entries in this table about
either diagonal, or otherwise from the general interior
formulae ck;k ¼ �5

2
; ck;k71 ¼ 4

3
; ck;k72 ¼ � 1

12
:

In addition to convergence as a function of h;
one can also look at the number of iterates of an
energy minimization method, say conjugate-
gradient, needed to converge for a fixed h: We
call this ‘iterative convergence’. To a large extent,
the iterative convergence can be predicted from an
eigenvalue analysis of C: We computed numeri-
cally the eigenvalues of �C for modest sizes (up to
n ¼ 19), and found them to lie in the range ½0; 4Þ
for the 6-neighbor methods, and inside ½0; 16=3Þ
for the 12-neighbor methods. The 0 eigenvalue
corresponds to the uniformly magnetized state,
which is minimal exchange energy. The upper limit
corresponds to a bulk þ1;�1;þ1;y alternating
state, which is maximal exchange energy. In
practice, we found all of the exchange energy
formulations considered above to have similar
iterative convergence behavior.

2.3. Twenty-six-neighbor exchange energy

The third approach uses exchange energy
representation (1) instead of Eq. (2). The magne-
tization between the discretization points is ap-
proximated using a trilinear interpolation of
nearby grid points, with basis functions
f1;x; y; z;xy; xz; yz; xyzg: Given this piecewise
polynomial representation for mðx; y; zÞ; and as-
suming constant A; formula (1) can be computed
analytically. Similar methods are employed in
finite-element micromagnetics [11,12].
The total exchange energy is found to be

AVh

36

X
ijk

X
i0j0k0

cijki0j0k0 ðmijk �mi0j0k0 Þ �mijk; ð20Þ
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Table 2

Coefficients for the 26-neighbor exchange energy formulation,

Eq. (20)

cijk%ijk

16

h2x
�
8

h2y
�
8

h2z

cijki%jk �
8

h2x
þ
16

h2y
�
8

h2z

cijkij %k �
8

h2x
�
8

h2y
þ
16

h2z

cijk%i %jk

4

h2x
þ
4

h2y
�
2

h2z

cijk%ij %k

4

h2x
�
2

h2y
þ
4

h2z

cijki%j %k �
2

h2x
þ
4

h2y
þ
4

h2z

cijk%i %j %k

1

h2x
þ
1

h2y
þ
1

h2z

Here %i ¼ i71; %j ¼ j71; %k ¼ i71; and cijki0 j0k0 ¼ 0 otherwise.
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where the coefficients cijki0j0k0 are specified in
Table 2. There are 26 non-zero terms, so this is a
‘26-neighbor’ method. Cells mi0j0k0 outside the
simulation volume are handled by reflecting m

across the boundary, which is equivalent to
specifying @m=@#n ¼ 0 at the boundary. This is an
Oðh2Þ method. We have not considered Dirichlet
boundary conditions for this method.
For cubic cells, hx ¼ hy ¼ hz ¼ h; and the above

expressions for the coefficients cijki0j0k0 simplify to
cijk%ijk ¼ cijki%jk ¼ cijkij %k ¼ 0; cijk%i%jk ¼ cijk%ij %k ¼ cijki%j %k ¼
6=h2; and cijk%i %j %k ¼ 3=h2: If additionally, we assume
there is no variation in m along the z-axis, then we
obtain the two-dimensional ‘8-neighbor dot
product’ studied previously [1].
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Fig. 1. Exchange energy error for a two-period uniform

magnetization spiral. The fitted lines are, top to bottom,

10�3g; 3� 10�5g2; and 10�9g4:
3. Simulation results

The exchange energy formulations described
above were implemented within the OOMMF
micromagnetic package [13], which was used to
produce the following results.
We first compared the exchange representations

for a head-to-head transverse wall in a thin film
strip. Only exchange and anisotropy energies were
included. The magnetization was held in the film
plane by a strong easy-plane anisotropy, and the
wall center was pinned by a uniaxial anisotropy
directed along the strip axis, with spatially varying
Ku of the form r2=ð1þ r2Þ; where r is the distance
from the center of the strip. In order to get Oðh4Þ
convergence in the anisotropy calculation, we used
the integration weights from Eq. (3) to compute
the anisotropy energy. Using Neumann @m=@#n ¼ 0
boundary conditions, the 6- and 26-neighbor
methods showed Oðh2Þ convergence, while the
12-neighbor method obtained Oðh4Þ convergence,
as expected.
Fig. 1 compares convergence of the 6- and 12-

neighbor methods on two turns of a uniform 1D
magnetization spiral. Here g is the (uniform) angle
between adjacent mk; g ¼ 720�=n: When the
proper Dirichlet boundary conditions are applied,
the convergence rates are second and fourth order,
respectively. However, since the ends of the spiral
are held fixed, @m=@#na0: The consequence of
applying incorrect boundary conditions is seen in
the top two curves—the convergence drops to first
order. For this 1D simulation, the 6- and 26-
neighbor methods are equivalent.

mMAG standard problem No. 3 [14] is studied
in Fig. 2. In this 3D problem, the equilibrium
configurations of a cube with easy-axis anisotropy
Ku directed along a cube principal axis are
calculated. The case we considered was a vortex
magnetization configuration with cube edge length
L set to 8:5lex; where lex is the magnetostatic
exchange length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=ðm0M2

s Þ
p

: We found the
reduced total energy density in the equilibrium
state to be 0:3015� m0M

2
s =2; which is comparable

to values reported by other researchers [14]. Unlike
the other examples, this problem includes self-
magnetostatic energy. Since our implementation
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does not include an Oðh4Þ representation for self-
magnetostatic energy, it is not surprising that the
convergence rates are second order. Even so, for a
given cell size h; the error from the 12-neighbor
method is almost half that from the 6-neighbor
method. We also performed tests where the
magnetization was subsampled from the equili-
brium configuration of the finest discretization. In
that case, with the magnetization held fixed, the
12-neighbor method attains Oðh4Þ convergence as
the subsampling rate is varied.
It is also important to consider discretization

induced effects on magnetization structures [1,15].
Fig. 3 examines the effects of cell size on vortex
motion. In this study, a vortex configuration is
centered in a square thin film element, 132 nm on a
side, with Py material properties ðA ¼ 13 pJ=m;
Ms ¼ 800 kA=mÞ: Self-magnetostatic energy is
simulated with a strong easy-plane uniaxial
anisotropy, Ku ¼ m0M

2
s : This is an unstable con-

figuration in the continuum setting; the slightest
in-plane applied field suffices to push the vortex
core away from the center position. In practice,
however, divots in the energy surface produced by
the discretization pin the vortex in place. One
measure of this effect is the field, Hpin; required to
unpin the vortex. As seen in Fig. 3, the 26-
neighbor method has significantly smaller Hpin for
h > lex; but otherwise the 12-neighbor method
dominates.
We also tested N!eel wall collapse [15], and

found that the 12-neighbor method to be some-
what more resistant to this discretization artifact
than the 6- or 26-neighbor methods.
4. Conclusions

We have examined three formulations for
exchange energy, with general Neumann and
Dirichlet boundary conditions. As a function of
the discretization cell size h; the error for the 6-
and 26-neighbor methods is Oðh2Þ; while for the
12-neighbor it is Oðh4Þ: When considering the
convergence of equilibrium states, the rate is
limited by the slowest convergence among all the
energy terms. Even in this case the 12-neighbor
method can yield significantly smaller errors. The
12-neighbor method is also found to be generally
preferable in our tests of discretization-induced
vortex pinning, although the 26-neighbor method
should be considered if one is forced to work with
coarse grids.
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