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Micromagnetic eddy currents in conducting cylinders
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The inclusion of eddy currents into micromagnetic programs is important for the proper analysis of
dynamic effects in conducting magnetic media. This paper introduces a numerical implementation
for eddy current calculations, in a limited geometry, for a thick domain wall. In the special case of
a zero-thickness wall, our results are directly comparable with an analytical model previously
presented. Our calculations provide some computational results for testing more complex
programs. ©2005 American Institute of Physics. fDOI: 10.1063/1.1851872g
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I. INTRODUCTION

Recently interest has been expressed in introducing
currents into micromagnetic problems.1–3We have develope
a one-dimensional model micromagnetic program to s
for the dynamic magnetization in conducting cylinders a
test bed for determining errors in these programs. This m
involves solving the coupled problems of eddy current
magnetization calculations. This model permits one to d
mine any effect of wall bending on its characteristics, s
the wall’s radius of curvature decreases as it approache
center of the wire. We found that the wall energy per
area increased slightly with the decreasing radius.

The model geometry consists of an infinitely long cir
lar cylinder of radiusR consisting of a uniaxial materi
whose easy axis,z, coincides with the cylinder’s axis. In
tially the cylinder is uniformly magnetized in the positivez
direction. Applying a constant field in the negativez direc-
tion eventually reverses the magnetization. The reversal
sists of nucleating a Bloch wall at the surface that propag
towards the center, where it is eventually annihilated a
cylinder’s axis. The moving wall induces eddy currents
impede the wall’s progress without creating demagneti
fields.

An external magnetic field acts as a boundary cond
on the magnetic field inside the material. The difference
tween the internal magnetic field from the surface magn
field is due to the shielding effects of eddy currents. T
the magnetic field tries to penetrate the material and in d
so changes the magnetization, which in turn, generate
eddy currents that keep it from penetrating. At each
step, one has to simultaneously relax both the magnetiz
and the magnetic field.

We have recently presented a model for testing limi
cases of a micromagnetic model, for a zero-thickness
that included eddy currents.4 Here, we present the effect o
finite-thickness wall, the effect of wall curvature, and
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problems with jointly computing wall shape and dynam
For simplicity, we again leave out gyroscopic effects
assume that the domain structure propagating toward
center is a Bloch wall. The calculation properly reduce
the recently presented results if the wall has zero thickn

Figure 1 shows how the magnetization angle, with
spect to thez axis, varies as a function of the normaliz
radius for several time steps in the calculation as the
progresses. For the arbitrary parameters chosen, in the
steps, the wall forms. During the next 40 steps, the
propagates towards the center where it is annihilated.

II. FORMULATION OF THE PROBLEM

The exchange energy between a pair of spins is

Wex = − Jexs1s2. s1d

If we assume that the magnetization varies linearly betw
a pair of calculation nodesj andk, then the exchange ener
for the atoms in that row is given by

FIG. 1. A plot of the magnetization angle as a function of radius for va

time steps.
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wex,jk = − Jex
h

d
cosFd

h
sa j − akdG , s2d

whereak is the angle that the magnetizationM k makes with
respect to thez axis, since we are assuming thatf=0, h is
the distance between nodes, andd is the distance betwee
magnetic unit cells. To get the total exchange energy we
to sum this over all the computation points.

As shown in Fig. 2, let A be the spin on the computa
row; B is the spin on the adjacent row, which is obtained
rotating an interpolated spin, C, from the computation
by an anglef equal to tan−1sh/ rd, about thez axis. Let spin
A make an angleA with respect to thez axis, and spin B
make an angleB with respect to thez axis. The anglev
between A and B is computed using the spherical angle
mula.

If there aren intervening atoms in between, then

wex = JncosF1

n
cos−1scosA cosB + sinA sinB cosfdG .

s3d

To this, we have to add the total anisotropy ene
which for uniaxial anisotropy is

Wanis= 2pE
0

R

rK sin2 vdr. s4d

The Zeeman energy is given by

WZeeman= − 2pE
0

R

m0HzsrdMs cosfvsrdgr dr. s5d

If the applied field and, consequently, the magnetiza
change with time, an electric field will be induced. By Fa
day’s law, the curl of this electric field is given by

curlE = −
]B

]t
= − m0S ]H

]t
+

]M

]t
D . s6d

The electric field, neglecting the effect of thez componen
4

FIG. 2. Relationship of spherical angles.
inside the wall, is then given by
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Esrd = −
m01y

r
E

0

r F ]Hzsr,td
]t

+
]Mzsr,td

]t
Gr dr, s7d

where1y is a unit vector in they direction. This electric fiel
will induce eddy currents. If the time scale is appropri
then these currents can be computed using Ohm’s laJ
=sE. By Ampere’s law, the field in the interior of the ma
rial will differ from the surface field by the eddy curren
Thus, the field at any pointHzsrd is given by

dHzsrd
dr

= Kwsrd, s8d

whereKw is the surface current density per unit length at
wall.

The iterative method that we used at each time ste
volves calculating the magnetization due to the local fi
computing the eddy currents due to the change in mag
zation, then adding the field induced by the eddy curren
the applied field to obtain the local field and repeating u
there is convergence. Then we advance to the next time
The magnetization can be computed by either applying
Landau–Lifshitz–GilbertsLLGd equation to study high-spe
phenomena or by minimizing the energy of the system
this version of the program, we used energy minimization
simplicity and since the magnetization relaxation is m
faster than the relaxation of the eddy currents.

One of the problems where several symmetrical s
tions are possible, such as this one, is how to break the
metry. We chose to do this by searching for a solution fa
in the rangef0,pg. For materials with uniaxial and simil
anisotropies there is a unique minimum in this range;
this breaks the symmetry.

The spatial discretizationDr is determined by the res
lution that we wish to obtain of the domain wall. For
ample, if the width of the domain wall islw and we wish to
havenw points in the wall, then

Dr = lw/nw. s9d

FIG. 3. A plot of a normalized wall radiusssolid lined and a normalized wa
energy densitysdashed lined with time for a constant applied field.
The temporal discretization is determined by the ability
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of the induced eddy currents to slow the wall down. In
ticular, the change in the magnetic field from the surfac
the midpoint of the wall,R, is

DH =E
r

R

Ksrddr < − KwsR− rd, s10d

If the material has no coercivity,DH is equal to the applie
field Happ. The current density at the wall is given by

Kw = sDF/Dt, s11d

where DF is the change in the magnetic flux, for a u
length along the cylinder between the midpoint of the w
and the center, in one time step. This flux change is rou
equal to the product ofm0, twice the saturation magnetizati
ssince the magnetization changes from −MS to MSd, and the
distance that the wall moves in one time step. We would
this distance to be comparable toDr. Thus,

Dt <
2m0sMsDr

Kw
=

2m0sMssR− rdDr

Happ
. s12d

It is seen that if one chooses a smaller time step
induced currents will be larger. We shall choose a time
so thatDH is a fractiona of Happ, wherea is of the order o
unity. Thus, we choose the time step

Dt =
2m0sMssR− rdDr

aHapp
. s13d

All things being equal, this means that we could take la
time steps as we approachr =0.

III. MODEL RESULTS

In these calculations, we chose material paramete
that the wall thickness was 0.1 times the wire radius.
arbitrarily define the wall radius as the position at which
magnetization angle isp /2. We see from Fig. 3, a plot of th
wall position with respect to time for a constant applied fi
that the radius varies linearly once the wall is formed u

FIG. 4. Eddy current density as a function of position partway throug
magnetization reversal.
just before it starts to annihilate. We expected the wall to
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accelerate as it approached the center since the amo
flux change for a given change in the radius decreases.
ever, the eddy currents also increase since they have a
area to flow in. This is illustrated in Fig. 4, which is a plot
the eddy current density for a wall at 0.2 times the norm
ized radius.

The magnetization change is due to the shrinking o
core. Since the volume of the core varies as the square
wall’s radius, and since the wall position is linear in time
shown in Fig. 5, we expect the magnetization to vary p
bolically in time. If we compare this result with that of
zero-thickness wall, discussed in Ref. 4, we see that the
agreement.

We defined the wall widthww as

ww =
2

dv/dr
, s14d

and the wall energy per unit area for a unit length along
wire as the sum of anisotropy and exchange energies di
by the length of the wall at the wall radius. We then co
puted the wall thickness and found it to be essentially
stant once the wall was fully formed and until it annihilat
The wall energy density variation on the other hand
creased slightly with decreasing the radius.
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