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Abstract

Exchange energy is especially sensitive to the numerical representation selected. We compare three discretized
exchange energy formulations for 3D numerical micromagnetics on rectangular grids. Explicit formulae are provided
for both Neumann and Dirichlet boundary conditions. Results illustrate the convergence order of these methods as a
function of discretization cell size and the effect of cell size on vortex pinning.
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1. Introduction

In the continuum theory that underlies micro-
magnetics, the term representing the quantum
mechanical exchange interaction can be written as

Eex = / AVm,P + [P+ VP v, (1)
JV

where A is the exchange coefficient and m =
(my, my, m.) represents the reduced magnetization,
M/M;. 1t follows from the constraint Im|* = 1
that m-0m/dx = 0, and similarly for /3y and
0/0z. This combines with the general relation
IVf? = V- (fVf) — fV>f to show that Eq. (1) can
be rewritten as

m m  Pm
Ep—— [ Am. (E2,0M M) 4y, 2
/, Am <ax2+ay2+az2>d @
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A numerical implementation of micromagnetics
must utilize a discretized form of Eq. (1) or (2).
The order of a numerical method is defined as the
rate at which the error decreases as the discretiza-
tion cell size /& tends to 0. For example, if there is a
constant B such that the error is smaller than Bh>
as h—0, we say the error is O(h?), or that the
method is second order. There are many factors to
consider when selecting a numerical implementa-
tion, such as method order, boundary conditions,
and seriousness of discretization-induced artifacts
like vortex pinning [1]. In this work we analyze
three discretization methods on rectangular lat-
tices, involving 6, 12, and 26 neighbors, with two
types of boundary conditions.

2. Theory

Evaluating either Eq. (1) or (2) numerically
involves evaluating both the integral and the
enclosed derivative. Additionally, special handling
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of the derivative is required at the boundary of the
simulation region. In order to obtain a specified
method order, say O(h*), each step must retain at
least that accuracy.

2.1. Integration techniques

A one-dimensional integral can be approxi-
mated by the discrete sum

b n
‘/fwmx:hgzwﬂ+0m%
a k=1

where fr = f(x;) at sample points x;, = a + (k —
%)h, h=(b—a)/n is the distance between succes-
sive samples, (wy) is a collection of weights, and «
is the method order. In this discretization the
sample points are all interior to the interval [a, b].
It is easy to show [2] that the simple sum with all
wy = 1 is O(h*) provided that f is twice continu-
ously differentiable, i.e., f € C?[a, b].

In general, to obtain a higher-order method one
must vary the weights wy. Simpson’s rule, with
weights 1,4,2,4, ...,2,4.1, is a well-known O(/*)
method for the case where the samples x; include
the endpoints a and b. There are also methods
where the wy’s are identically 1 in the interior, and
vary only at the ends [3]. Using the methods in
Refs. [2,3], one can show that the weights
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(i) =

yield an O(h*) integration method for f e C*[a, b].
A three-dimensional integral can be obtained by
iterating the above method,

/de =V Z wiw; Wi fijk + o(h*), “4)
v

ik

where V), = h.hyh. is an individual cell volume,
with Ay, hy, h. the sample periods along the x-, y-
and z axis, respectively, wy, w; ,w; are the weights
(3) extended to fit the sample sequences along the
corresponding axes, fj is the value of f* at point

(xi, Vj, zk), and h = max(h, hy, h-).

2.2. Six- and 12-neighbor methods

If we consider one term in Eq. (2), say

62
¢:7/Am@EdK (5)
Vv 6x2
then @ can be represented numerically as

djd = — I/h Z M/;Wi, Z Al'/‘kW’?dii/mi/‘k - My, (6)
Jk i’
where (d;7) is a discrete representation for the
operator & /0x.
The most common representation for the
exchange energy involves a three-term approxima-
tion to the second derivative in Eq. (5), namely

P10 = lfi 1 = 2+ i) + OUR) )

for f'e C*[xx — h, x; + h]. This expression involves
the center point x; and its two nearest neighbors.
Including the &% /8y and 6% /0z* terms expands the
sum to three dimensions, and triples the neighbor
count. Hence we call this the ‘six-neighbor
method’.

At any point x where f ¢ C*[x — h, x + h], and in
particular at the boundaries of the simulation
region (outside of which we assume m = 0),
relation (7) cannot be used. We consider explicitly
the case x = x| near the boundary x = «, but the
general case is completely analogous.

Considering first the case with Neumann
boundary conditions, where f’(a) is given, Taylor
series expansions about x; for / and f” yield

g

iy 2@
At equilibrium, in the absence of surface aniso-
tropy or other boundary fields, the normal
derivative of the magnetization at the boundary
satisfies om/on = 0 [4], which here means f”(a) = 0.

Compared to Eq. (7), the accuracy in Eq. (8) is
O(h) instead of O(h?). The symmetry of the
samples about x; in Eq. (7) results in cancellation
of the (x — xx)® terms in the Taylor expansion,
which does not happen here. However, regardless
of the number of samples n, there is only one edge
term near x = ¢ where Eq. (8) is applied, and this
term will be multiplied by the sample length %
during the integration process. Thus the

+ O(h). ®)
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approximation in toto is O(/#?). The approxima-
tion error in the interior, using Eq. (7), is O(%)
locally when considered part of the integration
process, but the number of such terms is n—
2=x(b — a)/h, so the total approximation error in
the interior is O(h?).

For Dirichlet boundary conditions, f(a) is
specified instead of f’(a). Working as before, we
obtain

4f> — 12f1 + 8f(a)
3h?
The 8f(a)/(3h%) term can be treated as an applied
field concentrated in the x; discretization cell.
We can proceed similarly for an O(h*) method.
A sixth-order Taylor series expansion shows [5]

—fi—2 + 16fk—1 — 30fk + 16fit1 — fit2
1242
+ O(h*) (10)

) =

+ O(h). 9)

1'(x) =

for feC®xy — 2h,x; + 2h]. Expanding to three
dimensions requires 12 neighboring samples of f,
so we call this the ‘12-neighbor method’. Although
less common than the 6-neighbor approach, this
method has been considered before [6-8]. In this
work, we supply additional details and some new
approaches to handling the boundary conditions.

The sampling requirements imply that Eq. (10)
cannot be applied within two cells of a boundary.
For Neumann boundary conditions, we find

—59f1 + 641> — 53 — 32hf"(a)
3842

+ O(I?). (11)

') =

1f'(x1)
194

Analogous to the 6-neighbor setting, O(h*) accu-
racy here suffices to yield a fourth-order method
overall.

The f’(x1) quantity in Eq. (11) is an unknown
value. However, f represents one component of m
in Eq. (5), and m - dm/0x = 0 at all points because
of the constraint |jm|| = 1. Thus, in Eq. (5) we can
use

—59m; + 64m, — Sm;
3842

om/én|, + O(h),

m - &"m/ox*|,, =m; -
16
19h2

where typically dm/di|, = 0. An alternative to
using f’(x;) in (11) is to include an additional
sample of f, say f(x4).
At cell x, we find
335f1 — 669> + 35713 — 2314
1" o
Sx) = 26412

+ ﬁf’(a) + O(h), (12)

which makes explicit use of f’(a). Solving for
f'(x2)/h and adding the result to Eq. (12) yields

iy Y 15fz6;; 12, — fi
) + O, (13)

As before, the f’(x;) term can be dropped when
considering the total integrand. Either Eq. (12) or
(13) may be used to estimate f”(x;). In the
simulation results below we used Eq. (12).

For Dirichlet boundary conditions,

Foey) = —165f1 + 401, — 3f3 + 128f(a)

3042
1S + 00) (14)
and
o VTS — 280fs + 147fs — 10fs — 32f(a)
S ) = 10542
+ o(). (15)

The f'(x;) term in the first equation can be
ignored. The f(a) terms can be treated as applied
fields. In place of Eq. (15), one can use relation
(13), which is more convenient because then an
applied field term arising from f(a) is not required
at x,.

In a practical energy minimization scheme, e.g.,
conjugate-gradient, the energy is differentiated
with respect to the discretized magnetization.
From Eq. (6),

0Dy .

3 = -2V, Z W;WL Z Ciitjl Mt jic (16)
mji Tk i

where

Citie = N Aywidiy + Appwidy;). (17)

Here c;iji is a symmetric bilinear form in 7 and 7. It
is a general property of bilincar forms that
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m'Bm =m"(B+ B")m/2, so Eq.(6) can be
rewritten as

b4 =V Z wiwi Z Citjfe Mg - My (18)

Jjk i

In the remainder of this section we consider the
case where A is constant. If we factor 4 out of
integral (2), so ¢z = c¢;7, we can rewrite the inner
sum in Eq. (18) as m"Cm, where C = (¢;7). The
norm constraint, |jm|| = 1, implies that any mod-
ifications along the diagonal of the matrix C only
change the computed energy by a constant offset.
Since we are interested in energy differences and
minima, such a change is not significant; more-
over, adjusting the diagonal values so the rows
sum to zero yields better numerics because there is
less roundoff error when the neighbor-to-neighbor
magnetization variation is small [9].

For the 6-neighbor method with Neumann
boundary, the C resulting from Eq.(11) auto-
matically satisfies these conditions. However, for
Dirichlet boundary conditions the matrix arising
from Eq.(9) is asymmetric, making the above
adjustments yields

~7/6  7/6
oo | 76 136 ’ (19)
1 -2 1

where the bottom right-hand corner of the matrix
is symmetric about the cross diagonal with the
upper left-hand corner, i.e., the matrix is centro-
symmetric [10]. There is in addition an effective
boundary cell applied field, from Eq. (9).

For the 12-neighbor methods, the boundary
corrections, including the wY terms for the O(h*)
integration method (3), affect the first five rows of
C. Table 1 presents the coefficients of C. These are
pentadiagonal matrices; non-zero entries are found
by symmetry of the entries in this table about
either diagonal, or otherwise from the general interior
formulae Cik = —%, Chk+l = %, Ck+2 = —%.

In addition to convergence as a function of 4,
one can also look at the number of iterates of an
energy minimization method, say conjugate-
gradient, needed to converge for a fixed 4. We

Table 1

Corner coefficients for O(h*) interaction matrices, for om/of = 0
Neumann and Dirichlet boundary conditions with constant
exchange coefficient A

cjj Neumann Dirichlet
e —325703/240 768 —2639/2880
2 39257/26752 73/72

13 —1255/10944 —281/2880
2 —643747/240 768 -79/32

€23 16297/12672 113/72

C4 —337/4224 —11/96

€33 —196421/80256 —1319/480
C34 49/36 49/36

€35 —49/576 —49/576
Caq —32077/12672 —719/288
Css —1439/576 —1439/576

call this ‘iterative convergence’. To a large extent,
the iterative convergence can be predicted from an
eigenvalue analysis of C. We computed numeri-
cally the eigenvalues of —C for modest sizes (up to
n=19), and found them to lie in the range [0,4)
for the 6-neighbor methods, and inside [0, 16/3)
for the 12-neighbor methods. The 0 eigenvalue
corresponds to the uniformly magnetized state,
which is minimal exchange energy. The upper limit
corresponds to a bulk +1,—1,+1, ... alternating
state, which is maximal exchange energy. In
practice, we found all of the exchange energy
formulations considered above to have similar
iterative convergence behavior.

2.3. Twenty-six-neighbor exchange energy

The third approach uses exchange energy
representation (1) instead of Eq. (2). The magne-
tization between the discretization points is ap-
proximated using a trilinear interpolation of
nearby grid points, with basis functions
{1,x,y,z,xy,xz,yz,xyz}. Given this piecewise
polynomial representation for m(x,y,z), and as-
suming constant 4, formula (1) can be computed
analytically. Similar methods are employed in
finite-element micromagnetics [11,12].

The total exchange energy is found to be

AV,
3 6h Z Z Cijieij i (Mjje — Mjrgr) - My, (20)

ik IjK
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Table 2
Coefficients for the 26-neighbor exchange energy formulation,
Eq. (20)

. 16 ¥ 8
8 16 8
8 8 16
Cijkijk *E*@ 7
447 2°
Cijki jik ij h;%*hj
4 4
2 4 4
Cijki]/; —h7+h7+h7
1 X 1 yV 1 z
Cijkif &k E+E+h_2

Here i=i+1, j=j+1, k=i+1, and cjxryir = 0 otherwise.

where the coefficients c;uv are specified in
Table 2. There are 26 non-zero terms, so this is a
26-neighbor’ method. Cells my; outside the
simulation volume are handled by reflecting m
across the boundary, which is equivalent to
specifying ém/ofn = 0 at the boundary. This is an
O(h*) method. We have not considered Dirichlet
boundary conditions for this method.

For cubic cells, i, = h, = h. = h, and the above
expressions for the coefficients cjyyp simplify to
Cipiie = e = i = 05 o = ok = Cipkife =
6/h*, and ¢;;77 = 3/1*. If additionally, we assume
there is no variation in m along the z-axis, then we
obtain the two-dimensional ‘8-neighbor dot
product’ studied previously [1].

3. Simulation results

The exchange energy formulations described
above were implemented within the OOMMF
micromagnetic package [13], which was used to
produce the following results.

We first compared the exchange representations
for a head-to-head transverse wall in a thin film
strip. Only exchange and anisotropy energies were
included. The magnetization was held in the film
plane by a strong easy-plane anisotropy, and the
wall center was pinned by a uniaxial anisotropy
directed along the strip axis, with spatially varying

K, of the form r*/(1 + r?), where r is the distance
from the center of the strip. In order to get O(h*)
convergence in the anisotropy calculation, we used
the integration weights from Eq. (3) to compute
the anisotropy energy. Using Neumann dm/on = 0
boundary conditions, the 6- and 26-neighbor
methods showed O(h?) convergence, while the
12-neighbor method obtained O(h*) convergence,
as expected.

Fig. 1 compares convergence of the 6- and 12-
neighbor methods on two turns of a uniform 1D
magnetization spiral. Here y is the (uniform) angle
between adjacent my; y = 720°/n. When the
proper Dirichlet boundary conditions are applied,
the convergence rates are second and fourth order,
respectively. However, since the ends of the spiral
are held fixed, om/dn#0. The consequence of
applying incorrect boundary conditions is seen in
the top two curves—the convergence drops to first
order. For this 1D simulation, the 6- and 26-
neighbor methods are equivalent.

ULMAG standard problem No. 3 [14] is studied
in Fig. 2. In this 3D problem, the equilibrium
configurations of a cube with easy-axis anisotropy
K, directed along a cube principal axis are
calculated. The case we considered was a vortex
magnetization configuration with cube edge length
L set to 8.5ly, where [ is the magnetostatic
exchange length /24/(uyM2). We found the
reduced total energy density in the equilibrium
state to be 0.3015 x pyM?2 /2, which is comparable
to values reported by other researchers [14]. Unlike
the other examples, this problem includes self-
magnetostatic energy. Since our implementation
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Fig. 1. Exchange energy error for a two-period uniform
magnetization spiral. The fitted lines are, top to bottom,
1073y, 3 x 107392, and 10~y%.
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Fig. 2. Total energy error for yMAG standard problem No. 3.
The fitted lines are, top to bottom, 0.024%, 0.014%, and 5.5 x
107342, where 4 = h/I.. The reference energy is obtained by
extrapolating to & = 0.

16 T T T T
" 26-nghr O
14+ 1
y 6-ngbr ©
o 12r 12-ngbr 4
= 101 1
£ 8¢
o
T 6l
=1 al |
2- N
0

Cell size/exchange length

Fig. 3. Applied field required to unpin a vortex as a function of
discretization cell size.

does not include an O(h*) representation for self-
magnetostatic energy, it is not surprising that the
convergence rates are second order. Even so, for a
given cell size &, the error from the 12-neighbor
method is almost half that from the 6-neighbor
method. We also performed tests where the
magnetization was subsampled from the equili-
brium configuration of the finest discretization. In
that case, with the magnetization held fixed, the
12-neighbor method attains O(h*) convergence as
the subsampling rate is varied.

It is also important to consider discretization
induced effects on magnetization structures [1,15].
Fig. 3 examines the effects of cell size on vortex
motion. In this study, a vortex configuration is
centered in a square thin film element, 132 nm on a
side, with Py material properties (4 = 13 pJ/m,
M =800 kA/m). Self-magnetostatic energy is
simulated with a strong easy-plane uniaxial
anisotropy, K, = ,uOMSZ. This is an unstable con-
figuration in the continuum setting; the slightest
in-plane applied field suffices to push the vortex

M.J. Donahue, D.G. Porter | Physica B 343 (2004) 177-183

core away from the center position. In practice,
however, divots in the energy surface produced by
the discretization pin the vortex in place. One
measure of this effect is the field, Hy;n, required to
unpin the vortex. As seen in Fig. 3, the 26-
neighbor method has significantly smaller Hp, for
h> I, but otherwise the 12-neighbor method
dominates.

We also tested Néel wall collapse [15], and
found that the 12-neighbor method to be some-
what more resistant to this discretization artifact
than the 6- or 26-neighbor methods.

4. Conclusions

We have examined three formulations for
exchange energy, with general Neumann and
Dirichlet boundary conditions. As a function of
the discretization cell size &, the error for the 6-
and 26-neighbor methods is O(h?), while for the
12-neighbor it is O(h*). When considering the
convergence of equilibrium states, the rate is
limited by the slowest convergence among all the
energy terms. Even in this case the 12-neighbor
method can yield significantly smaller errors. The
12-neighbor method is also found to be generally
preferable in our tests of discretization-induced
vortex pinning, although the 26-neighbor method
should be considered if one is forced to work with
coarse grids.
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